[Proceedings of the Conference on Theoretical and Methodological Issues in Machine Translation
of Natural Languages, Colgate University, Hamilton, New York, August 14-16, 1985]

ON DEBBUGGING ENVIRONMENT PRCPOSED FOR EUROTRA(*)
(first draft) _

N.VERASTEGUI

Informatique
Institut de Formation et Conseil en
27, rue de Turenne - 38000 Grenoble FRANCE

and

Groupe d’Etudes pour la Traduction Automatique -

Université Scientifique et Médicale de GCrenobie
BP 68 - 38402 Saint Martin d‘Héres FRANCE

I. ABSTRACT

A proposal of external specification of the user
environement for the EUROTRA project is presented. The needs
of the users and the functions which are necessary for an
efficient testing environment are analyzed.

KEYWORDS :
debugging., computational tools for MT, user "interface,
machine aided translation.

(*) This work has been carried out as part of a contract with the
Commission of the European Communities (in the framework of the
EUROTRA Research and Development programme) and the CNRS (Centre
national de la Recherche Scientifique) . The ideas and proposals

in this paper are those of the author and not necessarily shared or
supported by the Commission, nor are they to be interpreted as

part of the EUROTRA design. We are grateful to the Commission and the
CNRS for agreement to publish this paper.

323

11. INTRODUCTION

During the life time of any software, and partfculary of
a computer aided translation system, the results which are
obtained will trigger the modification (or rectification) of
certain {1inguistic) data, in order to take into account the
errors found, the omissions, etc. This debugging process can
be summar ized as a cycle of TRIAL, ODETECTION and
MODIFICATION. TRIAL stands for the initiation of the
complete or partial transiation process, DETECTION means the
detection of an error, of an omission, of a possibiiity to
improve this or that work method..., MOOIFICATIONS stands
for the consequence of this detection on the set of the

1inguistic data.

The debugging of these data 1s, then, the result of
repeating this cycle until sufficiently acgurate resulis for
the kind of texts one wishes to translate are obtained. The
functional specifications of the envir

onment monitor must
take this remark into account, in order to create maximum
automation of +this repetitive sequence carried out by a
(specialized) linguist.

An efficient testing environment
oart icular: sould comprise, in

= the management of the intermediate resul
ts, keeping a
part of the "history® of the transformations: ping

- the qualitative and quantitative setection
i of parts of
the corpus of texts and of intermediate resultg;

- the display of the intermediate resul
ts and h
control of the details of the display: the

= trace tools, with one or more modes of activation;

s égga possibility of Iinteractive modifications of the

324

I1I. SOME CHARACTERISTICS OF DEBUGGING ENVIRONMENTS

The elimination of the errors 1n a program, whether
technical or linguistic, 1is done in two stages: first by
testing the programs 1in order to detect the errors by
studying their effects on the results, followed by debugaging
the program by the retrieval and modification of the causes
of the errors. On the one hand one should, thus, define
adeguate sets of tests prior to any debugging trial and, on
the other hand, understand the program {tself (its structure
and behaviour) and evaluate the scope of a modification.

The auxiliary systems for debugging or debuggers are
well-known {n computer science but rarely used, for various
reasons: .

- they frequently displtay the wrong kind of information
such as, for example, character strings in
nexadecimal;

- they are not integrated in the system, for they are
generally designed a long time after the programming
language; .

- they do not wuse the same syntax as the language for
which they have been butlt,

In conventional computer sclience, 90% of the errors are
found thanks to manual search without the help of the
machtine, and the rematning errors are detected, tn most
cases, by "dumps® of the memory. But this last kind of
errors are the most hard to find..

It is true that the simple manual checking of the
execution of a program with simple data, enables us to
detect many of the errors, and this is, moraover, a good
method which should be kept.

In the conventional approach of software engineering, the
source code is the prime formal representation. In the
cperational approach, the specifications are both formal and
executable: the implementation is derivaed from the
specifications,

A debugger must be adapted to the approach used by the
programming language. The communication must, therefore, be
aestablished on the level of the syntactic and semantic
structures of the language considered and not on that of {ts

itmplementation, failing which the user will have
difficulties to understand the informatton supplied by the
system. Bifficulties can also arise in the debugging of

optimized programs, in which there {s not necessarily a
bi1jective application of the source code towards the object

325

code. And fimatly, the solution can vary according to
whether the environment ts mono-user or multi-user.

The EUROTRA software systém is near to the applicative
languages and it s implemented with languages of the
applicative type <«3>. At the core of the applicative
languages, we find the functional composition, the
undetermined order of execution during the parallel
applications and the absence of variables, as the work f{s
done directly on a data structure which {s modified with the
applications of the functions <1>,

A1l this constiderations has to be taken inte account for

the design of a testing environment, For 1instance, a
general specification for a debugging environment can be
found in <4>», We present here a generalization and

adaptation for EUROTRA of what has been realized in
ARIANE-T78 <2>.

¥

1V. THE DEBUGGER

We propose here the functionalities for the EUROTRA
debugger.

It must be possible to give the necessary commands,
either 1in a way which 1s {internal +to the models (in a
syntactic form to be defined), or {n an external way
(interactivetly or at the moment of injtiating the
execution).

Here, the presentation o% the options follows an
increasing order of complexity.

1. TRACES

The user must have the possibility to trace the execution
of his linguistic applicatton. The simplest mean to achieve
this s to supply, at {nput and at output time of each
process(*) (complex or primitive) the Iinitial and final
working structure containing, for each of 1ts nodes, the
complete content of 1{ts decoration, as well as the time

(*) A translation process is decomposed in sub-processes, which car
be applied in different ways: sequential, parallel or iterated.
Each complex process can be also decomposed in sub-processes until
the level of primitive process. A primitive process, by definition,
can't be decamposed.

326

spent {(in virtual ~ seconds or {n number of machine
instructions carried out).

Unfortunately, this solution {s satisfactory only for
smail models working on small structures. In general, the
user {s "flooded" by the information supplied.

in order to improve this situation, the planning should
include parametrizing of traces so as to fix the limitations
in time, the Jlocalizatfon or the size of the traces to be
turned out. We, therefore, proposse:

- the possibility of I{Indicating the name(s) of the
processes to be traced:

- the possibitity of indicating the parts "of the
decorations to be traced on each node of the
structure; '

- the possibility to trage anly the new or the modified
eigments;

- the peossibility to impose restrictions on the elements
to be traced, for example by requesting only the
visualization of the nodes possessing a partfcular
decoration, or which verify a condition,

From a 1linguistic point of view, the structures of the
data are forests, The linguist will have no access to the
{tnternal data structures. However, if this principle is
strictiy adhered to, the stze of the traces c¢an be
considerable and they can be difficult to read.

We therefore propose a factorized writing and/or drawing
af the m.a.t, typs <S>, which {s a more general notion.

If a2 set of trees have in common (same structure, same
decorations) a part of their structure from the rcots up
11} a certain level, all these nodes will ba written and/or
drawn only once. [f two trees have common rogts and vary, on
the level of their daughters, orily Iin the subsets of the
consecutive daughters, the common part will only be written
and/or drawn once. These two rules apply recursgively to all
the sub-trees. For example, (the anguiar parentheses (<., >)
indicate the possible choices):

327

A
1 = ==

“w< -t

T~ +
o< —+

0 <~ +

T <~ +
& -4

Q< —+

a . a>
! !
bt =+t *-
111 N i
v VvV v VYV v
bcd becd > b
! !
=t +-4
LI
v Vv v v
gh 1}
' a ’ a >
f !
*-+~+ -t -
L | f 1t f
v VYV vV VvV v
bect becm => b
1 !
+=4-4 ==t
f 1 ! 1 g
vV VvV v VvV Vv
geh ge

Q< =%~ € = b =

¢ 1
AL -

0 < — +

< —+

o< —+

=+, =+, k=¥ >
1 t ! t ¢

v v Vv v Vv

f g h LI |
k, 1, m>
-3

!

v

<f, h, }>

The EUROTRA internal data structures fully adapt to this

notation and
working

the
Moreover,
and a

1ist

fts use does not call for any modification of
structure wused by ' the abstract
@ach node of the tree can be marked by a number,
can be made of these numbers,

machine,

followed by the

decoration assoctated with the corresponding node.

It

should also be underltned that this notation applies

to partial trees, which is useful when one wishes to extract
onty part of the data base. '

In the previous traces, {t 1is important to identify
clearly the process which 1s concerned. Let us suppose, for
example, that we wish to trace the carrying out of the
following processes:

pi2 ::= pit, p2
pi1 ::= p10 // p3
p10 ::= (pi, p2)+
p9 ::= (p4, pS, p8)+
p8 ::= (p6 // p7)+
The symbols *,* *//* and "+" represent respectively the

sequentiality, the parallellism and the {teration. Then, we

328

see that process p12 1s equivalent to ({pt, p2)+ // p3),
(pd4, pS, (p6 // p?)+)+, or, in graphic form:

]
R o
LR | i

t ¥ ¥
1 R A e <
! i pi t | p3 !
t P N Yy

! f H
i 7 ¥
i do=eed i
! 1 p2 1 L
f $omm=t i
1 i1 !
totrmd domgo=d

T
! p5 !
Fomm—t
------ >1 .
dmmmhmod
f !
¥ ¥
bemeed Fomacd
P p6 1 ! p7 |
LA L B R s
1 {
LR L
I
.,_.(-,_:,-g

T R e YRR S m el eTmy AR R AEE Il el Gw e el wp e s Sww

L e e L e

Al though the order of execution of parallel processes is
not deterministic, the user should see the traces appear
during debugging 1n the order of writing of the processes.
This would considerably facilitate the exploration of the
traces. Thus, for the above examplie, we would have a series
of traces presenting the following form (in which the traces
at {nput and at output time are respectively indicated by
the characters ‘ and "):

329

pti2f pi11’ p1Q’ pt’ pi® p2’ p2" p10* ...
piQ’ p1’ pi® p2’ p2" pl10" p3’' p3" pii*

pe’ pd4’ p4d4" p5’ p5S* p8‘ p&’ p&" p7’ p7T" ...
pe’ p6" p7’ p7" p8" ...

p4’ p4” p5’ p5" p8’ p6’ p&" pT7’ p7" ...

p6’ .p6" p7’ p7" p8" p9” pi2*,

It §s also {important to be able to indicate the l1imits
for the traces compared to the levels of the processes. In
our example, there are 3 levels of overlapping: pt2 at level
0, pi1 and p9 at level 1, p10, p8, p3, p4 and psS at level! 2
and the others at level 3. The user can request the traces.
at level O, or between the levels t and 2, or upwards from
2, etc. 1f, for example, levels inferior to 3 are requested,
traces will be produced such as: pi2‘ pii’ pi1* p9’ p9”
pi2*.

Traces on the level of the grammars and the rules should
ba planned, but these will depend on the nature of the
primitive process.

It would be desirable to have an automatic starting of
the traces {n case of error. In this way, the size of the
traces can be reduced, whilst keeping thetir power for the
precise localizations.

The debugger should enable the production of:

»

- different statistics;

- the execution frequence of each rule of a model, if
required in the form of histograms;

- the running time for ' each process and/or phase, as
well as the percentages compared to the total time
from input to output;

- statistics on the use of the dictionary entries, with
a view to the improvement of their organization.

2. BREAKS DURING EXECUTION

The system should enable the user to i{ndicate
break-points. During the execution and at the moment of
each passage through a break-point, the user can ask the
debugger in order to know the value of the variables, to

330

evaluate some expressions, to def ine or suppress
break-points, to continue or terminate the execution.

3. DYNAMIC MODIFICATIONS

wWhen debugging a program, small errors can show up which
resuit 1n erroneous values which are easily corrected. In
general, the program should be modified and recompiled, and
the tests should be restarted att over with the new module.
We would appreciate the possibility to modify the values
controlled by the debugger, so as to continue the test and
detect other errgrs. This {5 a time-saving means, as the
constant shifting from one environment to the other 1{s thus
avoided,

The EURCOTRA sof tware system has particular
characteristics which complicate the definition of options
for modification of the data during debugging: this is the
result of the use of parallelism. If modifications are
carried out on a paraliel branch, the ccherence of the
working structure on all the other branches c¢annct be
guaranteed. It 1s proposed ({n this precise case) not to
permit the execution to be contimnued past the end of the
modified branch.

*

Anyhow, it should be forbidden to access and modify the
structures or {informations which have not been defined at
the level of the specialized language for linguistic
programming.

4. THE MONITOR

The monitor s the means of communication between the
user and the EUROTRA MAT system. It is the monitor which
carries out the calling of functions of the host operating
system, especially concerning the storage of the data and
the programs. The final form of the commands will depend on
the hardware on which EUROTRA will be implemarited and on its
operating system.

Suppose that the user has requested the resolution of the
external references after a separate compitation and prior
to execution, the system could display the following menu
which allows the creation of the execution modules:

331

1. OPT optimized module for production
2. NORM normal module
3. DEBUG debugging module

!

I

!

!

!

!

! Applications

t Analysis(es} :

1 Transfar(s) :
1 Generation(s)
!

|

H

!

t

Others

Module produced
Source language
Target language :

The user indicates the objective of the module and fts
components. In the zone of gnalysis applicaticns, he can
indicate several names of applications other than transfer
or generation.

In the zone of transfer applicattons, he can indicate
several names of applications other than analysis and
generation.

In the generation zone, he can indicate several names of
applications other than analysis or transfer.

In the zone “others®, he can only indicate the names of
appltcations other than analysis, transfer or generation. In
this Ttatter case, the analysis, transfer and genaeration
zones must be empty.

In all . cases, the names of the module and the
source/target languages are ob!igatory.

A translation can be carried cut in view of three
objectives:

- in order to realiza the complete translation of one or
several texts with the help of a stabilized
application {(industrfal transiation);

= in order to realize a partial transliation with the
help of a stabilized application, with intermediate
results at 1nput and/or output time;

- 1in order to test one or several translation phases,.

332

The choice between. these options could be made with the
help of the following menu:

B e R Y e L P +
1 R t
f !
! module I
! !
I 9. TRANS full transtaticon ¥
! !
i data corpus 1
! text(s) f
i languages source t
I target i
i 1
I 2. PTRANS partial translation with intermediate !
f working structures !
t 3. DTRANS execution controlled by the debugger i
i i
i stages beginning i
¢ end 1
e b R L L T L +

The source language and target language <odes are
optional. By defaiult, one can take those tndicated during
the creatfon of the moduie.

V. CONCLUSICN

Wwe had proposed a general organization of the system ,
which would allow, on the one hand, management of the basic
EUROTRA system, of the linguistic data and of the texts in
ail their intermediate stages, and, on the other hand,
communication with the users for the preparation, execution
and debugging, taking into account the safeguards necessary
to guarantee the system’s integrity.

The definition of the EURDTRA’s specialized language for
finguistic programming 1{is not completely finished. The

333

proposals presented here could be modified as a consecuence
of the Jlast choices for tha language, especially the
proposals on the break-points and on the dynamic
modifications should be more thoroughly studied.

VI. APPENDIX E: BIBLIOGRAPHY

1. BACKUS .,
*Can preogramming be liberated from the von Newman
styte? A functtional style and 1ts algebra of
programs”®,
Communications of the ACM, august 78, vol 21, no 8.

2. BOITET C., GUILLAUME P., QUEZEL-AMBRUNAZ M.,
“Implementation and conversational! environment of
ARIANE-78. AN tntegrated systam for automated
translation and human revision®,

Proceedings COLING82, North-Holland, Linguistic Series
No 47, P 19-27, Prague, July B2.

3. JOHNSON R.L., KRAWER S., ROSNER M. A,, VARILE G.B.,
*The design of the kernal architecture for the EUROTRA
sof tware”,
Proceedings of Coling84, ACL, 2-6 july. 1984, Stanford
Uu., California, pp. 226-235.

4. SEIDNER R., TINDALL N.,
"Interactive Debugging Requirements”,
Proceedings of the ACM SIGSOFT/SIGPLAN Software
Engineering Symposium on High-lLevel Debugging, Pacific
Grove, California, March 20-23, 1983, pp.9/22.

S. VERASTEGUI N.,
"Utilisation du parallélisme en traduction automatisée
par ordinateur”,
Proceedings of COLING-82, J. Horecky (ed.), pp
397-40%, North-Heolland Publishing Company, PFPrague
1982.

334

