
A L a n g u a g e I d e n t i f i c a t i o n A p p l i c a t i o n B u i l t on t h e J a v a
C l i e n t / S e r v e r P l a t f o r m

Gary Adams
Sun Microsystems Laboratories

Two Elizabeth Drive
Chelmsford, MA 01824-4195, USA

gary. adams©east, sun. tom

Philip Resnik
Dept. of Linguistics and UMIACS

University of Maryland
College Park, MD 20742, USA

resnik~umiacs, umd. edu

Abstract
We describe an experimental system im-
plemented using the Java(TM) program-
ming language which demonstrates a va-
riety of application-level tradeoffs available
to distributed natural language processing
(NLP) applications. In the context of the
World Wide Web (WWW), it is possible to
provide value added functionality to legacy
documents in a client side browser, a docu-
ment server or an intermediary agent. Us-
ing a well-known ngram-based algorithm
for automatic language identification, we
have constructed a system to dynamically
add language labels for whole documents
and text fragments. We have experi-
mented with several client/server configu-
rations, and present the results of tradeoffs
made between labelling accuracy and the
size/completeness of the language models .

1 Introduction
In the 1.1 release of the Java Developers Kit(TM), a
wide selection of text processing and international-
ization interfaces have been added to the base Java
package 1 making the package usable for multilingual

1A few pointers to online Java resources.
Java Developer Kit :
< U RL:http://www.javasoft.com/products/
jdk/1.1/index.html>
Java Server(TM) Product Family :
< URL:http://jeeves.javasoft.com/products/
java-server/index.html>
HotJava(TM) Browser :
< U RL:http://www.javasoft.com/products/
HotJava/index.html>
Java internationalization :
< U RL:http://java.sun.com/products/
jdk/1.1/docs/guide/intl/index.html>
Java Workshop :
< U RL:http://www.sun.com/workshop/index.html>
Java JIT :
< U RL:http://www.sun.com/workshop/
java/jit/index.html>

text processing. The Java programming language,
the portable Java virtual machine and the basic web
infrastructure of client web browsers and document
resource protocols provide a widely deployed plat-
form suitable for distributing NLP applications. Our
research is targeted at shallow machine translation
and summarization of multilingual web pages. 2 To
properly bootstrap this technology we require ap-
propriate language labels on documents. Language
labels may be present at a whole document or collec-
tion of documents level for large granularity appli-
cations or at a structural component (SGML entity
level) for fine grained uses. (Yergeau et al., 1997)
Using an ngram language model (Dunning, 1994),
we have explored a variety of mechanisms for adding
language labels to legacy documents as part of the
normal end user experience of the World Wide Web.
Three obvious places the language labels could be
added to legacy documents are within an end user
web browser, within a document repository server
and within an intermediary proxy server. We have
experimented with several client/server configura-
tions, and present the results of tradeoffs made be-
tween labelling accuracy and the size/completeness
of the language models .

2 Automatic Language Identification

Although the general framework will support a va-
riety of algorithms for automatic language identifi-
cation, our implementation is based on Dunning's
(1994) character ngram approach, which is concep-
tually quite simple and achieves good performance
even given relatively small training sets (50K of
training text is more than enough, and one can
make do with as little as 1-2K), and even when
the strings to be classified are quite short (e.g., 50
characters). Essentially, the method involves con-
structing a probabilistic model (or "profile") based
on character ngrams for each language in the classi-
fication set, and then performing classification of an

2Sun Microsystems Laboratories efforts in
International Linguistic Applications:
< URL:http: / /www.sunlabs.com/research /ila/ >.

L.)

43

unknown string by selecting the model most likely
to have generated that string.

Although the model itself is quite simple, some
subtle and not-so-subtle issues do arise in putting
the algorithm into practice. First among these is the
problem of matching the character set of the input
text to the character set assumed by the language
profiles - - for example, Shift-JIS and EUC-Japan
are frequently used to encode Japanese documents
in the PC and Unix worlds, respectively. Docu-
ments currently found on the W W W are often in-
sufficiently labeled to indicate the language of text
or the encoding of the characters within the docu-
ment. We believe that use of Unicode will become
increasingly widespread, obviating this problem, al-
though for the time being we avail ourselves of the
reasonable tools available 3 for identifying and con-
verting among character sets.

Second, sparse training data is a significant fac-
tor in ngram modeling, even at the level of charac-
ter co-occurrences, since we consider character se-
quences up to 5 characters in length. We have ex-
perimented with simple add-k smoothing and, not-
ing known problems with that method (Gale and
Church, 1990), we have also experimented with
Good-Turing smoothing (Good, 1953) - finding, to
our surprise, tha t the simple "add ½" is only slightly
less accurate.

Table 2 shows the performance of the language
identification algorithm when run on Dunning's
(1994) English/Spanish test set, using language pro-
files for English and Spanish constructed from train-
ing sets of 50K characters each and varying the size
of the ngrams and length of the test strings. This
experiment used Good-Turing smoothing and also
adopted a simplified approximation of conditional
probabilities used by Dunning (personal communi-
cation) in his experiments. Each row of the table
shows the language and length of the test strings,
the ngram size, the number of test strings classified
correctly and incorrectly, and the percentage correct.

Third, in an environment where computation may
more efficiently be done on the client side rather
than the server side, the size of the language pro-
files becomes relevant, since computation cost must
be traded off against communication cost for the
data needed in order to perform the classification.
Given that probabilities for low frequency items can
be poorly est imated anyway, we have experimented
with eliminating low-frequency items from the pro-
file - - e.g., t reat ing singletons (ngrams appearing
just once in the training data) as if they never ap-
peared at all and using the smoothed-zero value
for them instead, thus trading model size against
classification accuracy. Again to our surprise, we

~Xemacs internationalization :
< U RL:http://www.xemacs.org/
xemacs-faq.html~interna.tion Miza.tion >

have found that quite reasonable classification per-
formance is sustained even when filtering out not
only singletons but even ngrams that appear twice
and even three times in the training s e t . (see Ta-
bles 3-5).

Table 1 shows the dramatic size reduction that
takes place as smaller window sizes are used in train-
ing the language models. In the current implemen-
tation plain text files are used for maximum porta-
bility of the resources. An application that uses a
5-gram model without filtering any of the training
data would use a 220K model containing 13K ob-
served ngrams, with an average accuracy of 98.68%
for 100-500 character length strings. If the same ap-
plication can function effectively with a marginally
lower accuracy rate of 98.32%, then the same train-
ing data can be used to produce a profile a full order
of magnitude smaller (a 23K profile containing only
1.6K ngrams), by using a tr igram model and filter-
ing out those trigrams whose observed frequency is
less than 4. This 10X reduction in size for this par-
ticular resource could mean supporting 10 times as
many languages with the same memory footprint or
delivering the linguistic resource 10 times as fast for
a client side computation.

Finally, standardization of language labels must
be addressed; this work follows the ISO standards
for language and country codes for internationaliza-
tion ([SO, 1988b; ISO, 1988a; Yergeau et al., 1997;
Alvestrand, 1995).

3 C l i e n t / S e r v e r A r c h i t e c t u r e

In designing a distributed application several deci-
sions can be built into the architecture of the prod-
uct or left as runtime decisions. By using a Java vir-
tual machine as the target platform, the same code
can run on a server machine or within the client
graphical user interface. A sophisticated program
can determine at s tartup whether the computat ion
resources (memory and CPU) on the server machine
or on the client workstation are bet ter for the more
complex algorithms.(In our testing we work with
a SparcStat ion(TM) 10 file server, an Ul t ra l (TM)
with 500M of memory as a high end client and a
SparcStation 2 remote client over a 28.8 Kb modem
connection as a low end client.)

In addition to compute resources, it is also impor-
tant to consider the network bandwidth resources.
The local area network configuration can make some
simplifying assumptions that may not be appropri-
ate for wide area network and remotely connected
clients. We have explored the possibility of degraded
application performance in exchange for reasonable
response times for the remotely connected client, i.e.,
we have allowed a higher error rate on language la-
bels of short text fragments in exchange for smaller
language models which can easily be down-loaded
over slower network connections by remote sites. In

44

this section, we discuss the incorporation of lan-
guage identification at three possible locations: the
client's Web browser, the document server, and be-
tween them at a proxy Web server.

3.1 C l i e n t W e b B r o w s e r

We have experimented with two extreme client con-
figurations. Our high end client has fast CPU and
a large memory pool. Our low end client has both
a slow CPU and small memory footprint. The high
end client easily caches large language profiles and
is capable of comput ing the best possible language
labels. When the network resources are available to
the high end client, it makes the most sense to per-
form the language labeling within the client browser.

On the low end client, the available network
bandwidth was the driving architectural consider-
ation. When high bandwidth was available, delegat-
ing computa t ions to the server system provides the
best language labels and the best throughput to end
users. In disconnected or low bandwidth situations,
the client must perform its own labeling. In these
situations, less accurate language labels with reason-
able responsiveness is preferred over slow but more
correct results.

Three p r imary techniques were used to improve
the responsiveness of the client side language la-
belling interfaces. Basically, they all a t t empt to min-
imize the work tha t is performed and to overlap the
work whenever possible with other end user interac-
tions.

• Asynchronous processing for perceived respon-
siveness. End users perceive system responsive-
ness in terms of its ability to react to their re-
quests when they are presented to the system.
Within our application there are clear points
during system initialization and end user pa-
rameter selection when large amounts of net-
work bandwidth and computat ion resources are
needed. Using the builtin threading capabilities
of the Java environment, we s tar t the resource
intensive operations when they are indicated,
but allow the user to continue interacting with
the user interface. If the user requests an op-
erat ion tha t requires an uninitialized resource a
message is presented and the application blocks
until the resource is available.

• Degraded language profiles for smaller footprint.
Our language identification profiles have been
built with 3, 4 and 5 character ngram windows.
In addit ion to varying the ngram window size
we have experimented with removal of singleton
and doubleton observations in the training data.
While this amplifies the sparse data problem, it
does not significantly impact the end user per-
ceived error rates for large granulari ty text ob-
jects, e.g., labeling a typical webpage with 1000
characters of textual information.

• Subset of language profiles for specific user
needs. We have been working with a mixture of
western European and Asian languages 4. For
remote clients it is worth the extra effort to
preselect the languages that will be most bene-
ficial to distinguish on the client machine. For
demonstrat ion purposes we use a dozen western
languages and preload a few profiles during the
initialization of the sample configuration.

3.2 D o c u m e n t S e r v e r

A typical document server is designed to service a
large number of end user requests. While they are
usually configured with large amounts of disk stor-
age, they are not always the best computat ional re--
sources available on the network. For static web-
pages, it is easy to include a language labeling tool
for off-line document management . The labeling
tool would be used to convert text/htmlfile into mes-
sage/http files. 5

For real t ime information such as news wires or
other database generated replies the same off line
language labeling tools could be used with C o m m o n
Gateway Interface (CGI) 6 scripts to automat ica l ly
add language labels to dynamical ly generated web-
pages.

3.3 P r o x y W e b S e r v e r

A proxy server is an intermediary program tha t pro-
vides value added functionality to documents as part
of the transmission process. A proxy server could be
configured close to the end user or close to the da ta
source depending on the network topology. Proxy
servers may also be employed as a shared work-
group or enterprise wide facility, e.g., depar tment
level proxies can share cached webpages, or an en-
terprise wide proxy could add an extra level of ac-
cess controls. By introducing language labeling at
a proxy server it is possible to combine the benefits
of webpage caching and transparent content negoti-
ation to reuse previously computed headers. 7

4We selected 200K of sample text from the WWW
for the following languages: Chinese, Czech, Danish,
Dutch, English, Finnish, French, German, Greek, Hun-
garian, Italian, Japanese, Korean, Norwegian, Polish,
Portuguese, Spanish, Swedish, and Turkish. We use 50K
of text for training the models, 50K for use in entropy
calculations and 100K heldout for testing purposes. Pre-
liminary experiments indicate that performance compa-
rable to what we have seen with the English/Spanish
test set will also be achieved with other language pairs.

5Apache server documentation for variant files:
< U RL:http://www.apache.org/docs/
mod/mod_a~is.html>
< U RL:http://www.apache.org/docs/
mod/mod_negotiation.html>

8Common Gateway Interface 1.1 :
< U RL:http://hoohoo.ncsa.uiuc.edu/cgi/>

rTarnsparent content negotiation in HTTP :
< U RL:http://gewis.win.tue.nl/

45

4 J a v a C l a s s e s

The pr imary reusable Java module written for lan-
guage labeling in our system is called a frequency
table class. A main() routine is provided in the class
to provide a stand-alone interface for generating new
language profiles from training data. The generated
language profiles are self documenting text files indi-
cating the parameters used in creating the language
model and the algorithms used for smoothing and
filtering the training data. Methods are provided
in the frequency table class for saving and loading
the profiles to disk and for scoring individual strings
from a loaded profile.

Specialized classes were also written to provide
connections within a client environment (in Java
lingo an "applet") and within a proxy H T T P server
(again in Java lingo a "servlet"). In both the servlet
and applet applications of the language labeling class
the Java platform provided the basic class loading
infrastructure to allow a common shared module
and the distributed platform for running those al-
gorithms transparently on a client or server system.

5 Discussion

In this paper, we have described a Java s implemen-
tation of a character ngram language labeling algo-
rithm. This NLP module was successfully reused
in a client side Java application, in an offiine docu-
ment management system and embedded within an
H T T P proxy server. With the rapid deployment of
the globally available Java infrastructure, a tremen-
dous oppor tuni ty exists for resusable NLP compo-
nents.

The distributed nature of our particular applica-
tion, led us to explore possible tradeoffs between the
accuracy needed for client side language labeling and
the size of the language models. By selecting smaller
ngram windows sizes and by disgarding infrequently
observed ngrams from our language profiles we can
reduce the size of the models by an order of mag-
nitude with an insignificant loss of precision for our
target application.

The tradeoffs we have explored in the context of
automat ic language identification are relevant more
generally to natural language processing in the dis-
tr ibuted setting made possible by the Java infras-
tructure. At a minimum, our observations with re-
spect to character-based language models are likely
to be applicable to the word-based language mod-
els used in other statistically-driven NLP applica-

koen/conneg/>
IETF - HTTP Working Group :
< U RL:http://www.ics.uci.edu/
pub/ietf /ht tp/>

aSun, Java, Java Developers Kit, Hot Java, and Ul-
tral are trademarks or registered trademarks of Sun
Microsystems, [nc. in the United States and other
countries.

N Filter Lines

5 0 13423
4 0 8196
3 0 3557
5 1 6003
4 1 4607
3 1 2393
5 2 3899
4 2 3377
3 2 1952
5 3 2863
4 3 2685
3 3 1693

Bytes 1 % C o r r e c t

221996 98.68
127917 98.66
52144 98.38
95858 98.64
70496 98.54
34688 98.36
62704 98.58
50973 98.52
27646 98.32
45782 97.84
39464 98.50
23527 98.32

Table 1: Language profile sizes

tions. Beyond that , similar client/server tradeoffs
are likely to be important even in strictly knowledge
based systems. Part-of-speech tagging and phrase
identification, foreign word translation, and topic la-
beling are among the operations that promise to en-
hance intelligent search and browsing on the Web,
and the present paper represents a beginning step to-
ward making decisions about where to locate these
operations' computations and data.

R e f e r e n c e s

H. Alvestrand. 1995. RFC 1766: Tags for the iden-
tification of languages, March.

Ted Dunning. 1994. Statistical identification of lan-
guage. Computing Research Laboratory Techni-
cal Memo MCCS 94-273, New Mexico State Uni-
versity, Las Cruces, New Mexico.

W. Gale and K. Church. 1990. What ' s wrong with
adding one? IEEE transactions on Acoustics,
Speech, and Signal Processing.

I.J. Good. 1953. The population frequencies of
species and the estimation of population parame-
ters. Biometrika, 40(3 and 4):237-264.

ISO. 1988a. ISO3166 - codes for the representation
of names of countries.

ISO. 1988b. ISO639 - code for the representation of
names of languages.

F. Yergeau, G. Nicol, G. Adams, and M. Duerst.
1997. RFC 2070: Internationalization of the hy-
pertext markup language, January.

46

Lang I

En
Sp
En
Sp
En
Sp
En
Sp
En
Sp
En
Sp
En
Sp
En
Sp
En
Sp

Length I N Correct Wrong

t00 3 983
100 3 973
200 3 984
200 3 981
500 3 498
5OO 3 5OO
100 4 988
100 4 976
200 4 986
200 4 983
500 4 500
500 4 500
100 5 991
100 5 973
200 5 986
200 5 984
5OO 5 50O
500 5 500

% Correct

17 98.3
7 99.3

16 98.4
19 98.1
2 99.6
0 t00.0

12 98.8
4 99.6

14 98.6
17 98.3
0 100.0
0 100.0
9 99.1
7 99.3

14 98.6
16 98.4
0 100.0
0 100.0

Table 2: Language identification performance using
full profiles

Lang Length N Correct

En 100 3 986
Sp 100 3 972
En 200 3 979
Sp 20O 3 981
En 500 3 498
Sp 5O0 3 5OO
En 100 4 989
Sp 100 4 973
En 200 4 983
Sp 200 4 982
En 500 4 499
Sp 500 4 500
En 100 5 989
Sp 100 5 973
En 200 5 982
Sp 2OO 5 985
En 500 5 500
Sp 50O 5 500

Wrong % Correct

14 98.60
8 99.18

21 97.90
19 98.10
2 99.60
0 100.00

11 98.90
7 99.29

17 98.30
18 98.20

1 99.80
0 100.00

11 98:90
7 99.29

18 98.20
15 98.5O
0 100.00
0 100.00

Table 4: Language identification performance using
reduced profiles (filtered doubletons)

Lang Length N Correct

En 100 3 986
Sp 100 3 973
En 200 3 980
Sp 200 ,3 981
En 500 3 498
Sp 500 i3 500
En 100 ~4 989
Sp 100 4 973
En 200 4 982
Sp 200 4 983
En 500 4 500
Sp 500 4 500
En 100 5 990
Sp 100 5 974
En 200 5 984
Sp 2O0 5 984
En 500 5 500
Sp 5OO 5 5OO

Wrong % Correct

14
7

20
19
2
0

11
7

18
17
0
0

10
6

16
16
0
0

98.60
99.29
98.00
98.10
99.60

100.00
98.90
99.29
98.20
98.30

100.00
100.00

99.00
99.39
98.40
98.40

100.00
100.00

Table 3: Language identification performance using
reduced profiles (filtered singletons)

Lang Length N Correct

En 100 3 984
Sp 100 3 973
En 200 3 979
Sp 200 3 981
En 500 3 499
Sp 5OO 3 5OO
En 100 4 990
Sp 100 4 972
En 200 4 983
Sp 200 4 981
En 500 4 499
Sp 5OO 4 50O
En 100 5 979
Sp 100 5 961
En 200 5 974
Sp 2OO 5 985
En 500 5 497
Sp 500 5 496

Table 5:
reduced

Wrong % Correct

16 98.40
7 99.29

21 97.90
19 98.10
1 99.80
0 100.00

10 99.00
8 99.18

17 98.30
19 98.10

1 99.80
0 100.00

21 97.90
19 98.06
26 97.40
15 98.50
3 99.40
4 99.20

Language identification performance using
profiles (filtered tripletons)

47

48

