HOW TO INVERT A NATURAL LANGUAGE PARSER INTO AN EFFICIENT GENERATOR: AN ALGORITHM FOR LOGIC GRAMMARS

Tomek Strzalkowskì
Courant Institute of Mathematical Sciences
New York University
251 Mercer Street
New York, NY 10012

Abstract

The use of a single grammar in natural language parsing and generation is most desirable for variety of reasons including efficiency, perspicuity, integrity, robustness, and a certain amount of elegance. In this paper we present an algorithm for automated inversion of a pROLOG-coded unification parser into an efficient unification generator, using the collections of minimal sets of essential arguments (MSEA) for predicates. The algorithm is also applicable to more abstract systems for writing logic grammars, such as DCG.

INTRODUCTION

In this paper we describe the results obtained from the experiment with reversing a PROLOG parser for a substantial subset of English into an efficient gencrator. The starting point of the experiment was a string parser for English (Grishman, 1986), which is used in an English-Japancse MT project. The Prolog version of this parser was inverted, using the method described here, into an efficient PROLOG generator working from regularized parse forms to English sentences. To obtain a prolog parser (or any prolog program) working in the reverse, requires ${ }^{1}$ some manipulation of the clauses, especially the ordering of the literals on their right-hand side, as noted by Dymetman and Isabelle (1988). We do not discuss here certain other transformations used to "normalize" the parser code in order to attain maximum efficiency of the derived generator program (Strzalkowski, 1989).

IN AND OUT ARGUMENTS

Arguments in a PROLOG literal can be marked as cither "in" or "out" depending on whether they are bound at the time the literal is submitted for execution or after the computation is completed. For example, in

```
tovo([to,eat,fish],T4,
```

 [np, [n, john]], P3)
 the first and the third arguments are "in", while the

[^0]remaining two are "out". When tovo is used for generation, i.e.,

```
tovo(T1,T4,P1,
    [eat, [np,[n,john]],
        [np,[n,fish]]])
```

then the last argument is "in", while the first and the third are "out"; T4 is neither "in" nor "out". The information about "in" and "out" status of arguments is important in determining the "direction" in which predicates containing them can be run ${ }^{2}$. As a further example consider the literal

```
subject (A1 , A2, WHQ, NUM, P)
```

where A1 and A2 are input and output strings of words, WHQ indicates whether the subject phrase is a part of a clause within a wh-question, NUM is the number of the subject phrase, and P is the final translation. During parsing, the "in" arguments are: A1 and $\mathrm{WH} Q$, the "out" arguments are A 2 , NUM and p ; during generation, the "in" arguments are \mathbf{p} and $\mathbf{W H Q}$, the "out" arguments are A 1 and NUM. In generating, A2 is neither "in" nor "out". Thus, upon reversing the dircction of computation, an "out" argument does not automatically become an "in" argument, nor does an "in" argument automatically become an "out" argument. Below is a method for computing "in" and "out" status of arguments in any given literal in a Prolog program, as required by the inversion procedure. This algorithm is already general enough to handle any proLOG program.
An argument X of literal pred $(\cdots X \cdots)$ on the rhs of a clause is "in" if
(A) it is a constant; or
(B) it is a function and all its arguments are "in"; or
(C) it is "in" or immediately "out" in some previous literal pred $_{0}$ on the rhs of the same clause, i.e., $l(Y):-\operatorname{pred}_{0}(X, Y), \operatorname{pred}(X)$; or
(D) it is "out" in an rhs literal pred ${ }_{0}$ delayed until after some predicate pred d_{1} such that pred $_{0}$ precedes

[^1]pred $_{1}$, and pred $_{1}$ precedes pred on the rhs; ${ }^{3}$ or
(E) it is "in" in the head literal L on lhs of the same clause.
An argument X is "in" in the head literal $L=\operatorname{pred}(\cdots X \cdots)$ of a clause if (A), or (B), or
(F) L is the top-level literal and X is "in" in it (known a priori); or
(G) X occurs more than once in L and at least one of these occurrences is "in"; or
(H) for every literal $L_{1}=\operatorname{pred}(\cdots Y \cdots)$ unifiable with L on the rhs of any clause with the head predicate pred ${ }_{1}$ different than pred, and such that Y unifies with X, Y is "in" in L_{1}.
We distinguish two categories of "out" arguments in literals appearing on the right-hand side of a clause: immediate and delayed. An argument X occurring in literal pred $(\cdots X \cdots)$ is immediately "out" if it is fully bound ${ }^{4}$ immediately after pred $(\cdots X \cdots)$ is executed. An argument X in pred $(\cdots X \cdots)$ is "out" delayed until after pred ${ }_{0}$, if it is fully bound only after pred $_{0}$, following pred on rhs, is executed. For example, consider the following fragment:
$\operatorname{vp}(S N)$:- agree (SN, VN), v(VN).
agree (N, N).
If VN is immediately "out" in v , then SN in agree is "out" delayed until after v. For arguments with their "out" status delayed until after pred $_{0}$, the "out" status is assigned only after pred d_{0} is executed.
An argument X of literal pred $(\cdots X \cdots)$ on the rhs of a clause is immediately "out" if
(A) it is "in" in pred $(\cdots X \cdots)$; or
(B) it is a functional expression and all its arguments are either "in" or immediately "out"; or
(C) for every clause with the head literal pred $(\cdots Y \cdots)$ unifiable with pred $(\cdots X \cdots)$ and such that Y unifies with X, Y is either "in", "out" or "unknwn", and Y is marked "in" or "out" in at least one case.
An argument X of literal pred $(\cdots X \cdots)$ on the rhs of a clause is "out" delayed until after pred $0_{0}(\cdots Y \cdots)$ following pred if
(D) Y is immediately "out" in pred d_{0} and $X=f(Y)$; or
(E) X is a functional expression and all of its arguments are either "in" or immediately "out" or "out" delayed until after pred ${ }_{0}$; or

[^2](F) there is a predicate pred $\boldsymbol{p}_{1}\left(\cdots X \cdots Z^{*} \cdots\right.$) preceding pred ${ }_{0}$ on the rhs, where Z^{*} is a subset of arguments of pred ${ }_{1}$ such that every argument in Z^{*} is "out" delayed until after pred $_{0}$ and whenever Z^{*} is "in" then X is immediately "out" in pred d_{1}.

An argument X of literal pred $(\cdots X \cdots)$ on the lhs of a clause is "out" if
(G) it is "in" in pred $(\cdots X \cdots)$; or
(H) it is "out" (immediately or delayed) in literal $\operatorname{pred}_{1}(\cdots X \cdots)$ on the rhs of this clause, providing that pred $_{1} \neq$ pred (again, we must take provisions to avoid infinite descend, cf. (H) in "in" algorithm); if pred ${ }_{1}=$ pred then X is marked "unknwn".

ESSENTIAL ARGUMENTS

Some arguments of every literal are essential in the sense that the literal cannot be executed successfully unless all of them are bound, at least partially, at the time of execution. A literal may have several alternative, possibly overlapping, sets of essential arguments. If all arguments in any one of such sets of essential arguments are bound, then the literal can be executed. Any set of essential arguments which have the above property is called essential. We shall call the set MSEA of essential arguments a minimal set of essential arguments if it is essential, and no proper subset of MSEA is essential. If we alter the ordering of the rhs literals in the definition of a predicate, we may also change its set of MSEA's. We call the set of MSEA's existing for a current definition of a predicate the set of active MSEA's for this predicate. To run a predicate in a certain direction requires that a specific MSEA is among the currently active MSEA's for this predicate, and if this is not already the case, then we have to alter the definition of this predicate so as to make this MSEA become active. As an example consider the following clause from our PROLOG parser:

```
objectbe(O1,02,P1,P2,PSA,P) :-
    venpass(01,02,P1,P3),
    concat ([P2,P3],PSA,P).
```

Assuming that $\{\mathrm{O} 1\}$ and $\{\mathrm{P} 3\}$ are $M S E A$'s of venpass and that P3 is "out" in venpass whenever 01 is "in", we obtain that $\{\mathrm{Ol}\}$ is the only candidate for an active MSEA in objectbe. This is because P 3 is not present on the argument list of objectbe, and thus cannot receive a binding before the execution of venpass commences. Moving to the concat literal, we note that its first argument is partially bound since P3 is "out" in venpass. This is enough for concat to execute, and we conclude that 01 is in fact the only essential argument in objectbe. If we reverse the order of venpass and concat, then [P \} becomes the new active MSEA for objectbe, while $\{01\}$ is no longer active. Given the binding to its third argument, concat returns bindings to the
first two, and thus it also binds p 3 , which is an essential argument in venpass. ${ }^{5}$ Below is the general procedure MSEAS for computing the active sets of essential arguments in the head literal of a clause as proposed in (Strzalkowski and Peng, 1990).

Let's consider the following abstract clause defining a predicate R_{i} :

$$
\begin{array}{r}
R_{i}\left(X_{1}, \cdots, X_{k}\right):- \tag{R}\\
Q_{1}(\cdots) \\
Q_{2}(\cdots) \\
\cdots \\
Q_{n}(\cdots)
\end{array}
$$

Suppose that, as defined by (R), R_{i} has the set $M S_{i}=$ (m_{1}, \cdots, m_{j}) of active MSEA's, and let $M R_{i} \supseteq M S_{i}$ be the set of all MSEA for R_{i} that can be obtained by permuting the order of literals on the right-hand side of (R). Let us assume further that R_{i} occurs on rhs of some other clause, as shown below:

$$
\begin{align*}
P\left(X_{1}, \cdots,\right. & \left.X_{n}\right):- \tag{P}\\
& R_{1}\left(X_{1,1}, \cdots, X_{1, k_{1}}\right) \\
& R_{2}\left(X_{2,1}, \cdots, X_{2, k_{2}}\right), \\
& \cdots \\
& R_{s}\left(X_{s, 1}, \cdots, X_{s, k_{s}}\right)
\end{align*}
$$

We want to compute $M S$, the set of active MSEA's for P , as defined by (P), where $s \geq 1$, assuming that we know the sets of active MSEA for each R_{i} on the rhs. ${ }^{6}$ In the following procedure, the expression $\operatorname{VAR}(T)$, where T is a set of terms, denotes the the set of all variables occurring in the terms in T.

MSEAS (MS,MSEA,VP,i,OUT)

(1) Start with $V P=\operatorname{VAR}\left(\left\{X_{1}, \cdots, X_{n}\right\}\right), M S E A=\varnothing$, $i=1$, and $O U T=\varnothing$. When the computation is completed, $M S$ is bound to the set of active MSEA's for P.
(2) Let $M R_{1}$ be the set of active MSEA's of R_{1}, and let $M R U_{1}$ be obtained from $M R_{1}$ by replacing all variables in each member of $M R_{1}$ by their corresponding actual arguments of R_{1} on the rhs of (C1).
(3) If $R_{1}=P$ then for every $m_{1, k} \in M R U_{1}$ if every argument $Y_{t} \in m_{1, k}$ is always unifiable ${ }^{7}$ with its

[^3]corresponding argument X_{t} in P then remove $m_{1, k}$ from $M R U_{1}$. For every set $m_{1, k_{j}}=m_{1, k} \cup\left\{X_{1, j}\right\}$, where $X_{1, j}$ is an argument in R_{1} such that it is not already in $m_{1, k}$ and it is not always unifiable with its corresponding argument in P, and $m_{1, k_{j}}$ is not a superset of any other $m_{1, l}$ remaining in $M R U_{1}$, add $m_{1, k_{j}}$ to $M R U_{1}$.
(4) For each $m_{1, j} \in M R U_{1}\left(j=1 \cdots r_{1}\right)$ compute $\mu_{1, j}$ $:=\operatorname{VAR}\left(m_{1, j}\right) \cap V P$. Let $M P_{1}=\left\{\mu_{1, j} \mid\right.$ $\left.\phi\left(\mu_{1, j}\right), j=1 \cdots r\right\}$, where $r>0$, and $\phi\left(\mu_{1, j}\right)=\left[\mu_{1, j}\right.$ $\neq \varnothing$ or $\left(\mu_{1, j}=\varnothing\right.$ and $\left.\left.\operatorname{VAR}\left(m_{1, j}\right)=\varnothing\right)\right]$. If $M P_{1}=$ \varnothing then QUIT: (C1) is ill-formed and cannot be executed.
(5) For each $\mu_{1, j} \in M P_{1}$ we do the following: (a) assume that $\mu_{1, j}$ is "in" in R_{1}; (b) compute set OUT $_{1, j}$ of "out" arguments for R_{1}; (c) call $\operatorname{MSEAS}\left(M S_{1, j}, \mu_{1, j}, V P, 2, O U T_{1, j}\right)$; (d) assign MS $:=\bigcup_{j=1 . . r} M S_{1, j}$.
(6) In some i-th step, where $1<i \leq s$, and $M S E A=$ $\mu_{i-1, k}$, let's suppose that $M R_{i}$ and $M R U_{i}$ are the sets of active MSEA's and their instantiations with actual arguments of R_{i}, for the literal R_{i} on the rhs of (P).
(7) If $R_{i}=P$ then for cvery $m_{i, k} \in M R U_{i}$ if every argument $Y_{t} \in m_{i, u}$ is always unifiable with its corresponding argument X_{i} in P then remove $m_{i, u}$ from $M R U_{i}$. For every set $m_{i, u_{j}}=m_{i, u} \cup\left\{X_{i, j}\right\}$ where $X_{1, i}$ is an argument in R_{i} such that it is not already in $m_{i, u}$ and it is not always unifiable with its corresponding argument in P and $m_{i, u_{j}}$ is not a superset of any other $m_{i, l}$ remaining in $M R U_{i}$, add $m_{i, u_{j}}$ to $M R U_{1}$.
(8) Again, we compute the set $M P_{i}=\left\{\mu_{i, j}\right\}$ $\left.j=1 \cdots r_{i}\right\}$, where $\mu_{i, j}=\left(\operatorname{VAR}\left(m_{i, j}\right)-O U T_{i-1, k}\right)$, where $O U T_{i-1, k}$ is the set of all "out" arguments in literals R_{1} to R_{i-1}.
(9) For each $\mu_{i, j}$ remaining in $M P_{i}$ where $i \leq s$ do the following:
(a) if $\mu_{i, j}=\varnothing$ then: (i) compute the set $O U T_{j}$ of "out" arguments of R_{i}; (ii) compute the union OUT $_{i, j}:=$ OUT $_{j} \cup O U T_{j-1, k} ;$ (iii) call $\operatorname{MSEAS}\left(M S_{i, j}, \mu_{i-1, k}, V P, i+1, O U T_{i, j}\right)$;
(b) otherwise, if $\mu_{i, j} \neq \varnothing$ then find all distinct minimal size sets $v_{t} \subseteq V P$ such that whenever the arguments in v_{t} are "in", then the arguments in $\mu_{i, j}$ are "out". If such v_{i} 's exist, then for every v_{t} do: (i) assume v_{t} is "in" in P; (ii) compute the set $O U T_{i, j_{t}}$ of "out" arguments in all literals from R_{1} to R_{i}; (iii) call $\operatorname{MSEAS}\left(M S_{i, j_{t}}, \mu_{i-1, k} \cup \nu_{t}, V P, i+1, O U T_{i, j_{l}}\right)$;
(c) otherwise, if no such v_{t} exist, $M S_{i, j}:=\varnothing$.
(10) Compute $M S:=\bigcup_{j=1 . . r} M S_{i, j}$;
(11) For $i=s+1$ set $M S:=\{M S E A\}$.

In order to compute the set of all MSEA's for P, the procedure presented above need to be modified so that it would consider all feasible orderings of literals on the rhs of (P), using information about all MSEA's for R_{i} 's. This modified procedure would regard the rhs of (P) as an unordered set of literals, and use various heuristics to consider only selected orderings. We outline the modified procedure briefly below.

Let $R R$ denote this set, that is, $R R=\left\{R_{i}\right\}$ $i=1 \cdots s\}$. We add $R R$ as an extra argument to MSEAS procedure, so that the call to the modified version becomes MSEAS (MS,MSEA,VP,RR,i,OUT). Next we modify step (2) in the procedure as follows:
(2') For every element $R_{t, 1} \in R R$, do (2) to (5):
(2) Let $M R_{t, 1}$ be the set of all MSEA's of $R_{t, 1}$, and let $M R U_{t, 1}$ be obtained from $M R_{t, 1}$ by replacing all variables in each member of $M R_{t, 1}$ by their corresponding actual arguments of $R_{t, 1}$.
Further steps are modified accordingly. The reader may note that the modified MSEAS procedure will consider all feasible ways of ordering elements of $R R$. In the steps shown above, we select all literals as potential leading elements on the right hand side, even though most of them will be rejected by steps (3) and (4). For those that survive, we will select elements from the rest of $R R$ that can follow them. In step (5) the recursive call to MSEAS will be $\operatorname{MSEAS}\left(M S_{t, 1, j}, \mu_{t, 1, j}, V P, R R-\left\{R_{t, 1}\right\}, 2, O U T_{t, 1, j}\right)$. In step (6), that is, in i-th step of the recursion, we consider all elements of $R R-\left\{R_{t, j} \mid j=1 \cdots i-1\right\}$, for selection of the i-th literal on the right-hand side. By this time we will have already generated a number of possible orderings of $\left\{R_{l} \mid l=1 \cdots i-1\right\}$. We add step (6^{\prime}) which contains the head of an iteration over the remaining elements of $R R$, and covering steps (6) to (11). Again, some of the elements of $R R$ will be rejected in steps (7) and (10). We continue until $R R$ is completely ordered, possibly in several different ways. For each such possible ordering a set of MSEA's will be computed. Step (12) is an end condition with $R R=\varnothing$. To obtain a meaningful result, MSEA's in $M R_{t, j}$'s must be grouped into sets of these which are active at the same time, that is, they belong to the set of active MSEA's for a specific definition of P (i.e., ordering of $R R$). MSEA's belonging to different groups give rise to alternative sets of MSEA's in the final set $M S$. Note that in this modified algorithm, $M S$ becomes a set of sets of sets.

An important part in the process of computing essential arguments for literals is the selection of MSEA's for lexicon access and other primitives whose definitions are not subject to change. As an example, consider a fragment of a lexicon:
verb ([looks|V], V,sg, look).
verb([look|V],V,pl,look).
verb ([arrives|V], V, sg, arrive).
verb ([arrivelV], V, pl, arrive).
The lexicon access primitive verb ($\mathrm{V} 1, \mathrm{~V} 2, \mathrm{Nm}, \mathrm{P}$) has two sets of essential arguments: \{V1\} and \{ Nm, P \}. This is because $\{\mathrm{VI}$ \} can be consistently unified with at most one of \{[looks|V]\}, \{[look|V]\}, \{[arrive|V]\}, etc., at a time. Similarly, $\{\mathrm{Nm}, \mathrm{P}\}$ can be consistently unified at any one time with at most one of $\{\mathrm{sg}$, look $\}$, \{pl, look\}, [sg, arrive], etc. Note that neither (P) nor (Nm \} alone are sufficient, since they would unify with corresponding arguments in more than one clause. This indeterminacy, although not necessarily fatal, may lead to severe inefficiency if the generator has to make long backups before a number agreement is established between, say, a verb and its subject. On the other hand, if the representation from which we generate does not include information about the lexical number for constituents, we may have to accept $\{P$ \} as the generation-mode MSEA for verb, or else we risk that the grammar will not be reversed at all.

REORDERING LITERALS IN CLAUSES

When attempting to expand a literal on the rhs of any clause the following basic rule should be observed: never expand a literal before at least one its active MSEA's is "in", which means that all arguments in at least one MSEA are bound. The following algorithm uses this simple principle to reorder rhs of parser clauses for reversed use in generation. This algorithm uses the information about "in" and "out" arguments for literals and sets of MSEA's for predicates. If the "in" MSEA of a literal is not active then the rhs's of every definition of this predicate is recursively reordered so that the selected MSEA becomes active. We proceed top-down altering definitions of predicates of the literals to make their MSEA's active as necessary, starting with the top level predicate parse(S, P), where P is marked "in" (parse structure) and S is marked "out" (generated sentence). We continue until we reach the level of atomic or non-reversible primitives such as concat, member, or dictionary look-up routines. If this process succeeds at reversing predicate definitions at each level, then the reversed-parser generator is obtained.

INVERSE("head :- old-rhs", ins,outs);
(ins and outs are subsets of VAR(head) which are "in" and are required to be "out", respectively\} begin
compute M the set of all MSEA's for head; for every $M S E A \mathrm{~m} \in \mathrm{M}$ do
begin
OUT : $=\varnothing$;
if m is an active $M S E A$ such that $m \subseteq$ ins then begin
compute "out" arguments in head; add them to OUT;
if outs \subseteq OUT then DONE("head:-old-rhs")
end
else if m is a non-active MSEA and m¢ins then begin
new-rhs := \varnothing; QUIT := false;
old-rhs-1 := old-rhs;
for every literal L do $\mathrm{M}_{\mathrm{L}}:=\varnothing$;
\{done only once during the inversion\}
repeat
mark "in" old-rhs-1 arguments which are either constants, or marked "in" in head, or marked "in", or "out" in new-rhs;
select a literal L in old-rhs- 1 which has an "in" MSEA m_{L} and if m_{L} is not active in L then either $\mathrm{M}_{\mathrm{L}}=\varnothing$ or $\mathrm{m}_{\mathrm{L}} \in \mathrm{M}_{\mathrm{L}}$;
set up a backtracking point containing all the remaining alternatives to select L from old-rhs-1;
if L exists then
begin
if m_{L} is non-active in L then begin
if $M_{L}=\varnothing$ then $M_{L}:=M_{L} \cup\left\{m_{L}\right\}$; for every clause "L1:- rhs ${ }_{\mathrm{L}}{ }^{2}$ " such that

L1 has the same predicate as L do begin
INVERSE("L1 :- rhs $\left._{\mathrm{L} 1}{ }^{\prime}, \mathrm{M}_{\mathrm{L}}, \varnothing\right)$;
if GIVEUP returned then backup, undoing all changes, to the latest backtracking point and select another alternative end
end;
compute "in" and "out" arguments in L;
add "out" arguments to OUT;
new-rhs := APPEND-AT-THE-END(new-rhs,L);
old-rhs-1 $:=$ REMOVE(old-rhs-1,L)
end (if)
else begin
backup, undoing all changes, to the latest backtracking point and select another alternative;
if no such backtracking point exists then QUIT := true
end \{clse\}
until old-rhs-1 $=\varnothing$ or QUIT;
if outs \subseteq OUT and not QUIT then
DONE("head:-ncw-rhs")
end (elseif)
end; \{for\}
GIVEUP("grammar can't be inverted as specified") end;

MOVING LITERALS BETWEEN CLAUSES

The inversion algorithm, as realized by the procedure INVERSE, requires that for each clause in the parser code we can find a definite order of literals on its right-hand side that would satisfy the requirements
of running this clause in the reverse: appropriate minimal sets of essential arguments (MSEA's) are bound at the right time. However, this requirement is by no means guaranteed and INVERSE may encounter clauses for which no ordering of the literals on the right-hand side would be possible. It may happen, of course, that the clause itself is ill-formed but this is not the only situation. It may be that two or more literals on the right-hand side of a clause cannot be scheduled because each is waiting for the other to deliver the missing bindings to some essential arguments. As an example, consider the grammar fragment below:

```
sent.(P) :- sub (NI,PI),
    vp(N1,P1,P).
vp(N1,P1,P) :- v(N2,P2),
    agree (N1,N2),
    obj(P1,P2,P).
```

In the gencration mode, that is, with the variable \mathbf{P} instantiated by the parse structure of a sentence, the following active MSEA's and "out" arguments have been computed:

predicate	MSEA	"out"
sent	$\{P\}$	
sub	$\{P 1\}$	N1
vp	$\{N 1, P\}$	$P 1$
v	$\{P 2\}$	N2
agree	$\{N 1, N 2\}$	
obj	$\{P\}$	$P 1, P 2$

In order to use these rules for generation, we would have to change the order of literals on the righthand side of sent clause, so that the vp is expanded first. However, doing so would require that the variable N 1 is bound. This we could get by firing subj first, but we can't do this either, since we wouldn't know the binding to P 1 . We note, however, that if we consider the two clauses together, then a consistent ordering of literals can be found. To see it, we expand vp on the right-hand side of the first clause replacing it with the appropriately unified literals in the right-hand side of the second clause, and obtain a single new clause that can be reordered for generation as follows:

```
sent (P) :- obj(P1,P2,P),
    v(N2,p2),
    sub(N1,P1),
    agree (N1,N2).
```

Now we can reintroduce the non-terminal vp , and break the above rule back into two. Note that as a result agree migrated to the first clause, and N2 replaced N 1 on the argument list of vp. Note also that N 2 is not an essential argument in the new vp .

```
sent (P) : - vp (N2,P1,P),
    sub (N1, P1),
    agree (N1,N2).
vp(N2,P1,P) :- obj(P1,P2,P),
    v(N2,P2).
```

The only thing that remains to be done is to automatically determine the arguments of the new vp predicate. Doubtless, it will be a subset of the arguments occurring in the literals that create the right-hand side of the new clause. In the example given this set is $\{\mathbf{N} 2, \mathbf{P} 1, \mathbf{P} 2, \mathbf{P}\}$. From this set, we remove all those arguments which do not occur in other literals of the original clause, that is, before the break up. The only such argument is $\mathbf{P 2}$, and thus the final set of arguments to vp becomes $\{\mathrm{N} 2, \mathrm{P} 1, \mathrm{P}\}$, as shown above. The complete algorithm for interclausal reordering of goals can be described by a largely straightforward extension to INVERSE (Strzalkowski, 1989) ${ }^{8}$

CONCLUSIONS

In this paper we presented an algorithm for automatic inversion of a unification parser for natural language into an efficient unification generator. The inverted program of the generator is obtained by an off-line compilation process which directly manipulates the PROLOG code of the parser program. We distinguish two logical stages of this transformation: computing the minimal sets of essential arguments (MSEA's) for predicates, and generating the inverted program code with INVERSE. We have completed a first implementation of the system and used it to derive both a parser and a generator from a single DCG grammar for English (Strzalkowski and Peng, 1990).

This method is contrasted with the approaches that seek to define a generalized but computationally expensive evaluation strategy for running a grammar in either direction without a need to manipulate its rules (Shieber, 1988), (Shieber et al., 1989), and see also (Colmerauer, 1982) and (Naish, 1986) for some relevant techniques, cmploying the trick known as goal freezing. To reduce the cost of the goal freezing, and also to circumvent some of its deficiencies, Shieber et al. (1989) introduce a mixed top-down/bottom-up goal expansion strategy, in which only selected goals are expanded during the top-down phase of the interpreter. This technique, still substantially more expensive than a fixed-order top-down interpreter, does not by itself guarantee that the underlying grammar formalism can be used bidirectionally, and it may need to be augmented by static goal reordering, as described in this paper.

ACKNOWLEDGMENTS

Ralph Grishman, Ping Peng and other members of the Natural Language Discussion Group provided valuable comments to earlier versions of this paper.

[^4]This paper is based upon work supported by the Defense Advanced Research Project Agency under Contract N00014-85-K-0163 from the Office of Naval Research.

REFERENCES

Colmerauer, Alain. 1982. PROLOG II: Manuel de reference et modele theorique. Groupe d'Intelligence Artificielle, Faculte de Sciences de Luminy, Marseille.
Dymetman, Marc and Isabelle, Pierre. 1988. "Reversible Logic Grammars for Machine Translation." Proc. of the Second Int. Conference on Machine Translation, Pittsburgh, PA.
Debray, Saumya, K. 1989. "Static Inference Modes and Data Dependencies in Logic Programs." ACM Transactions on Programming Languages and Systems, 11(3), July 1989, pp. 418-450.
Grishman, Ralph. 1986. Proteus Parser Reference Manual. Proteus Project Memorandum \#4, Courant Institute of Mathematical Sciences, New York University.
Naish, Lee. 1986. Negation and Control in prolog. Lecture Notes in Computer Science, 238, Springer.
Shicber, Stuart, M. 1988. 'A uniform architecture for parsing and gencration." Proceedings of the 12th COLING, Budapest, Hungary, pp. 614-619.
Shieber, Stuart M., van Noord, Gertjan, Moore, Robert C. and Pereira, Fernando C.N. 1989. A Semantic-Head-Driven Generation Algorithm for Unification-Based Formalisms. Proceedings of the 27th Meeting of the ACL, Vancouver, B.C., pp. 7-17.
Shoham, Yoav and McDermott, Drew V. 1984. "Directed Relations and Inversion of PROLOG Programs." Proc. of the Int. Conference of Fifth Generation Computer Systems,
Strzalkowski, Tomek. 1989. Automated Inversion of a Unification Parser into a Unification Generator. Technical Report 465, Courant Institute of Mathematical Sciences, New York University.
Strzalkowski, Tomek. 1990. "An algorithm for inverting a unification grammar into an efficient unification generator." Applied Mathematics Letters, vol. 3, no. 1, pp. 93-96. Pergamon Press.
Strzalkowski, Tomek and Peng, Ping. 1990. "Automated Inversion of Logic Grammars for Generation." Proceedings of the 28th Annual Meeting of the ACL, Pittsburgh, PA.

[^0]: ${ }^{2}$ Barring the presence of non-reversible operators.

[^1]: ${ }^{2}$ For more discussion on directed predicates in PROLOG see Shoham and McDermott (1984), and Debray (1989).

[^2]: ${ }^{3}$ The precedence is with respect to the order of evaluation, which in PROLOG is left-to-right.
 ${ }^{4}$ An argument is considered fully bound if it is a constant or it is bound by a constant; an argument is partially bound if it is, or is bound by, a tern in which at least one variable is unbound.

[^3]: ${ }^{5}$ We note that since concat could also be executed with p 2 bound, the set $[01, \mathrm{P} 2$) constitutes another active MSEA for inverted objectbe. However, this MSEA is of little use since the binding to 01 is unlikely to be known in generation.
 ${ }^{6}$ MSEA's of basic predicates, such as concat, are assumed to be known a priori; MSEA's for recursive predicates are first computed from non-recursive clauses. We assume that symbols X_{i} in definitions (P) and (R) above represent terms, not just variables. For more details sce (Strzalkowski and Peng, 1990). The case of $s=0$ is discussed below.
 ${ }^{7}$ A term Y is always unifuble with a term X if they unify regardless of the possible bindings of any variables occurring in Y (variables standardized apart), while the variables occurring in X are unbound. Any term is always unifiable with a variable, but the inverse is not necessarily true.

[^4]: ${ }^{8}$ Yt should be noted that recursive clauses are never used for literal expansion during interclausal ordering, and that literals are not moved to or from recursive clauses, although argument lists of recursive literals may be affected by literals being moved elsewhere.

