
[Proceedings of the Evaluators’ Forum, April 21st – 24th, 1991, Les Rasses, Vaud, Switzerland;
ed. Kirsten Falkedal (Geneva: ISSCO).]

Developer-Oriented Evaluation of MT

Systems

Andrew Way
Eurotra Project

Department of Language and Linguistics
University of Essex

Abstract

The issue of developer-oriented evaluation of MT systems has
received little attention in the past. We assume that one of the main
tools at the developer’s disposal is a test suite of sentences. The
best known appears in [2], and this particular suite of sentences is
investigated here, together with discussions regarding the number of
suites required and the usefulness of test suites in general.

1 Introduction
Currently one of the main areas of study of our research group at Essex is
the evaluation of MT systems. We have principally been concerned with
user-oriented evaluation of commercially available MT systems, in particular
“Globalink”, and have examined both declarative [4, 3] and operational [5,
6] means of evaluation.

Although there has been a good deal of discussion regarding the use of test
suites, most of these papers focus on their usefulness for end users rather
than for system developers [1, 7]. In this paper the problems particular to
system developers are discussed, as are the options open to them for testing
and evaluating their modules. We assume that one of the main tools at the
developer's disposal is a test suite of sentences. There is a significant lack
of such suites available, of which the best known appears in [2]. We discuss
here this particular suite of sentences as well as the usefulness of test suites in
general. Consideration is also given to the question of how many test suites
are needed, given that most if not all which have been published to date have
been monolingual.

237

2 Types of Evaluation
Three broad classes of MT evaluation strategy may be discerned:

Typological Evaluation seeks to specify which particular linguistic con-
structions the system handles satisfactorily and which it does not. The
principal tool for such an investigation is a test suite – a set of sentences
which individually represent specified constructions (e.g. Dative-shift
passive) and hence constitute performance probes.

Declarative Evaluation seeks to specify how an MT system performs rel-
ative to various dimensions of translation quality.

Operational Evaluation seeks to establish how effective an MT system is
likely to be (i.e. in terms of cost effects) as part of a given translation
process.

Detailed descriptions of both declarative [3, 8] and operational evaluation
[5, 11] appear elsewhere and, being more oriented towards the needs of the
potential user are beyond the scope of this paper.

2.1 Typological Evaluation
Typological evaluation is primarily of interest to system developers: potential
users may not be familiar with the linguistic descriptions used, nor is it likely
to be apparent how frequently some missing or badly-handled construction
might occur in their particular text type.

We assume that the principal tool at the developer’s disposal for testing
his system is a suite of sentences. These sentences exemplify particular types
of linguistic constructions that the system is likely to encounter in its lifetime.
If the system is intended to operate within a particular subject field then
it is obvious that its design will reflect this sublanguage (i.e. if the MT
system is intended to translate car manuals then it is much more important
for it to be able to analyse and translate imperatives rather than intricate
sentences containing relative clauses, modifiers and transconstructionals, and
coordinate structures, for instance).

We ignore here traditional objections to approaches advocating the use
of test suites, including the fact that as test suites concentrate on syntactic
constructions rather than lexical coverage, some other means of assessing this
coverage is required. If we include different verb and nounframes in our test
suite, then it is a relatively trivial matter to add lexical entries to our MT
dictionaries. The test suite approach has an advantage over corpus-based
approaches in that the corpus contains a large amount of redundancy, i.e.
most constructions will be encountered more than once, whereas in the test

238

suite each combination of concepts appears once and once only1, although we
still consider that the testing of the MT system against a corpus constitutes
the final stage in its development.

Once a corpus has been established for the task in hand, statistical infor-
mation regarding the type and frequency of lexical and grammatical phenom-
ena contained therein should be obtained in order to be able to evaluate the
capability of the system to successfully translate sentences contained in the
corpus. If good observed frequency data were not available then this would
probably lead to an over (or under) estimate of the system’s potential. At
present, however, this statistical information will almost certainly be gained
by hand (a laborious process), as the necessary tool capable of parsing texts
in this way is not available.

Assuming that we have established the relative frequency of the phenom-
ena contained in the corpus, the test suite can now be constructed. One
point to consider before beginning this task is how many suites one needs.
For instance, the simplest set of sentences will be those which contain one
linguistic concept (this set will be very small – simple imperatives, perhaps –
and of little worth), or perhaps slightly more realistically two in combination.
Such a suite would be of use to the developer in that he would be able to see
if the rules he has just written can handle that concept in isolation. This is
merely a first step, of course.

Problems arise when one attempts to integrate new rules into the gram-
mar as a whole, for they may combine in a wrong or unexpected manner
with existing rules. One might therefore decide in favour of a new suite to
test this phase of the development process. We know that this new set of
sentences has again to faithfully represent the statistical data already gath-
ered, i.e. if the most common combination of concepts in a corpus proves to
be Subject-Verb Agreement and Simple Present Tense then it would
be disastrous if one's system failed to correctly analyse sentences containing
such constructions. Obviously sentences which at first sight seem fairly sim-
ple involve the interaction of a number of linguistic concepts, viz:

(1) These men might not be paid for a week.

This sentence contains the following combination of linguistic concepts:

• Number agreement between determiner and noun

• Subject-Verb Agreement

• Tense

• Modality
1 For other refutations of such criticisms, see [2] pp. 2-3

239

• Negation

• Passive

• Argument-Modifier distinction (cf “for a week” vs “for their work”)

As can be seen, it is very easy to increase the complexity of the sentence
by adding what on the surface level seem to be trivialities. In developing a
test suite one has to limit the number of combinations of concepts, else the
sentences become intolerably difficult. To the above lists we could add Com-
parison, Coordination, Subclauses, Participial Constructions, Rais-
ing and Control Verbs, Reflexives, Support Verbs and Long Distance
Dependencies, all of which can be combined in various ways to produce
complicated sentences which our MT systems have no hope of translating in
a reasonable time2. How do we count these concepts, and assuming we can,
what upper limit is it reasonable to impose on the combination of linguistic
concepts occurring in the sentences of one's test suite?

As to the first question, the simplest position to take is to say that the
presence of any of the above list (which is, of course, incomplete) adds to the
complexity of the sentence by a factor of one, so if we add a relative clause to
a main clause then the resultant sentence becomes more difficult to translate
when the relative clause itself contains more of these linguistic concepts than
another. For instance, if we examine the following:

(2) a. The terrorist who might have been responsible for the explosion
 was captured by the police.

 b. The class that I teach is advanced.

one can see that both the main clause and relative clause in (a) contain more
concepts than those in (b), and so we can safely deduce that it is a more
complex sentence. We all know, however, that certain concepts pose more
problems than others – coordination is a notorious example here – so in some
instances we would need to allocate a weighting to each concept occurring in
a sentence. It is simple enough to state that a sentence containing coordi-
nation is more complex than a similar sentence without it, but which of the
following is easiest to translate:

(3) a. John may be coming.
b. John is not coming.

i.e. is it easier to implement modal verbs than negation? This is not easy to
say.

2 We all know the syndrome: there is always one person at a demo who has thought
up such a sentence, and it is invariably the case that this person knows nothing about the
practicalities of MT.

240

Regarding the second question, five or six might be a first approximation,
depending on the degree of difficulty associated with each phenomenon. For
instance, Tense occurs in (almost) every sentence, but it is obviously much
easier to implement the Simple Present than the English Auxiliary System.
Another example is that it is occasionally stated that Subject-Verb Agree-
ment is little short of irrelevant for English as the number of the subject is
already given (from the lexicon). Nevertheless in more complicated sentences
such as:

(4) I know a lecturer with clever students who try/tries to obtain
grants from the Government.

if one’s rules did not explicitly state that the subject had to agree with the
verb then the meanings of the above would be indistinguishable to one’s
system. If, however, it was the case that such sentences occurred only rarely
(or not at all) in one’s corpus then one might be fully justified in deciding to
omit Subject-Verb Agreement from one’s coverage3.

This raises another point that affects all MT systems which are not re-
versible (i.e. which use different grammars for analysis and generation).
Analysis and Synthesis are different tasks, so should one test them with dif-
ferent sets of sentences? Examine the following sentences:

(5) a. Even from 1965 accessible intercontinental telephone links were
simply created by undersea cable.

b. The next good financial figures are due on Monday.

In the first example above, the analysis component must produce all per-
missible structures, i.e. with the sentential modifiers in different positions,
whereas in synthesis one can choose to generate only one of these. Not all
problems are, however, exacerbated in analysis. It is a reasonable position for
writers of an Analysis component to take that they need not concern them-
selves with filtering out ungrammatical input, but this remains the principal
task of the Synthesis writer. Thus the order of the string of adjectives in the
second example above poses no problem for analysis, as one merely assumes
that the sentence will be input to the system in the form above, but for
synthesis one must explicitly rule out illegal combinations such as “The good
financial next figures”.

Given these facts, it seems that we are forced to posit different suites de-
pending on the task in hand. It makes little sense for an analysis component
to be tested against ungrammatical input (except that of course the compo-
nent should not “parse” such input, i.e. assign it structure) when one can
reasonably assume that the module will never be confronted with it. Con-

3 This is the approach taken by the writers of the English Analysis module at UMIST.

241

versely we assume that a suite designed for testing a generation component
must contain ill-formed strings so that the filtering out of such input by that
module can be tested4.

One further point to consider is whether the various test suites contain
purely monolingual sentences. This is obviously the case with the analysis
suite, but what about synthesis? Some MT systems can easily be adapted
to parsers (e.g. in a multilevel system a particular level can be loaded and
then tested by adapting the input in a manner appropriate for that level),
and so such systems can also be fed monolingual input. There are, however,
many systems where this is not possible, so some other strategy is required.

If we decide to create a testbank to test transfer and target language,
there are obvious advantages and disadvantages in choosing a set of mono-
lingual sentences. The advantage is that the test is realistic, for the input
to transfer is the output of the analysis phase, and as we have already con-
structed an analysis test suite this serves to test transfer as well5. The
problem is that the suite will also need to contain “artificial” sentences, i.e.
sentences in the source language containing constructions which the devel-
oper knows in advance will be problematic for the target language (cases
of “head-switching”, for instance [9, 10]). Even then, we need to be sure
that a sentence in the source language which is intended to test a particular
phenomenon in the target language actually attempts to produce that target
sentence, rather than some unforeseen paraphrase.

3 Conclusions

What types of test suites arise from this discussion? For a non-reversible
transfer-based MT system it seems as if we need at least the following:

• An initial development suite

• An analysis suite

• A synthesis suite

• A transfer suite
4 It is assumed here that a system which can inherently distinguish between correct

and ill-formed input is preferable to one which cannot. As Flickinger et al state (p.4,
[2]), “Although it is clearly desirable to be as tolerant of user mistakes as is practical,
it is more important for the system to correctly interpret well-formed input” and “...
a system that fails to detect ungrammaticality will introduce ambiguity and therefore
interpret incorrectly”.

5 Another point to note is that where systems have different grammars for analysis and
synthesis, one can use the output of analysis as direct input to the synthesis component
of the same language if both components use the same set of features.

242

The development suite is used in the initial stages to test rules to see
if they cope with the particular linguistic construction in mind in isolation.
The analysis suite is monolingual, and contains purely grammatical strings.
The synthesis suite is preferably monolingual, and contains both grammat-
ical and ill-formed strings6. The transfer suite is constructed possibly from
the analysis suite in addition to some artificially created source language
sentences purely to test the target language.

If we are fortunate it may well prove possible to have just one basic suite
per language; given that we have to test the analysis component against the
main testbank, we can collect the objects at the level preceding transfer and
use them together with some ill-formed data as the synthesis test suite. The
same output of analysis is extended with a set of objects designed to test
transfer and target language. This was the strategy selected in [12].

The final stage of testing is to select input freely from the chosen corpus,
not just testing each and only each sentence from the corpus (such a corpus
could be translated by constructing a sentence dictionary, for instance). This
stage should indicate to us the stability of the system with regard to the
chosen sublanguage and its suitability for use in small applications.

References
[1] Kirsten Falkedal & Maghi King. Using test suites in evaluation of

machine translation systems. “13th International Conference on Com-
putational Linguistics”, pp. 211-216, 1990.

[2] Dan Flickinger, John Nerbonne, Ivan Sag & Tom Wasow. Toward
evaluation of NLP systems. “25th Annual Meeting of the Association
for Computational Linguistics”, 1987.

[3] Essex MT Evaluation Group. Assessing a PC-based commercial MT
system. Technical report, The University of Essex, 1991.

[4] Essex MT Evaluation Group. The Globalink Translation System.
“Personal Computer World”, pp. 162-166, 1991.

[5] Essex MT Evaluation Group. Operational Evaluation of MT Systems.
Technical Report, The University of Essex, 1991, forthcoming.

[6] R. Lee Humphreys. User-Oriented Evaluation of MT Systems. Tech-
nical Report, The University of Essex, 1991.

6 These may not be sentences, of course, depending on the input to synthesis for a
particular MT system.

243

[7] John Lehrberger & Laurent Bourbeau. Machine Translation: Linguis-
tic Characteristics of MT Systems and General Methodology of Evalu-
ation. John Benjamins, Amsterdam, 1987.

[8] John R. Pierce, John B. Carroll, et al. Language and Machines -
Computers in Translation and Linguistics. (ALPAC Report), 1966.

[9] Louisa Sadler, Ian Crookston, Doug Arnold & Andy Way. LFG
and Translation. “Third International Conference on Theoretical and
Methodological Issues in Machine Translation” 11-13 June 1990, 1990.

[10] Louisa Sadler, Ian Crookston & Andy Way. Co-description, projection
and ‘difficul’' translation. Technical report, Department of Language
and Linguistics, University of Essex, December, 1989.

[11] G. van Slype. Conception d’une méthodologie générale d’évaluation
de la traduction automatique. “Multilingua”, (l-4):221-237, 1982.

[12] Andrew Way. A practical developer-oriented evaluation of two MT
systems. Technical report, The University of Essex, 1991.

244

