THE PRAGUE BULLETIN OF MATHEMATICAL LINGUISTICS 47, 1987

"SPSS" - An Algorithm and Data Structures Design for
a Machine Alded English-to-Czech Translation System

]

Petr Strossa

1. Introduction

As it was stated many times {(cf., e.g., Vauquois, 1975),
it is practically impossible today to aspire to a universal,
high quality fully automatic system for translation between
two natural languages. Even if we restrict our interest to
translation of texts from a limited domain with relatively
stable terminology (e.g., texts about electronics or pumping
technology), there are still huge problems to deal with, and
the fully automatic translation systems are at least very much
memery and time consuming and/or they are not able to trans-
late all the sentences of the input texts, so they require post-
-editing as well. The main problems are due to unsolvable or
unrecovered ambiguity of some words and syntactic construct- .
ions. Such an ambiguity can be unsolvable in principle with{f;”
out special snowledge included in the translation process ﬁé
{cf. the example by Revzin and Rozentsveig -~ Russian "syn -
tsarya Fyodora"™ says in English either "Tzar Fyodor's son"
or "a son of Tzar Fyodor", depending on how many sons Tzar
Fyodor had, if he existed at all - and we can assume any human
translator to be able to find this information, or it may
stay unrecovered simply because the system is not adapted to
treat the word or construction as ambiguous. In the first
case the system wastes time by creating "possible” translat-

-2h=

ions of a sentence which would be gquickly rejected by any human
translator considering his knowledge of the domain and the con-
text {including the suprasentential one, dealing with which
brings further problems in automatic’ systems), while in the
second case we obtain a partially invalid translation without
any indication, although a human translator could say some of
the output sentences to be nonsense if he had seén them before
their including into the output text. Furthermore, there comes
the pfobleﬁ of how is an automatic system to treat the words
and constructions that it does not know because its authors

did not expect their occurrence in processed texts.

Rather than fully automatic systems including knowledge
bases, interactive systems are now qonsidered'hopeful in over-
coming the described problems with acceptable demands as to
human work and machine capacities. We can say that the possibil-
ities of interactivity in machine translation are searched into
for just as long a time as the possibilities of interactivity
in computing in general. One way is described already by Vau-
gquois (1975): he proposes an interactive superstructure to an
automatic system of translation with syntactic analysis. Such
a superstructure would enable the user to enter into the process
with his intelligence whenever it could not resolve a question
automatically. However, it would require a user relatively
well informed about the way the system works "inside". Further-
more, such a solution looks like a "human-aided machine pro-~
cess", rather than machine aided human work.

There are two principal points of view giving reason to
machine aided translation (henceforth MAT) systems as they
are referred to, e.g., by Tanke (1979) and Melby (1982). First-
ly: most of the time spent by translators of scientific and
technical texts in their work is filled up with looking into
dictionaries, and in spite of this they often cannot ‘be sure
as to their results - because of temporal changes of termino-
logical vocabulary. Secondly: as it was already said above,
if one wants to use a computer he wants to wofk with the
aid of the computer and not to help the computer in its work,

i.e., the user wants to select himself the extent to which the
work is to be done automatically and to which the responsibil-
ity is to be kept by him. ;

Melby proposed, and brought as far as to series product-
ion later, a MAT system for a microcomputer'with three main
levels Qf\aﬁtbmatization of the process. At the first level
the system works as a text processor (i.e., it provides for
functioné such as creating, scrollingiand;various editing of
‘texts in haturalflanguage) together with an interactive dict-
ionary (that gives dictiénary entries to the words keyed by
the user-agég;ging;gg_@i;“need). At the-second level the system
processes an input text automatically and offers possible trans-
lations of words and phrases to the user who is still keeping
full responsibility for the form of the output. The third level
executes programs fpr'automatic translation of thé whole text,
but marks'every sentence which is likely to be translated doubt-
fully, so that tﬁe user could easily find these sentences in
the output and revise them before printing. The user of Melby's
system can select the level of automation before the whole
work as well as change it any time during the work when he
sees that the previously selected level was not satisfying.

In my diploma work elaborated at the départment of applied
mathematics of the Faculty of Mathematics and Physics, Charles
University, Prague, under the supervision of. Eva Hajicovd,
CSc., I wanted .to design an algorithm and data structures for
‘a machine aided English-to-Czech translation system. To simpl-
ify the task 1 p;eéumed two levels of automation - the first
two described above - and I excluded the text processor funct-
ions from the focus of my interest, taking into account that
a subsystem with such functions could be added later. So my
study shows the linguistic problems of such a MAT éystem and

-

possibilities of their solution.

-2 F -

2. The task from the lingutistie point of view

At both levels of automation, the first one (let us call
it dietionary mode) as well as the second one (let us call it
automatic input text procéssing or AITP mode), the essence of
the task is to retrieve.dictionary entries according to words .
specified in some way. But even in the dictionary mode the
user should not be forced. to type his inputs in baBsic (diction-
ary) forms: he may not know what the correct basic form of a
word found in a text is, either; he may not know, e.g., whether
the verb, from which "interpreted" is derived, is "to inter-
pret” or "to interprete" (misspelled and misread_to rhyme with
"complete”"). And in the AITP mode, it is evident that the.

- system must be able to accept words in all their grammatical
forms, as they occur in normal texté. It would be surely wast-
ing of memory to have a special dictionary entry for évery
regularly derived grammatical form in English, e.g., for evéry
-ed-form, =-ing-form, regular plural, etc. But once we have a
procedure for recovering basic forms of the input words (let
us call it lemmatization procedure} in the system, we can use
it for more than that: such a procedure can be adapted to re-
cognize various words as derived from other ones, or as probab-
ly derived from other ones, if they are not found themselves
in the dictionary. Thus we could automatically obtain the dict-
ionary entry of "develop” as the answer to "development™, as
well as that of "compute" to "computer" or “"computation®, etc.
However, it would not be useful to include the less frequent
word-formation segments into the lemmatization procedure, as
this could unnecessarily slow down the work of the system with
every word. Anyway, it is necessary first to look up every
word in the dictionary before trying to re-derive its basic
form, as a special form can always have its special meaning
{(cf. "means" and "mean", "foundation" in the meaning of

"fund" which cannot be derived from the equivalent of "found"
in other languages). Then we must realize that the process

-28 -

of lemmatization is generally indeterministic, We cannot know,
e.qg., whether "lives", treated as an isolated word, is a form

of "life" or "live", as well as we cannot tell "bases™ as plural
of "base" from that of "basis" without taking into account the
semantic context. Furthérmore,_it is useful to keep some inform-
ation about the original input form (or some information implied
by it) until giving the whole answer to the user; so that we
could avoid wrong recognitions such as the noun "swallow" in

the form "swallowed". Naturally the system must also deal with
the irregular forms of words in a way acceptéble for-the user;

A whole-class of problems appears in the AITP mode. They
are namely: ' '

- recognizing of idioms and composed terms in the text:

idioms and some composed terms are not translatable word-by-
-word; if there is such a construction in the input text, the
system must answer by a translation of the whole construction

and should not offer a translation of the single words constite
uting it, as they are not interesting for the user in this case
(while in the dictionary mode the user probably will be interest-
ed both in the word as such and in all the idioms and terms

containing it).

- modifiable verbg: we use this term for all English verbs

the meaning of which can be considerably modified by preposit-
ions or short adverbs; cf. "deal" and "deal with", "give" and
"give up" etc.; these prepositions and adverbs (called verbal
modifiers in my system) can be placed in the sentence in a
theoretically unlimited distance from the verb they modify
(sentences like "he deals primarily, but not exclusively, with
theoretical problems" or "he gives his functions gradually up"
are guite permissible, though maybe not quite usual) and the
system must be able to connect the verb with its modifier (if
there is any in the sentence) before giving any dictionary
entry to the user; in the dictionary mode, on the other hand,
we consider useful to inform the user that a specified verb is
modifiable so that he could add a modifier to it in his next
guery.

-29-

- "incomplete idioms” (in Vauguois' terminology) like "£fit
(something) in place“-or "take to (one's) heels": as a matter
of fact, in usual dictionaries these idioms represent only
skeletons with “parameters" (here in parentheses) which are
replaced by variable length exp:essioné in the "instances" of
the skeletons in texts; the system must‘recognize the two parts
of such a skeleton separated by some expression in the text

and treat them together is any idiom (see above). -

~ hyphen constructions: the use of hyphen in English is often
relatively free; we can see, e.g., "high-pressure pump" as
well as "high pressure pump”,"over-view" or "super-struéture"
as well as "overview" or "superstructure”, etc.; thus the
system should be able to treat two words connected with a
hyphen either as one word (with the hyphen left in place or
omitted) or as two separate words so as to enable the correct
matching of dictionaries and input texts with various ortho-
graphic usages.

- negative words: in a MAT system we use this term for words
whose translation we do not assume to be interesting for the
user - grammatical words as articles, auxiliary verbs; numer-~
als etc.; often repeated retrieval of dicticonary entries to
these words would make the system clumsy and uncomfortable;
such words should be recognized very.quickly and overridden
without any actions more; i.e., there must be a guick test

in the system that resolves the question whether the current
"word is or is not negative.

3. The data structures and the principles of the algorithm

There are 3 dictionaries in "SPSS" ("Systém pfekladu za
pomoci stroje", i.e. "Machine Aided Translation System"):
the first one, called Basie Dietionary (BD), contains single
English nouns, adjectives, verbs and abbreviations with their
necessary grammaﬁical data and Czech equivalents or logical
pointers to other dictionary entries (see below); the second
one, called Dictionary of Idioms and Composed Terms (DICT}

-30-

contains English idioms and composed terms with their Czech
equivalents; the third one is the Negative Dictionary (WD),
containing negative words (see part 2).

It must be pointed out that both BD and DICT require direct
access memory device and we. have to assume them to be relative-
ly large and incomplete at every moment in the practical use
.of such a sysﬁem. {"SPSS"™ uses 57 bytes for a BD entry angd
153 bytes for a DICT one - and we could take account of about
10,000 entries for BD and even more for DICT in a commercial .. .
system for some technical domain). In the experimental version
of'“SﬁfSﬁrFBD—andeICT are represented by indexed sequential
disk files, but this is not'to say that another direct access
organization could not be better. On the other hand, ND is
relatively small and can be stored in the working memory dur-
ing the work of the system. (In the experimental version ND
consists of 151 entries representing common English pronouns,
possessive and numeral adjectives, articles, auxiliary verbs,
primitive adverbs, prepoéitions and conjunctions, and although
this realization of ND is not really complete, ND canlbe treat-
ed as complete -~ negative words are not productive and a compl-
ete list including a few hundreds of them could be created for
a practical application of the system.) For the representation
“of ND in the memory, I use a hashing table with 225 fields,
each of them being either empty or pointing at a linked list
of negative words (see Fig. 1j.

Fig. 2 shows 4 main types of (abstract) BD entries. The
pair' WORD+SEQ.NO. (occurrence sequence number of an English
word in the dictionary) forms the logical access key.of an
entry (which must be transformed to the necessary physical
form in every concrete implementation, e.g., to one string of
characters in the standard ISAM used). The "LEFT 1" entry is
the type pointing (by its TARGET) at a DICT entry with EXPR.
containing the word "LEFT" ("STATION 1" being its logical
access key; it can be seen that in DICT this key can be determ-
ined arbitrarily for every entry, as DICT is accessed only

-31-

through the BD entries of the type described here}. The TARGET
of "LEFT 2" points at all the BD entries with WORD = "LEAVE":

it is an example of an irregular form or word abbreviation entry.
"LEFT 3" is a normal entry with Czech equivalent of the adject-
ive "LEFT" in the T4RGET. "DEAL 1" is an example of so-called
modificable verb foreshadowing, with some values undefined,
characterized by a value greater than 4000 in a specified techn-~
ical data item: it only points at the fact that there is at
least 1 entry with WORD like "DEAL IN", "DEAL WITH" or similar
somewhere in BD. '

Now let ﬁs'demonstrate the function of the s?stem in the
AITP mode. The system takes the input text sentence-by-sentence
and every sentence word-by-word. At every word it first tests
whether it is not a negative word: it computes the respeétive
hashing function value and looks for the current word in ND.
If it is found there, it is overridden; otherwise a lockup is
made in BD for the entries identified by (W,1), (W,2), ...
(while there are such), where W is the current word. If some
entry found is of the lst type described above, a subroutine
for matching composed expressions is called (which can deal
with "incomplete idioms", toc); if it is of the 2nd type, a
new BD lookup is made recursively; if it is of the 4th type,

a verb modifier is loocked for until the end of the sentence,
and if it is found, a new BD lookup is made for the modified
verb. (As all the verb modifiers are either prepositions or
primitive adverbs, they are marked in ND, which is thus ysed

at this step, too.) If (W,l) is not found, a lemmatization is
tried. If this is still unsuccessful, a hyphen is looked for

in the word and if found, new lookups are made for the two parts
{(the attempt to transform a word with a hyphen to one word
without it is not included, but it would be a matter of a very
simple modification). ' |

It should be mentioned here that the BD entries of the
same English word are ordered according to their technical
data so that modifiable verb foreshadowings come first, follow-
ed by pointers to DICT, and other entries come at the end,

-32=

Thus the first two problems referred to in the 2nd paragraph

of part 2 are solved in the AITP mode.. In the dictionary

mode, the process with every word is almost the same, except
that all the entries (W,1}), (W,2),..., (W,n) are first pushed

_ down into a special pushdown store and then processed in revers-
‘ed order, which satisfies the requirements for the form of

the output in this mode. The two modes are "memory-balanced"

‘as one needs some extra memory fdr the pushdown store, while

the other for storing the current sentence.. |

An important part of SPPS is the lemmatization procedure;.hh
Its‘algorigggmis'bgigf}y illustratgd,by/a'kind of transition
table for English word forms endihg in "=-s" in Fig. 3. We
can realize such a table for every possible end character
of English word forms and word formation suffixes {although
our table covers only thé "-s" of plural and 3rd person).
Column I of the table contains labels of rows representing
possible replaciﬁgs and their conditions; S1 is the entry
point. Replaced end segments are in column II, replacing
ones in column III: if the end segment from column II is
found in the processed word form, the replacing is applied
and followed by a BD lookupﬁ now column IV shows what can be
the value of a specified item in the BD entry (e.g., 100
means "noun", 300 means "verb never doubling its end charact-
er", 350 means "verb doubling its end character in some
forms" - these categorigs were adopted pragmatiéally, accord-
ing to the class of functions of "SPPS")}. If the replacing
has not been applied, the next row of the table is tried,
while if the dictionary lookup has not been successful, a
new row to be tried (if there is any) is found in column V;
this row is tried even if the last dictionary lookup has been
successful, supposed there is a plus sign in column VI {thus
the ambiguity of forms like "lives" or "axes" is dealt with).
The global plan of processing a word form using a set of such
tables is as follows: (i) the respective table is selected
éccording to the end character of the word form; (ii) the
control is taken over by the table; (iii) if no success

=33~

has been achieved, an attempt is made to remove a prefix of
a predetermined class (e.g., ™un-" or "non-" in the experim-
ental version) and then to'repeat the process from (i).

4, Conclusion

"SPPS" exists and is being debugged as a program in
PL'I-Optimizer programming langﬁage for a big computer
(EC 1040, 1045).'The system works with debugging BD and
DICT with about 1000 and 100 entries, respectively, The pro-
gram has about 2500 lines of source text and works in about
200 K bytes memory. Its present version is not really inter-
active, it only,simulates interactivity} having all inputs
punched on cards {(or prepared on a disk or tape) and outputs
printed. Thus "SPPS" is far enoughifrom a real machine aid for
English-to-Czech translation. However, "SPPS™ shows what main
problems must be scolved by such an aid and how they can be
solved. Some ways of possible improvements of this system have
been mentioned in my diploma work, and further development
of "SPPS" to a real interactive aid is envisaged.

References

Melby, A.K. {(1982), Multi-Level Translation Aids in a Distrib-
uted System; in: ,COLING 82, Proceedings of the Ninth
International Conference of Computational Linguistics,
Amsterdam, North Holland ~ Academia, Prague

Nagao, M. (1983), Summary Report on Machine Translation, PBML
39.

'Tanke, E. H. (1979), Implementing Machine Aids to Translation;
in: Snell, B. M. (ed.): Translating and the Computer,
Amgterdam, North Holland

Vauquois, B. (1975}): La Traduction Automatigque a Grenoble,
Documents de Linguistique Quantitative, 24, Paris, Dunod

-34-

2 3[.... 16 -.w 22 ooooooooo . 225

-

1
A OR SHALL
BY MA

Z

Fig. 1. The scheme of the negative dictionary stored in the
working memory '

ED | T 3
WORD: LEPT LEFT {{ LEFT|{| DEAL LEAVE| { LEAVE
SEQ.NO.: 1 2 3 1 1 2
(TECHNICAL P

DATA): > = - - 8 4300 - & & - & &
TARGET: STATION 1} |LEAVE]| LEVY || <UNDEF. > cee ces
DIMWT: l

WORD : STATION

SEQ,.NO. : 1

(TECHNTCAL

DATA:) e

EXPR. : LEFT LUGGAGE OFFICE

EQUIV, : USCHOVNA ZAVAZADEL

Fig. 2: The scheme of BD and DIMWT entries and their relations

-35-~

1 |1x II1 Iy v VI
sl ses s) _ Sio0 +
S2 | xes X sio +
S3 | zes z | s11
sS4 shes sh no
> 100, 300
85 | oes o 511
87 | ves f : Sll +
58 | ies y p | 511 +
89 ices ex 100 511
510 | es is | 100 s11 | +
s11]s | no | 100, 300, 350 no

'Fig. 3: The re-derivation table for word forms ending in "-s".

-..3,6_

