Machine Translation with Episteme:
Linguistic Knowledge Representation,
Computational Efficiency and Formal Properties

J. GABRIEL AMORES* & JOsgE F. QUESADA™

* Universidad de Sewilla
* Centro Informdtico Cientifico de Adalucia (CICA)

Abstract

In this paper we describe Episteme, a tool for the development of ef-
ficient LFG-based MT systems. Episteme was designhed to meet the
requirements of modern language engineering as far as the following
criteria: efficiency, robustness, reusability, linguistic motivation and
capable of handling large amounts of data. The system incorporates
a series of novel computational techniques which enhance the over-
all performance significantly: representation, storage and retrieval
of very large feature structure-based knowledge bases, bidirectional

~ event—driven bottom up parsing with top—down predictions and con-
structive unification with post-copy.

1 Introduction

Episteme was designed to meet the requirements of modern langnage engi-
neering as far as the following criteria:

1. Computational properties: efficiency, reusability {(software infrastruc-
ture} and scalability.

2. Linguistic motivation: representational adequacy (user—friendly), re-
usability (capable of sharing linguistic knowledge) and theoretical mo-
tivation (inspired by unification grammars).

3. Formal properties: robustness, completeness and soundness.

The goal of this paper is to show that Episteme meets all those criteria.
Section 2 describes the main computational techniques. Section 3 shows the
overall architecture of Episteme. The remaining sections go through each of
the modules in Episteme: lexical and morphological analysis, parsing and
unification, transfer and generation.

316 J. GABRIEL AMORES & JOSE F. QUESADA

2 Computational technigques and formal properties

It has taken approximately two years to develop the tool, umtil a satis-
factory level of robustness and efficiency has been achieved. Our goal has
been to obtain a system inspired by unification grammars (Shieber 1986)
while achieving the best performance in analysis times. The efficiency of the
system results from the implementation of the following techniques:

1. Representation, Storage and Retrieval of Very Large Feature Struc-
ture—based Knowledge Bases. The lexical module is based on Improved
Binary Trees with Vertical Cut (Quesada & Amores 1995). The com-
putational complexity of this technique is O(log(log(N))}, where N is
the length of the lexicon. We have tested it with artificiai dictionar-
ies obtaining that the time necessary to analyze a single lexical item
varies from 1 millisecond (with dictionaries of up to 5,000 entries} to
3 milliseconds (with dictionaries of up to 134,000,000 lexical entries).

2. Bidirectionel Eventi—driven Boltom-Up Parsing with Top-Down Pre-
dictions. From a theoretical point of view, this parsing technique (Que-
sada 1997b) reduces between 80 to 95% the amount of arcs and nodes
in a conventional chart parser. That is, Episteme only generates 20%
of structures in the worst case. The practical consequence of this is
that we can parse between 2,000 and 5,000 words per second. These
results have been tested with grammars including recursion, and local
and non-local dependencies, and sentences from 1 (2°} to 1024 (2'°)
words. In a different work, it has been demonstrated that the parser
is sound and complete {Quesada 1997a:287-339).

3. Constructive Unification with Post-Copy. This algorithm incorporates
the following strategies: structure—sharing, reversible unification, con-
structive unification, disunification and post—copying (Quesada 1996).
Constructive unification by itself eliminates the problems of pre—copyin
over—copying and redundant copying completely. This set of tech-
niques reduces the computational load {memory and time) up to a
98% when compared with basic upification algorithms such as the
naive algorithm or the default use of unification in PROLOG.

3 Machine translation strategy

The basic architecture of Episteme relies on a modular separation between
the algorithms which perform specific tasks (parsing, unification, transfer
and generation) and the specification languages used to express linguistic

MACHINE TRANSLATION WITH EPISTEME 317

knowledge and control commands. So much. so, that Episteme could be
viewed as containing two layers: a programming language for NLP and a set
of functions which perform NLP tasks.

As regards MT strategy, Episteme follows a transfer approach (Hutchins
& Somers 1992), which fits perfectly with the double representation which
LFG (Bresnan 1982, Dalrymple et al. 1996) assigns to every sentence. In-
tuitively, the f-structure serves ideally as the input to transfer in a con-
ventional MT system. While the c-structure conveys languagedependent
information which is discarded during transfer, grammatical relations render
language-independent information of the sort needed during transfer.

Episteme generates one or more {in case of ambiguity) ¢— and - struc-
tures for each sentence in the source language during the analysis phase.
The transfer module goes from source f-structures to targes f—structures,
and generation goes from target f-structures to target c—structures. The
system may be parametrised to yield the first translation or all possible
translations of an input sentence. a

Figure 1 shows the overall architecture of the system, including the main
components from a structural standpoint, the functional relations among
them, and the fiow of information during the translation process.

Tragdaion

Source Language . 1 Target Language
- e

Analysis i Transfer H Generation

Fig. 1: Overdall architecture of Episteme

318 J. GABRIEL AMORES & JOSEF. QUESADA

4 Specifying linguistic knowledge in Episteme

Episteme may be described as the core of a tool for the development of
MT systems. That is, Episteme is not an MT system itself, but a shell to
develop MT systems. Accordingly, it is equipped with a series of specification
languages whereby the necessary linguistic knowledge is incorporated into
the system, and a series of control commands to configure the functioning
of the system.

The main concept in Episteme is that of language. For each language,
we may build an analysis grammar, an analysis lexicon, a set of transfer
modules to other languages, a generation grammar, and a generation lex-
icon. All five components are optional for each language. A configuration
command indicates which source and target languages will be active during
the translation process. .

In addition, Episteme includes a tool to measure the statistical per-
formance of the system, and a “trace” capability which provides detailed
information about all the operations involved in the translation process.

In the following sections we will offer a concise description of each of the
processes which take place since the system receives a string of words as
input until it generates the corresponding translation.

5 Lexical and morphological analysis

The phase of lexical analysis receives a string of words as input and its goal
is to output a list of the syntactic category/ies and functional structure/s
associated with each word.

5.1 Simulating morphological analysis through morphological genergtion
and efficient knowledge—base retrieval

The lexicon is built following Mph-Vtree syntax (Quesada & Amores 1995).
Mph defines a sophisticated language for the specification of lexicons for
unification grammars. Its output may be linked to Viree, a powerful sys-
tem for the efficient storage and retrieval of large feature structure-based
knowledge bases. The joint use of both systems creates a specification en-
vironment close to the linguist and a very efficient module for lexical and
morphological analysis.

From a computational point of view our model is based on inflected
forms, as oppossed to other paradigms based on two-level morphology.

MACHINE TRANSLATION WITH EPISTEME 319

Nevertheless, the system does not require that all inflected entries be coded
manually. Instead, Mph permits the definition of regular morphological phe-
nomena. An additional advantage is that the same specification language
may be used to define lexical redundancy rules and some cases of deriva-
tional morphology. .

Finally, using Vtree to store and retrieve lexical items once they have
been generated by Mph results in excellent times. Specifically, Vtree obtains
a performance rate of milliseconds per word, independently of the morpho-
logical complexity of the languages involved. Complexity only affects Mph,
and the time consumed by Mph to generate all forms is compilation time,
which is performed just once.

In sum, a lexical analysis model based on morphological generation such
a5 the one presented here is preferable to models based on morphological
analysis in real-time applications and with a large lexicon, where a maxi-
mum response time is usually required.

52 Mph

Mph has been designed for typed feature structures. Namely, it uses the
notion of shape to refer to complex feature structures permitted in a lan-
guage. A shape defines the skeleton of a structure, that is, the attributes
which may or must be instantiated.

A shape definition is formed by four components: its name or identifier,
body, list of indexes and transformational rules of shapes associated

A body definition in a shape is a list of attribute—value pairs.

The last component in a shape definition are transformational rules. One
of the goals of transformational rules over shapes is to capture morphological
generalisations found in natural languages. They may also be used as lexical
redundancy rules to capture transitive alternations in verbs, for example.
Each rule contains two components: a pattern and a set of target structures.

Meta-relations allow us to associate a shape with generation models for
new shapes. Despite the use of macros and a transformational rule to obtain
the plural of regular nouns, each of the entries above requires specifying all
new values, which in fact are the same for all entries. This situation may
be simplified by using input forms or iforms. These constructions permit to
associate a flat, PROLOG-like predicate with a complex feature structure,
incorporating all the expressive power of Mph. That is, iferms allow the
inclusion of macros, functions, multi-word entries, etc.

Effectively, the simultaneous use of shapes and macros permits the de-

320 J. GABRIEL AMORES & JOSE F. QUESADA

sign of a hierarchy of typed feature structures. In addition, Mph incorpo-
rates a default inheritance strategy, whereby assigning different values to
the same attribute does not result in an error.

6 Analysis grammar

From a functional point of view, the parsing {Bunt & Tomita 1996, Que-
sada 19972) and unification (Shieber 1986, Quesada 1996) modules in Epis-
" teme have been implemented following an interleaving strategy. That is, the
parser interacts with the unifier during the analysis process.

6.1 Parsing

Broadly speaking, the parser in Episteme may be described as a bidirectional
bettom—up chart (Kay 1980, Quesada 1997a), incorporating top-down pre-
dictions (Quesada 1997b}.

The efficiency of a bottom—up chart parser may be increased if useless
arcs are eliminated in the first stages of the process. Top—down predictions
have been incorporated in Episteme with that goal.

We have implemented a set of simple and intuitive mathernatical rela-
tions between the nodes in a grammar which allow us to determine whether
certain arcs have no guarantee of sucess on certain occasions. :

The model of top—down predictions requires that the parser knows all
the information regarding possible arc applications over current nodes. This
information is obtained through a model of bidirectional event generation.

Our parsing strategy approaches the problem of efficiency from an algo-
rithmic point of view. In addition, Episteme incorporates a computational
approach to increase the parsing efficiency further. Namely, the grammar
is compiled beforehand, obtaining an internal representation of it which
reduces the comparison of strings of characters considerably.

An analysis grammar in Episteme consists of three components:

1. A series of configuration parameters, of which only RootsOfGrammar
will be used by the parser. RootsDfGrammar specifies possible ter-
mination symbols in the grammar, thus allowing for grammars with
multiple root symbols.

2. A set of context—free productions.

3. Each production may contain a set of functional equations which will
be passed on to the unification module.

MACHINE TRANSLATION WITH EPISTEME 321

Figure 2 shows a simple English grammar written in a format acceptable
for Episteme.

Possible Termination Nodes

RootrQEGrazmar: § w//"//:sww!egonzmn Controliing Feature

SubcatComtrols ggf ubcategorization Grammatical Functions

SubcatPunctions: subj ebj obj2 pﬁj‘/ Passible Head Features
HsadFeatures: pred head form quant

L8 -> NP VP
{dup.subj = Geelf-I;
Pup = Guelf-27) W
(2:HP -7 n) -eE—
{Bup = Baelf-1;)
(3:NP -> det n)

{Pup = Paelf-17ek Functional Equations
Sup = eu%/

[4:NP => NP PP)
{dup a dsalf-1)

Gup.pobl = 83elf-2;
dcompletenaasidaf);
(51¥P => v NP}

{#up = ¢salf-1;
dup.obj = Gsalf-2;
Gcomplatenass (@sf=[subi))
Gacharence (@af- [sabjil)z}

{€:VP -> ¥ NP VP)

{8up = @salf-1;)}

ontext-Free PS Rules

Coherence and Completeness

Fig. 2: English basic grammar for Episteme

6.2 Uniﬁc@tion

The unification module of any unification-based NLP system usnally con-
sumes around 80 or 90% of the total computation time. The relevance of
this- module justifies that we make a special effort in the design of the al-
gorithms and implementation strategies. In addition, we should take into
account the linguistic requirements regarding the expressive power that uni-
fication grammars usually demand.

Thus, we could divide the unifieation module in two distinct compo- .
nents. On the one hand, we have the unification algorithm proper, which
is independent of any linguistic formalism. On the other, we would find
the specification layer, which tries to capture the strategies and notations
found in the particular theory being implemented. In our case, the latter
has been designed having LFG in mind, although the algorithm is valid for
anty unification-based formalism.

The core of the module implements a reversible unification strategy,
based on disunification and post-copying (Quesada 1996). The strategy

322 J. GABRIEL AMORES & JOSE F. QUESADA

relies on a sophisticated data organisation which obviates most copying
processes during unification. If unification fails, the disunification algorithm
recovers the original data structures faithfully. If unification succeeds the
result is copied (post—copied} and the disunification process recovers the
original input structures. _

The current version allows the use of atomic values, atom negation and
disjunction (negated or not), and lists.

As regards the LFG (Bresnan 1982) notation, the unification algorithm
covers the basic equational unification (=} plus: structure assignment (=a),
evaluation and conditional execution (if ...then ...else), specific func-
tions for the manipulation of character strings and lists (@concat, @member,
@count), mathematical (+,-,*,/), logical (1,&%,11) and relational opera-
tors (==, !=,<,<=,>,>=), and coherence and completeness controls. Classi-
cal LFG (Bresnan 1982, Dalrymple et al. 1996) metavariables { and | are
called @up and @self-N in Episteme. The example in Figure 2 includes some
of these functions.

7 Transfer

After the analysis phase, the parser and the unifier have obtained one or
more constituent structures {c-structure in LFG) and one or more func-
tional structures (f-structure) for each grammatical sentence. According to
the machine translation approach we are assuming in Episteme, the next
step will consist in transferring the source f-structure into an equivalent
f-structure in the target language.!

The transfer module is divided in two stages, as in most transfer-based
MT systems. First, the lezical transfer phase applies translation rules trig-
gered by atomic—valued features. Then, during structural transfer, transla-
tion rules may modify complex—valued features, which results in changing
the internal structure of the sentence.

One of the innovations incorporated in the transfer module is that the
user may specify the order in which features are to be transferred, according
with the following syntax: FeatureTransterQrder: <list-1> ... <list-N>

7.1 Lexical and structural transfer

Lexical and Structural Transfer rules are very similar in their syntax. They
consist of three main components:

1 It is possible to set up the number of analysis, transfer and generation outputs we wish
to obtain when the input is ambiguous.

MACHINE TRANSLATION WITH EPISTEME 323

1. A triggering feature;
2. A set of conditions;, and
3. A set of actions.

Following is a listing of two simple transfer rules. The first will transfer
the feature descr as pmod inserting the appropriate preposition as weil.
This rule covers the generalisation of transferring premodifying nouns as
prepositional phrases with de into Spanish: date structure => estructura de
datos.

The second rule changes the internal structure of the verb give followed
by two objects into a v NP PP pattern in Spanish: fo give someone some-
thing => dar algo a alguien.

StructuralTransfer descr

(= pmod ddo {Otarget. pmod.pcase =a dc; »n

LaxicalTransfer pred
{give => dar ¢when (Qsource.get == [aub] obj, ob;|2]J

tdo {#transferas({@source.obj?, Otarget.obj);
#transferas(@source.obj,$target.pobj);
Starget.pobj.pease =a a}
dar)

8 Generation

Once the source feature structure has been transferred into an equivalent
one in the target language, the next phase involves generating the string of
words in the target language. Figure 3 shows a simple generation grammar.
Each rule contains four elements:
e A context—free portion specifying the subtree which wilt be generated
by this rule, for example:
) {1:5 ~>» HP ¥P)
¢ A set of functional equations specifying how to proceed with the gen-
eration process for each of the nodes generated by the rule:

{0self-1 = dgenerate{fup,subj);
0self-2 = ¢generate(fup);’

‘e In addition, every rule must be preceded by the list of features trig--

gering it:
‘GenerationBlack: pred obj aubj Tpobi Tclt dbl

Episteme allows several generation rules to share the same triggering
generation features, which leads to the idea of a generation block, or
set of generation rules. In the example in Figure 3 generation blocks
contained a single rule each. However, real applications demand this
capability.

324 ' J. GABRIEL AMORES & JOSE F. QUESADA

GenearatienFeatures: pred haad pcase spes subj obj pobi clt_dbl
neration Triggering Features

GenerationBlock: pred obj sudbj Tpobj ?clt._d.hl.'\u
(k: 8 -> WP ¥P) ay-match (?) Features
{@self-1 = @gensrate(dup.subi)s,

@self-21 = @gensrate(fup) Y
GanerationBlock: hasd
(2: ¥P => n}
{@salf-1 » @ayntheais(@up.head);}
GeansratiemBlock: spec head
{3t B¢ -> dat n)
{8aelf-1 = @xyncthesin(@up.apad);
@salf-2 = @aynthesis (dup.head}
GansrationBlock: pred okj pebj Tcle_dbl
{4: ¥Y¢ -> VG NF PP}
{égalf-2 = #generats(dup.obi)
@anlf-3 = @ganerate{Bup.pobi);
Gaelf-1 = Quenerate(@up);)
GanerationBlock: pred
{5: Vg => v)
{®self-1 = @mynthasis (Gup.pred);)
GenerationBlock: pred clet_dbl
{6: v@ -> clt ¥}
{@sel1f-1 = ésynthesis{dup.clt_dbl);
2a8lf-2 = @aynthesis(Bup.pred);}

Must-match Features

Recursive Generation of
Non-Terminal Nodes

Synthesis of
Terminal Nodes

Fig. 3: Simple generation grammar

¢ A condition of type ®@when which evaluates an expression. Conditions
during generation make use of the same specification language and ex-
pressions evaluation mechanism designed for unification and transfer.

Another innovation of Episteme is the inclusion of optional features in the
specification of the generation block. This avoids unnecesary repetitions in
the generation component. For example, rule 1 in Figure 3 will be used
with structures that must contain obligatorily a pred, subj and obj and
may contain a pobj and/or a c1t_dbl optionally.

Finally, lexical generation makes use of the same model (Mph—Viree)
described previously for lexical analysis.

9 Episteme at work

This section illustrates how Episteme may solve a complex translation prob-
lem between English and Spanish. Resultative constructions in English in-
clude in the predicate the manner in which the action takes place. If the
action has a result it is described by means of an adjunct or a secondary
predicate. On the contrary, the predicate in Spanish denotes the result and
the adjunct denotes the manner,

MACHINE TRANSLATION WITH EPISTEME 325

The blacksmith hammered the metal flat (resultative)

These constructions pose a serious problem to MT systems, since what is a
verb in English becomes an adjunct in Spanish and vice versa.

(A) The blacksmith hammered the metal flat ->
El herrero apland el metal a martillazos

Our analysis is based on the assumption that resultative constructions un-
dergo a process of predicate composition in English (Amores & Alvarez
1994). Although our analysis is inspired in LFG (Bresnan 1982), it does not
reflect the official trend in the theory.

Resultative constructions are identical in their constituent organisation
to so—called depictive constructions, in which the adjunct does not describe
the result of applying an action over an object, but rather, the state of the
object (or subject) when the action took place.

(B) The waiter served the fish raw ->
El camarero sirvié el pescado crudo

Therefore, the system must be capable of differentiating each type of con-
struction first, and then apply the corresponding translation rules.

The resultative construction will be identified during analysis taking into
account whether the main verb allows this type of construction, signalled by
the presence of the (result:yes) feature. If 50, a new complex predicate will
be formed, composed of the main verb and the head of the Adjective phrase.
This operation is performed by a special function (@concat (), whose result
will overwrite {=a) the original value of pred, assigned by the application
of an Qup = self~1 functional equation. If the triggering feature was not
found, the Adjective phrase will be analysed as an adjectival adjunct (aadj)
of the object by default.

(4:VP=->v NP ADJF)
{0up = faelf-1;
Gup.obj » Gxelf-2;
€if (self-1.result == yes)
Cthen {
tup.pred =a €concat(®self-1_pred,"-",
Os01f-3.pred}; }
Colse {
Cup.obj.aadj » ¢zelf-3; }

The complex predicate hammer-flat will be translated as aplanar during

326 J. GABRIEL AMORES & JOSE F. QUESADA

the transfer phase, and the manner feature will hold the manner of action
(manner:"a martillazes"). The other translation assignments are trivial.
The transfer phase inserts gender features as well, which were not present
in English.

REFERENCES

Amores, J. Gabriel & Gloria Alvarez. 1994. “Resultative and Depictive Con-
structions in English: An LFG-Based Approach for Machine Translation”.
Lenguajes Naturales y Lenguajes Naturales X ed. by Carlos Martin Vide.
Barcelona: PPU. : ’

Bresnan, Joan, ed. 1982. The Mental Representation of Grammatical Relations.
Cambridge, Mass.: The MIT Press.

Bunt, Harry & Masaru Tomita, eds. 1996. Recent Advances in Parsing Technol-
ogy. Kluwer Academic.

Dalrymple, Mary, Ronald M. Kaplan, John T. Maxwell IIT & Annie Zaenen, eds.
1995. Formal Issues in Lexical-Functional Grammar (= CSLI Lecture Notes,
47). Stanford, California: Center for the Study of Language and Information.

Hutchins, W. John & Harold L. Somers. 1992. An Introduction to Mackine Trans-
lation. London: Academic Press. '

Kay, Martin. 1980. “Algorithm Schemata and Data Structures in Syntactic Pro-
cessing”. Report CSL-80-12. Palo Alte, Calif.: Xerox, Palo Alto Research
Center.

Quesada, José F. 1996. “Unificacién Constructiva, Estratégica, con Comparticién
de Estructuras y Post-Copia”. Procesamiento del Lenguaje Natural 19:148-
158. : . '

— . 1997a. El Algoritmo SCF de Andlisis Sintdctico Mediante Fropagacicn de
Restricciones. Ph.D. dissertation, University of Seville. Spain.

— . 1997b. “A General, Sound and Efficient Natural Language Parsing Algo-
rithm based on Syntactic Constraints Propagation”. Proceedings of the Vil
Conference AEPIA’9Y ed. by Vicent Botti, 775-786. University of Malaga:
Torremolinos, Spain. '

— & J. Gabriel Amores. 1995. “A Computational Model for the Efficient Re-
trieval of Very Large Structure-Based Knowledge Bases”. Proceedings of the
Knowledge Representation, Use and Storage for Efficiency (KRUSE’85) Sym-
posium ed. by Gerard Ellis, Robert A. Levinson, Andrew Fall & Veronica
Dahl, 86-96. Santa Cruz, California.)

Shieber, Stuart M. 1986. An Introduction to Unification-based Approaches to
Gramsar (= CSLI Lecture Notes, 4). Stanford, California: Center for the
Study of Language and Information.

