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[1] Introduction 

Accurate translation requires a degree of compre- 
hension, and several projects have developed prototype 
systems to demonstrate the feasibility of knowledge- 
based machine translation (Carbonell 1981, Nirenburg 
1986, Lytinen l984). These approaches combine syn- 
tactic and semantic information to produce an inter- 
mediate knowledge representation of the source text 
which is then generated in the target language. This 
paper does not attempt to revisit the ample rationale 
for the knowledge-based machine translation concept - 
such discussion may be found in the literature 
(Carbonell 1986, 1981, Nirenburg 1986) - but rather 
discusses new advances in computational methods for 
combining syntactic, semantic and lexical knowledge 
that promise to make systematic large-scale KBMT a 
practical reality. These methods, based on static sepa- 
ration and dynamic integration (via precompilation) of 
linguistic knowledge sources, are brought together in 
the universal parser architecture, a radical improve- 
ment over ad-hoc manual methods for integrating 
semantics into syntactic parsing methods. 

This intermediate semantic representation is 
often called the interlingua, though that is a misnomer. 
The semantic representation is encoded in a completely 
formal, canonical and unambiguous notation such as 
first-order logic or frame-based representation. Once 
the meaning representation is extracted it may be re- 
generated in multiple languages, paraphrased, sum- 
marized, stored, fleshed out by an inference procedure, 
or otherwise processed. Thus, the so-called interlingua 
approach unifies machine translation back into the 
mainstream of natural language processing research in 
AI. 

First, however, let us review the set of perfor- 
mance objectives that contributed to the design of the 
universal parser: 

• Semantic accuracy — The translation should main- 
tain semantic invariance above all else. Paralleling 
syntactic form, maintaining equivalent length of 
text, and other such criteria are considered of secon- 
dary importance.   Thus, the knowledge-based ap- 
proach was the only logical choice. 

• Multi-lingual generality - The system should be 
able to handle any natural language and any se- 
mantic domain, with the addition of a new declara- 
tive grammar for the former, and a new declarative 
knowledge base for the latter.  Moreover, the addi- 
tion of any new language should enable immediate 
translation to and from all the previous languages, 
without requiring explicit hand-built transfer 
grammars for all pairs of languages (as is the case 
with the best present systems (Boitet 1976, Nagao 
1984, Kittredge l976, Slocum 1984)). 

• Interactive Translation — Translation should occur 
in real time, interacting with the user as required. 
Most existing practical machine translation sys- 
tems are designed to translate off-line large docu- 
ments, such as technical papers and manuals. How- 
ever, there is a growing need for interpreting per- 
sonal communication, such as telexes, business 
letters, conversations with telephone directory 
assistance (or at a foreign hospital, hotel, or airport 
counter). Such interactive usage adds the following 
demands: 

• No post-editing should be required, as one cannot 
carry along a personal post-editor in case he or she 
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is needed, just as one cannot always have a profes- 
sional translator at one’s side. 

• Real-time performance is an absolute require- 
ment, as participants in a dialog will not wait 
minutes or hours for a response. Nor can the per- 
son who composed a letter or telex wait long to see 
if the system will pose any clarificational ques- 
tions. 

• Speech compatibility is an equally strong require- 
ment, as the utility for real-time KBMT trans- 
lation systems increases dramatically when 
coupled with speech recognition and synthesis. 
Speech recognition imposes the requirement to 
handle unsegmented input, with multiple word 
candidates present at any point in the input 
stream, (i.e., the input is typically a lattice rather 
than a linear string (Hayes 1986).) 

• Linguistic Generally — Linguistic information (syn- 
tactic, semantic, and lexical) should be expressed in 
elegant, theoretically — motivated formalisms — 
ones that linguists can use to develop and modify 
grammars and knowledge bases rapidly (such as 
LFG). 

• Discourse Phenomena   —   Extra-sentential  phe- 
nomena such as anaphora, ellipsis, metalanguage, 
and speech acts, should be handled within the 
framework, as should inference required to support 
cross-linguistic variation (such as politeness levels, 
inference of missing constituents — e.g., subjects in 
Japanese  — and finer grain lexical selection re- 
quired in some target languages). 

• Multiple Utility - In addition to machine transla- 
tion proper, the methods developed should be appli- 
cable to multi-lingual natural language interfaces 
(to data bases, expert systems, etc.), automated - 
skimming and indexing of texts, and to the develop- 
ment of a computational linguistics workbench, 
where different linguistic theories can be subjected 
to comparative empirical testing across multiple 
languages and linguistic phenomena. 

We have achieved the majority of these objectives 
in an experimental system at CMU's center for ma- 
chine translation, and we are actively working on 
developing the other capabilities. The system, 
consisting of the universal parser and universal 
generator, is an open-architecture approach to 
knowledge-based machine translation, integrating 
multiple off-line knowledge sources into a fast on-line 
run-time system (Tomita, Carbonell 1986). The rest of 
this paper discusses that architecture in some detail. 
We have chosen English and Japanese as our initial 
languages, and simple doctor-patient communications 
as our initial test domain, and have produced real- 
time, semantically-accurate, bi-directional transla- 
tions at the sentential level. 

[2] The Universal Parser: a New Archi- 
tecture for Multi-lingual Parsing 

Multi-lingual systems require parsing multiple 
source languages, and thus a universal parser, which 
can take a language grammar as input (rather than 
building the grammar into the interpreter proper) is 
much preferred for reasons of extensibility and gener- 
ality. When dealing with multiple languages, the lin- 
guistic structure is no longer a universal invariant that 
transfers across all applications (as it was for pure En- 
glish language parsers), but rather is another dimen- 
sion of parameterization and extensibility. However, 
semantic information can remain invariant across lan- 
guages (though, of course, not across domains). There- 
fore, it is crucial to keep semantic knowledge sources 
separate from syntactic ones, so that if new linguistic 
information is added it will apply across all semantic 
domains, and if new semantic information is added it 
will apply to all relevant languages. The question, of 
course, is how to accomplish this factoring, and how to 
accomplish it without making major concessions to 
either run-time efficiency or semantic accuracy. 

The idea of the Universal Parser is depicted in fig- 
ure 3-1. There are two kinds of knowledge sources: one 
containing syntactic grammars for different languages 
and the other containing semantic knowledge bases for 
different domains.      Each of the syntactic grammars is 
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totally independent from any specific domain, and like- 
wise, each of the semantic knowledge bases is totally 
independent from any specific language. Syntactic 
grammars and domain knowledge bases are written in 
a highly abstract, human-readable manner. This or- 
ganization makes them easy to extend or modify, but 
possibly machine-inefficient for a run-time parser. The 
grammar compiler takes one of the syntactic grammars 
(say Language Li) and one of the domain knowledge 
bases (say Domain Dj, along with mapping rules (that 
determine which semantic concept is expressed by 
what word and what structure), and produces one large 
grammar which contains both syntactic and semantic 
information. Such compilation proceeds off-line, pro- 
ducing a compiled grammar that need not be human- 
readable, but must be machine-efficient in terms of on- 
line run-time parsing speed. The pre-compiled gram- 
mar, in essence, consists of the legal subset of the cross 
product of Li and Dj, cross-indexed and optimized for 
efficient  machine  access and computation.    When the 

user inputs sentences in Language Li (and Domain Dj), 
the run-time parser parses the sentences very efficient- 
ly, referencing only the compiled grammar, and pro- 
ducing semantic representations of the sentences. 

[3] The System Architecture 

Figure 3-2 shows the architecture of the universal 
parser. We adopt semantic case frames for domain 
knowledge representation and the functional grammar 
formalism for syntactic grammar representation. The 
run-time grammar produced by the multi-phase com- 
piler is an augmented context-free grammar (ACFG) 
which is further compiled into an augmented LR table 
to be used by a run-time parser based on the Tomita 
parsing algorithm, the fastest CFG algorithm known 
for natural languages in practice (Tomita 1985). These 
components are described in detail in the following 
subsections. 

 
Fig. 3-1  Universal parser concept 
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Fig. 3-2 System architecture 
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(a)   Semantic Frame Representation 

We use FrameKit (Carbonell 1985) as our know- 
ledge representation language to encode domain se- 
mantic knowledge. FrameKit is a compact and fairly 
efficient general-purpose frame-representation lan- 
guage with multiple-inheritance, procedural attach- 
ment, and default semantics. Domain knowledge con- 
sists of a set of frames organized into an inheritance 
hierarchy. Each frame represents a concept such as 
object, event, state, etc. In the domain with appropri- 
ate semantic links to other related frames in the 
hierarchy. Frames encode typing information, func- 
tional dependencies and express compositional con- 
straints used in the parser to block non-productive 
computations. 

Let us consider the domain of simple doctor-pa- 
tient conversations, in particular the patient's initial 
complaint about some ailment. Entities in this domain 
include an event frame *HAVE-A-SYMPTOM and ob- 
ject frames *SYMPTOM, *PAIN, *BODY-PART and 
so on. Example frame definitions are shown in figure 
3-3. Sentences with different surface forms that should 
be recognized as instantiations of these frames include 
the following four examples. 

(*HAVE-A-SYMPTOM 
(is-a (value *SENTENTIAL)) 
(:agent (sem *PATIENT)) 
(:symptom (sem *SYMPTOM)) 
(:associated-action (sem *PATIENT-ACTION)) 
(:when (sem *TIME)) 
(:start (sem *TIME)) 
(:end (sem *TIME)) 
(:freq (sem *FREQUENCY)) 
(:duration (sem *DURATION)) 
) 

(*SYMPTOM 
(is-a (value *NOMINAL)) 
(:severity (sem *SEVERITY)) 
(:location (sem *BODY-PART)) 
(:pain-spec (sem *PAIN-TYPE)) 
(:name (sem *SYMPTOM-NAME)) 
) 

(*PAIN 
(is-a (value *SYMPTOM)) 
) 

Fig. 3-3   Fragment of domain semantics specifica- 
tion 

I have a headache. 
I have a burning pain in the chest. 
I have no pain. 
Do you have a dull ache in your head. 

As a more direct example, the final semantic re- 
presentation of the sentence 
“I have a dull ache in my chest” 
produced by instantiating frames is shown in figure 
3-4. 

(*HAVE-A-SYMPTOM 
(:object (*PAIN 

(:location (*BODY-PART 
             (:name *CHEST)) 

                (:pain-spec (*DULL)))) 
(:agent (*HUMAN 

              (:person 1) 
              (:number SG))) 
) 

Fig. 3-4   Sample semantic representation: 
instantiated entities for 
“I have a dull ache pain in my chest.” 

The result of parsing a sentence (see figure 3-4), 
will be a composition of the instantiated individual 
frames. This knowledge structure may then be given 
to any back-end process, whether it be a language gen- 
erator (to translate into the target language), a para- 
phraser, a data-base query system, or any expert sys- 
tem. 

   (b)   The Functional Grammar Formalism 

We adopt the functional grammar formalism (Kay 
1979) for syntactic knowledge representation of each 
particular language. In essence, this formalism defines 
syntax in a functional manner based on syntactic roles, 
rather than by strict positions of constituents in the 
surface string. The functional framework has clear 
advantages for languages such as Japanese, where 
word order is of much less significance than in English, 
and where case markings take up the role of providing 
many of the surface cues for assigning syntactic and 
semantic roles to noun phrase constituents. Moreover, 
functional structures integrate far more coherently 
into frame based semantic structures. 

Two well-functional grammar formalisms are 
Functional Unification Grammar (UG) (Kay 1984) and 
Lexical Functional Grammar (LFG) (Bresnan 1982). 
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Figure 3-5 is a fragment of LFG written in a notation 
similar to PATR-II (Pereira 1985, Shieber 1985). The 
last rule is generated automatically from the diction- 
ary and general morphological rules. 

There are two main advantages of using the func- 
tional grammar formalism in multi-lingual NLP sys- 
tems over more traditional linguistic theories: 

• A grammar in this formalism can be used for both 
parsing and generation. Thus, we do not need to 
write and maintain separate grammars with 
equivalent coverage for parsing and generation. 

• Functional grammar formalisms such as UG and 
LFG are well-known among computational lin- 
guists, and therefore they need not be trained 
(with some justifiable resistance) to write gram- 
mars in arcane system-specific formalisms. 

The general problem in parsing with functional 
grammars is their implementation inefficiency for any 
practical application. Although much work has been 
done to enhance efficiency (Shieber 1985, Pereira 

(<DEC <==>  (<NP> <VP>) 
      (((xl case) = nom) 
       ((x2 form) =c finite) 
       (*OR* 

            (((x2 :time) = present) 
             ((xl agr) = (x2 agr))) 
            (((x2 :time) = past))) 
           ((x0) = (x2)) 
           ((x0 :mood) = dec) 
           ((x0 subj) = (xl)))) 

(<VP> <==> (<V> <NP>) 
(((x2 case) = acc) 
((x0) = (xl)) 
((x0 obj) = (x2)))) 

(<V> <-—> (feels) 
(((x0 root) = FEEL) 
((x0 form) = finite) 
((x0 :time) = present) 
((x0 agr) = 3sg))) 

Fig. 3-5   Fragment of English LFG in the PATR- 
like notation 

1985), the functional grammar formalisms are con- 
sidered far less efficient than formalisms like ATNs 
(Woods 1970) or (especially) context-free phrase struc- 
ture grammars. Moreover, pure functional grammars 
do not provide the semantic information that is re- 
quired to eliminate nonsensical parses and to con- 
struct the output meaning representation. We address 
both problems by precompiling a syntactic LFG to- 
gether with a separate domain semantics specification 
into an augmented context-free grammar, as described 
in the following section. 

(c)    Grammar Compilation and Efficient On-Line 
   Parsing 

The previous two sections have described how to 
represent domain semantics and language syntax. The 
universal parser unifies both knowledge sources and 
optimizes the grammar for run-time performance in a 
series of off-line precompilation phases. The first 
compiler named syn/sem grammar compiler compiles 
the syntactic and semantic knowledge, as well as mor- 
phological rules and dictionary, into a single large LFG 
called syn/sem grammar. The compiled the syn/sem 
grammar is in exactly the same form as its original 
syntactic grammar except that it acquired many ad- 
ditional semantic equations generated automatically 
by the compiler. The semantic equations check seman- 
tic constraints and build semantic representation 
rather than syntactic f-structures. 

This syn/sem grammar is further compiled into an 
augmented context-free grammar (ACFG) by the second 
compiler named the LFG compiler. This ACFG gram- 
mar is represented by a set of context-free phrase struc- 
ture rules, each of which is augmented with Lisp pro- 
grams for its test and action as in ATNs. All the Lisp 
functions are generated automatically by the compiler 
from the constraint equations in the syn/sem grammar. 
Also note that those Lisp functions can be further com- 
piled down to machine code (by the standard LISP 
compiler). 

Once we have a grammar in this form, we can ap- 
ply efficient context-free parsing algorithms. In fact, 
we subject this grammar to a final round of compila- 
tion,  where  the  context-free  rules  are  compiled  into a 
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large augmented LR table for a generalized shift-re- 
duce parser (Aho 1972) based on the Tomita algorithm 
(Tomita 1985). Whenever the parser reduces con- 
stituents into a higher-level nonterminal using a 
phrase structure rule, the Lisp program associated 
with the rule is simply evaluated. The Lisp program 
handles such tasks as: 

• blocking partial parses that violate syntactic or 
semantic constraints (thus enforcing subject-verb 
agreement, type checking on the arguments to a 
proposed semantic relation, etc.), 

• constructing a semantic representation of the 
input sentence from its constituent parts (an 
instantiated frame or causally related set of 
frames), and 

• passing attribute values among constituents at 
different levels in order to have the information 
that is needed to perform the constraint-checking 
and frame-instantiation tasks. 

The Tomita algorithm has two major advantages 
for real-time parsing over other methods: 

• The algorithm is fast, due to the LR table precom- 
pilation; in several tests it has proven faster than 
any other general context-free parsing algorithms 
presently in practice.  For instance, timings indi- 
cate a 5 to 10 fold speed advantage over Earley’s 
algorithm (Earley 1970) in several experiments 
with different English grammars and various 
sample sets of sentences.2 

• The efficiency of the algorithm is not affected by 
the  size of its  grammar, once the LR parsing table 

2 These timings were measured empirically over 
significant samples for average case performance. All 
context free parsers require 0(n3) in the worst-case 
analysis, but in practice, for the type of grammars 
written for natural language, the Tomita algorithm is 
only slightly worse than linear. 

has been precomputed. This characteristic is 
especially important for our system, because the 
size of the syn/sem grammar may be very large in 
practical applications. Parsing time increases 
with the length and local ambiguity of the input. 
Fortunately, the semantic constraints pre- 
compiled into the grammar prevent ambiguities 
from propagating and thus long sentences may be 
parsed fairly efficiently. 

The algorithm parses a sentence on-line, i.e., 
strictly from left to right and it starts the moment the 
user types the first word, without waiting for comple- 
tion of the sentence. There are two main benefits from 
on-line parsing in interactive applications: 

• The parser’s response time can be reduced signifi- 
cantly.   By the time the user finishes typing an 
entire sentence, most of the input has been al- 
ready processed by the parser, as parsing speed 
surpasses normal typing speed. 

• Any errors, such as mis-typing and ungrammati- 
cal usages, can be detected almost as soon as they 
occur, and the parser can warn the user im- 
mediately, and save much retyping and frustra- 
tion when a severe typographical error at the start 
of a long sentence prevents further interpretation. 

Applications such as real-time parsing, immedi- 
ate translation of telex messages, and eventual 
integration with speech recognition and synthesis sys- 
tems benefit substantially from on-line parsing, which 
is transparent when operating in batch-processing 
mode for long texts. A more detailed discussion of on- 
line parsing can be found in Chapter 7 of Tomita 
(Tomita 1985). 

Because both the syntactic grammar and the 
syn/sem grammar are written in the same PATR-like 
notation, it is possible to test the system with a purely 
syntactic grammar without semantics (as illustrated 
by the dotted line in figure 3-2). Of course, in this con- 
figuration the system produces syntactic parse trees 
only, and cannot resolve ambiguities requiring seman- 
tic constraint unification. 
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(d)   The Universal Generator 

So far, we have mentioned only parsing, i.e. map- 
ping a sentence into a semantic representation. How- 
ever, generating a sentence from a semantic represen- 
tation also requires the very same syntactic knowledge 
and domain semantic knowledge. The same philoso- 
phy of the universal parser applies to sentence genera- 
tion: precompilation of elegant high level knowledge 
structures into low-level machine-efficient integrated 
grammars. We call the corresponding concept the uni- 
versal generator. Both syntactic grammars and domain 
semantics in the universal parser are written in such a 
way that they are independent of their use, and there- 
fore we can use the same knowledge base for both par- 
sing and generation; grammar writers do not have to 
write two separate grammars, one for each task. To 
implement this concept, we require primarily another 
LFG compiler to produce an ACFG for the generator, as 
illustrated in figure 3-2. If all syntactic grammars 
have equivalent coverage, and the parser and the gene- 
rator use the same domain semantics, then it is guar- 
anteed that whenever the parser produces a semantic 
representation, the generator, will be able to render it 
in the target language. This is a good illustration of 
how the universal parser architecture can ensure that 
NLP systems will meet specification criteria. 

[4] Implementation Notes 

The first pilot integrated implementation of the 
universal parser was completed in September 1986 — 
demonstrating the computational feasibility of the 
concept. We are working on a second much more ro- 
bust implementation, that incorporates additional 
capabilities and should yield better performance. The 
discussion here is based on results obtained from the 
first comprehensive implementation. 

We have written a fairly comprehensive English 
syntactic grammar and Japanese syntactic grammar 
in LFG, each containing somewhat under 1,000 rules of 
grammar and regular morphology. The English gram- 
mar handles declaratives, imperatives, yes-no ques- 
tions,  “wh”-questions  and  other  gapped constructions, 

auxiliary complexes and related phenomena. Addi- 
tionally we built grammar rules for specialized con- 
structions such as times and dates. The Japanese 
grammar corresponds roughly in coverage to the En- 
glish grammar, in addition to having far more compre- 
hensive morphological analysis rules in the same nota- 
tion required for Japanese. Although these are per- 
haps the largest LFG-style grammars developed to 
date, they are still being refined and extended to 
achieve full syntactic and morphological coverage. For 
instance, we are currently improving the coverage of 
our grammars with respect to generalized subordinate 
and coordinate structures. 

We have started grammar development for a third 
language, French, to make our system tri-lingual, and 
we expect to start development of similar grammars for 
at least one more language soon (Italian, Spanish, 
German, Arabic, or Russian). Note that with each 
additional grammar the universal parser architecture 
produces bidirectional translators between the new 
language and all previous ones. And we intend to use 
these syntactic grammars for multiple purposes in 
addition to real-time machine translation; natural lan- 
guage interfaces, text processing, speech recognition, 
etc. 

We also developed a non-trivial domain semantic 
knowledge in FrameKit for certain classes of doctor- 
patient conversations, plus mapping rules and a cor- 
responding lexicon including over 500 disease names. 
This domain was chosen as our test bed for developing 
the universal parser and generator architectures, and 
we are currently starting on a second domain. In the 
future we intend to tackle larger scale domains and 
complete terminological dictionaries. 

All modules are programmed in Common Lisp and 
running on Symbolics 3600s, HP bobcats, and IBM RTs 
− the entire system should be portable to any other 
workstations running Common Lisp (Explorer, Micro 
Vax, Sun, etc.). The (source) Japanese grammar is 
about 90K bytes and the English grammar requires 
about 75K bytes at present. It takes a symbolics about 
an hour to compile grammars, mapping rules and 
domain  knowledge   into  a  fast  run-time  grammar  (an 
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LR table and all the augmentation Lisp functions), 
producing a run-time grammar of about 1 Megabyte. 

Given a compiled grammar, the run-time parser 
functions in a character-based mode, rather than word- 
based, making it possible to parse unsegmented sen- 
tences (sentences without any blank spaces between 
words, as typical in Japanese, and as required for any 
spoken language). The parser is quite fast; with the 1 
Megabyte LR table (about 2000+ states), it takes on 
average only 20 to 30 milliseconds per character on a 
Symbolics 3600. This speed does not seem to be af- 
fected by the length of the sentence very much; 80 char- 
acter long unsegmented Japanese sentences are still 
parsed in about 25 milliseconds per character. Thus, 
parse times of 1 to 3 seconds per sentence are typical.3 

Moreover, for fully segmented languages (such as 
English) where words rather than characters are the 
atomic units, parse times should be faster still. (We 
currently input English in character-based mode). 
Recalling the on-line parsing capability, where the 
system parses input as the user types interactively, all 
parsing appears instantaneous to the user. 

The compiled run-time grammar for the generator 
requires about 700K bytes, although it could be repre- 
sented in a more compact form. It takes a symbolics 
about a half hour to compile a run-time grammar for 
generator. The run-time generator takes about 1 to 3 
seconds to generate a sentence from a semantic repre- 
sentation produced by the parser. The Japanese gen- 
erator is capable of printing out Japanese characters on 
the screen. The Japanese parser, on the other hand, 
handles only a Roman-alphabet version of Japanese, 
for the time being. We are developing, jointly with 
Intelligent Technology Incorporation, a fully auto- 
matic Roman-alphabet to Japanese Kana-Kanji char- 
acter converter based on syntactic and semantic know- 
ledge (in the compiled grammar) in order to generate 

3 Recall that by “parsing” we include full seman- 
tic interpretation and structural disambiguation, as 
well as syntactic analysis. 

full Kanji characters unambiguously from romanized 
syllabic input typed in ordinary keyboards. 

[5] Discussion and Future Work 

Reiterating our results thus far, we have designed 
and tested the universal parser (and universal gen- 
erator) architecture for real-time knowledge-based 
machine translation across multiple languages and 
domains. Tests thus far have proven encouraging with 
respect to the generality of the approach, and its ability 
through pre-compilation to produce real-time trans- 
lation systems requiring no post-editing. Thus inter- 
active, multilingual, semantically-accurate transla- 
tion has been demonstrated feasible. With respect to 
syntactic coverage, we have developed comprehensive 
English and Japanese LFG grammars, handling the 
bulk of all desired syntactic and morphological con- 
structions. These will be extended, but we have 
already written well over half of the total expected 
number of grammar rules for English and Japanese. 

However, although we have every reason to be- 
lieve in the extensibility of the approach to handle 
multiple languages, and to handle much larger do- 
mains and lexicons, we have yet to demonstrate scaling 
up beyond two languages and beyond a thousand or so 
word lexicon. This is very much work in progress. In 
order to facilitate the scaling up process, we are devel- 
oping dictionary, grammar and knowledge-base tools 
to facilitate development and maintenance, and to 
ensure a significant degree of internal consistency and 
uniformity. Additionally, we are re-implementing and 
extending parts of our universal parser architecture in 
order to make it sufficiently robust to distribute to 
other research teams, and eventually to end users. 

The two initial design objectives we have not yet 
addressed are handling discourse phenomena and inte- 
gration with speech recognition and synthesis. Our 
main research activity at present lies in the area of 
discourse, as our initial system operates only on a sen- 
tential basis. First, we intend to borrow the successful 
case-frame ellipsis resolution methods developed re- 
cently   in  XCALIBUR   (Carbonell  1985),   Language 
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Craft (Carnegie 1985), and PSLI-3 (Frederking 1987), 
and integrate them into the universal parser architec- 
ture. These methods rely primarily on case-frame 
semantics and on functional properties of the syntax. 
Second, we expect to work on extending and applying 
the embryonic work on practical anaphora resolution 
in XCALIBUR and work on handling metalinguistic 
utterances (Carbonell 1982). Third, we will focus 
attention on default inference processes to fill in 
implicit information lacking in the source text, but re- 
quired  for  accurate translation.   Such  information in- 

6.   References 

Aho, A. V. and Ullman, J. D. : The Theory of Parsing, 
Translation and Compiling. Prentice-Hall, Englewood 
Cliffs, N.J., 1972. 

Boitet, C. : Problèmes actuels en TA: Un essai de 
réponse. In Proc. 6th International Conference on 
Computational Linguistics. Ottawa, Canada, 1976. 

Bresnan, J. and Kaplan, R. : Lexical-Functional 
Grammar: A Formal System for Grammatical Repre- 
sentation. The Mental Representation of Grammatical 
Relations. MIT Press, Cambridge, Massachusetts, 
1982,pages 173-281 

Carbonell, J. G., Cullingford, R. E. and Gershman A. 
G.: Steps Towards Knowledge-Based Machine Trans- 
lation. IEEE Transactions on Pattern Analysis and 
Machine Intelligence PAMI-3(4), July, 1981 

Carbonell, J. G. and Joseph, R. : The FrameKit+ 
Reference Manual.1985. CMU Computer Science 
Department internal paper. 

Carbonell, J. G. and Tomita, M. : Knowledge-Based 
Machine Translation, The CMU Approach. In 
Nirenburg, S. (editor), Machine Translation: 
Theoretical and Methodological Issues. Cambridge, U. 
Press, 1986. 

cludes subjects in Japanese, which are optional when 
inferable from context, but which must be stated ex- 
plicitly in translating to English. At present we utilize 
a handful of ad-hoc rules to supply default subjects, 
levels of politeness, etc., but a more principled and sys- 
tematic approach is required. Fortunately, the uni- 
versal parser architecture provides an ideal computa- 
tional framework into which new knowledge sources 
may be introduced. And, the knowledge-based transla- 
tion task provides copious and severe empirical tests 
for our theoretically-inspired ideas and methods. 

Carbonell, J. G. Boggs, W. M., Mauldin, M. L. and 
Anick, P. G.: The XCALIBUR Project, A Natural Lan- 
guage Interface to Expert Systems and Data Bases. In 
S. Andriole (editor), Applications in Artificial 
Intelligence. Petrocelli Books Inc., 1985. 

Carbonell, J. G.: Meta-Language Utterances in 
Purposive Discourse. Technical Report, Carnegie- 
Mellon University, Computer Science Department, 
1982. 

Earley J.: An Efficient Context-free Parsing Algo- 
rithm. Communication of ACM 6(8): 94-102, Februa- 
ry, 1970 

Frederking, R. E : Natural Language Dialog in an 
Integrated Computational Model. PhD thesis, 
Carnegie-Mellon University, Computer Science 
Department, 1987. 

Hayes, P. J., Hauptmann, A. G., Carbonell, J. G. and 
Tomita, M. : Parsing Spoken Language: A Semantic 
Caseframe Approach. In 11th International Conference 
on Computational Linguistics (COLING86). Bonn, 
West Germany, August, 1986. 

Kay, M. : Functional Grammar. In Fifth Annual 
Meeting of the Berkeley Linguistic-Society, pages pp. 
142-158. Berkeley Linguistic Society, MIT Press, 
Berkeley, California, February, 1979. 

-81- 



Kay, M. : Functional Unification Grammar: A 
Formalism for Machine Translation. In 10th Interna- 
tional Conference on Computational Linguistics, pages 
75-78. Stanford, July, 1984. 

Kittredge, R., Bourbeau, L. and Isabelle, P.: Design and 
Implementation of an English-French Transfer Gram- 
mar. In Proceedings of the 6th International Conference 
on Computational Linguistics. Ottawa, Canada, 1976. 

Carnegie Group Inc.: The Language Craft Reference 
Manual. Pittsburgh, PA, 1985. 

Lytinen, S. : The Organization of Knowledge in a 
Multi-lingual, Integrated Parser. PhD thesis, Yale 
University, 1984. 

Nagao, M., Nishida, T. and Tsujii, J. : Dealing with 
Incompleteness of Linguistic Knowledge in Language 
Translation - Transfer and Generation Stage of the MU 
Machine Translation Project. In Proceedings of the 
10th International Conference on Computational Lin- 
guistics. Stanford, CA, 1984. 

Nirenburg, S., Raskin, V and Tucker, A. : On Know- 
ledge-based Machine Translation. In Proceeding of the 
11th International Conference on Computational Lin- 
guistics, pages 39-51. COLING86, Bonn, West 
Germany, August, 1986. 

Pereira, F. C. N.: A Structure-Sharing Representation 
for Unification-Based Grammar Formalisms. In 23rd 
Annual Meeting of the Association for Computational 
Linguistics, pages 137-144. Chicago, July, 1985. 

Roesner, D. : The generation system of the SEMSYn 
project: Towards a task-independent generator for 
German. In 1st European Workshop on Language 
Generation. Paris, January, 1987. 

Shieber, S. M. : Using Restriction to Extend Parsing 
Algorithms for Complex-Feature-Based Formalisms. 
In 23rd Annual Meeting of the Association for Com- 
putational Linguistics, pages 145-152. Chicago, July, 
1985 

Slocum,J.: Machine Translation: its History, Current 
Status, and Future Prospects. In Proceedings of the 
10th International Conference on Computational Lin- 
guistics. Stanford, CA, 1984. 

Tomita, M. : Efficient Parsing for Natural Language: 
A Fast algorithm for Practical Systems. Kluwer 
Academic Publishers, Boston, MA, 1985. 

Tomita, M. : An Efficient Context-free Parsing 
Algorithm for Natural Languages. In 9th International 
Joint Conference on Artificial Intelligence (IJCAI85). 
August, 1985. 

Tomita, M. and Carbonell, J. G. : Another Stride 
Towards Knowledge Based Machine Translation. In 
11th International Conference on Computational 
Linguistics (COLING86). Bonn, West Germany, 
August, 1986. 

Woods, W. A. : Transition Network Grammars for 
Natural Language Analysis. CACM 13: pp. 591-606, 
1970. 

-82- 
 


