
[From: Georgetown University Round Table on Languages and Linguistics 1989, James E.Alatis, ed.]

Using unification grammars
for analysis and synthesis

Margaret King
ISSCO and ETI
Université de Génève

Foreword. Despite the single authorship of the paper, the work reported
here is that of quite a large group of people; since the author's role was
relatively limited, it seems only appropriate to open this paper with a list of
them. Rod Johnson was primarily responsible for the overall shape of the
system, and he, Mike Rosner, Dominique Petitpierre and John Carroll are
responsible for the development of the software tools described. The linguistic
descriptions of German and of French are the work of Susan Warwick, C.J.
Rupp, Graham Russell, and Thérèse Torris. Supplementary work on
dictionary coding for German, French, and Italian has been contributed by
Riccardo Boschetti, Kirsten Falkedal, Nora Nadjarian, Pascale Dhoop, Sandra
Manzi and Lucia Tovena.

Despite the impression of disparate areas of responsibility suggested by
the above, it should be emphasized that one of the main principles underlying
this work is that, at the design level, there should be a strong mutual influence
between software specification and the expressive needs of linguists. Hence,
we have adopted a philosophy of rapid prototyping whereby each version of
the system is prototyped, is used in linguistic work, and the experience thus
gained influences the following version.

This does not mean, of course, that the linguist should have to worry
about computational considerations while he is actually constructing a
linguistic description: on the contrary, we take as a further principle that the
language used for writing linguistic descriptions should be natural for use by
a linguist, that is, it should resemble closely the kinds of formalism with which
he is familiar from work in theoretical linguistics, and that he should not have
to concern himself with how the software of the system applies the linguistic
description in order to fulfill a particular task. In particular, he should not
have to concern himself with procedural questions, such as the order in which
rules are applied or in which computational procedures are executed.

Some background. Before going into any more detail about the prototype
we are currently working on at ISSCO, it will be useful to explain a little
about the background of the work. Some eighteen months ago, in the autumn
of 1987, a Swiss association (Swisstra) concerned with establishing an expertise
in machine translation within Switzerland, gave us a mandate to investigate
methodologies for the evaluation of machine translation systems. Influenced
partly by work done at Hewlett Packard on establishing test suites for natural

Margaret King / 365

language analyzers working on English, partly by techniques used in software
engineering for proving the correctness of compilers, we set out to investigate
the feasibility of setting up benchmark tests to be used in determining the
coverage of a machine translation system. In order to experiment with tests
of this type, we needed access to a machine translation system whose
functioning we understood well; on the grounds that those who construct
something best understand how what has been constructed works, we then
decided to construct a small research prototype ourselves.

Since the prototype (known by the rather inelegant name of UD) is part
of the work on evaluation, and is not intended as a commercial prototype, we
have been able to allow ourselves to make use of relatively untried technology.
This primarily manifests itself through the use of unification grammars both
for analysis and for synthesis, in an attempt to ensure that the same linguistic
description can be used both for analysis and for synthesis, in the influence of
recent work in theoretical linguistics on the way the linguistic descriptions are
written (much more weight is given to the lexicon than is traditionally the case
in machine translation systems, for example), and in the reflection of work in
situation semantics to be found in some of the linguistic representations. It
would be impossible to discuss all of this here, where I shall mostly
concentrate on the language used for linguistic descriptions. The interested
reader is referred to Johnson and Rosner 1989, Rupp 1989, and Carroll et al.
forthcoming, for discussion of some of the other questions.

Unification-based approaches to grammar. A basic property of unifica-
tion-based formalisms is the use of feature structures as their informational
domain. Different formalisms differ in the way feature structures are defined
and represented: cf., for example, the 'terms' of DCGs, the directed acyclic
graphs of PATR-II, GPSG's feature bundles, FUG's 'functional structures',
and LFG's 'f-structures'. In UD, a feature structure is a set of attribute-value
pairs, where a value may be atomic, as in:

| number = singular |

may be a path, as in

| agreement: number = singular |

or may be complex. A complex value may consist of a set of attributes and
their associated values, as in:

 | agreement: number = singular |
 | person = 3 |

or may be a reentrant feature structure, i.e. a structure where two or more
attributes share the same value, as in:

| head: category = vp |
 | agreement: <#1> | number = singular | |
 | | person = 3 | |
 | |
 | subject: | category = np | |

366 / Georgetown University Round Table on Languages and
Linguistics 1989

| | agreement => #1 | |

Feature structures are combined by unification. The definition of unification
used by UD is that two feature structures may be unified providing that they
are not mutually inconsistent, the result being a third feature structure which
contains all the information contained in each of the two original feature
structures. Thus, given three feature structures:

A = | category = adjective |
| agreement: case = dative |

B = | category = noun |
 | agreement: case = dative |
 | number = singular |
 | gender = masculine |

C = | agreement: case = dative |
 | number = singular |
 | gender = masculine |

then

A |_| C = | category = adjective |
 | agreement: case = dative |

 | number = singular |
 | gender = masculine |

B |_| C = | category = noun |
 | agreement: case = dative |

 | number = singular |
 | gender = masculine |

A |_| B = failure

The grammar rules of UD take the form of classical phrase-structure rules
annotated by a set of equations which express the constraints to be satisfied
by the feature structures referred to in the two sides of the rule. Thus, the
following is a conventional s - > np vp rule, which additionally says that the
np should be interpreted as the subject of the vp, and that there is agreement
between the subject and the verb:

s -> np vp

< s head > = < vp head >
< s head subject > = np head >
< np agreement > = < vp agreement >

The appendix contains a complete grammar for a fragment of English,
adapted by Johnson (1988) from an example given in Shieber (1986).

Margaret King / 367

Special characteristics of UD. So far, what has been described is a fairly
conventional unification-based grammar. UD offers a number of extensions,
including the use of lists and Prolog-like terms as data types. But perhaps the
most interesting extension is the possibility to use 'relational abstractions'.
Essentially, a relational abstraction allows the linguist to express a
generalization once, and to refer to it as often as he wishes in the constraint
equations. (A simple concrete example would be to express agreement
constraints, instead of doing so explicitly as in the rule given above.) The
power of this facility is most obvious, perhaps, at the level of the lexicon,
where it allows the work of defining lexical information to be separated from
the laborious work of coding the actual entries: the linguist constructing the
grammar defines the abstractions, the dictionary coder needs only to know the
name of the abstraction and how to use it. Thus, a lexical entry for the
German verb sehen will appear as:

sehen * v/adj

{ - prefix } !Pref (none)
!Nonrefl !Loctype ([])
!Subcat (np (nom), np (acc), vp (bse), sor)

where all the elements preceded by ! refer to relational abstractions. The
same entry, when fully expanded, gives a great deal of detailed linguistic
information:

cat = v
form = sehen
gin = #57
gout = #57
head: morph: sep = none

sem: desc: arg: 1 = #52
 2 = #41
loc: cond = [overlap (<31> type = loc

val = loc.12
<34> type = loc

val = loc.11)
overlap (#31

 <28> type = loc)]
 ind => #34
 pol = 1
 reI = sehen
 disc: loc: ind => #28
 ref: loc: ind => #31
syn: infl: agr: <19> num = pl

 pers = 1/3
 tns: fin = pres
 fut = no
 perf = no
mood: = subjunc
perf-aux = none
pref = none
refI = none
subj: <45> sem: desc -> #52

syn: infl: agr => #19

368 / Georgetown University Round Table on Languages and Linguistics 1989

 case = nom
 nform = norm
 vform = fin
 voice = active
 vtype = norm
null = no
subcat = [<22> cat = np

 head => #45
 subcat = []
 <23> cat = np

head: sem: desc -> #41
syn: infl: case = acc
 nform = norm]

More detail about the dictionaries used with UD can be found in Warwick
(1986).

Current status. At the moment, substantial linguistic descriptions for
German and French have been constructed and tested for analysis. (The
German lexicon, which is the larger, contains around 2,400 items, of which
slightly less than half are verb entries). Our main current preoccupation is
synthesis: a first version of a synthesizer which uses the same linguistic
descriptions as as analysis has recently been completed, and is now being used
to investigate what constraints are necessary for synthesis to run satisfactorily.
Transfer will be added, we hope, later this year, in the light of extensive
experimentation with the parallel linguistic descriptions.

Appendix: A simple UD grammar.

##Taken from Johnson (1988), adapted from Shieber (1988).

Declare

Category = cat

Grammar

Rule sentence formation

$ -> NP VP
< * cat> = s
< NP cat> = np
< VP cat> = vp
< * head form> = finite
< VP subcat> = [NP]
< * head> = < VP head>

Rule trivial verb phrase

VP -> V

Margaret King / 369

< VP cat> = vp
< V cat> = v
< VP subcat> = < V subcat>
< VP head> = < V head>

Rule complements

VP -> Fun Arg
< VP cat> = < Fun cat> = vp
< Arg cat> = np/vp
< Fun subcat> = [Arg | < Vp subcat>]
< VP head> = < Fun head>

Lexicon root

sleeps v < * head form> = finite
< * subcat> = [NP]
< NP cat> = np
!Agree (NP, 3, singular)
< * head sem pred> = sleep
!Arg (1, NP)

sleep v < * head form> = finite
< * subcat> = [NP]
< NP cat> = np
!Agree (NP, _, plural)
< * head sem pred> = sleep
!Arg (1, NP)

sleep v < * head form> = nonfinite
< * subcat> = [NP]
< NP cat> = np
< * head sem pred> = sleep
!Arg (1, NP)

storms v < * head form> = finite
< * subcat > = [Obj, Subj]
< Obj cat> = < Subj cat> = np
!Agree (Subj, 3, singular)
< * head sem pred> = storm
!Arg (1, Subj)
!Arg (2, Obj)

storm v < * head form> = finite
< * subcat > = [Obj, Subj]
< Obj cat> = < Subj cat> = np
!Agree (Subj, _, plural)
< * head sem pred> = storm
!Arg (1, Subj)
!Arg (2, Obj)

storm v < * head form> = nonfinite
< * subcat > = [Obj, Subj]
< Obj cat> = < Subj cat> = np
< * head sem pred> = storm

370 / Georgetown University Round Table on Languages and Linguistics 1989

!Arg (1, Subj)
!Arg (2, Obj)

Stormed v < * head form> = pastpart
< * subcat > = [Obj, Subj]
< Obj cat> = < Subj cat> = np
< * head sem pred> = storm
!Arg (1. Subj)
!Arg (2, Obj)

has v < * head form> = finite
< * subcat> = [Vcomp, Subj]
< Vcomp cat> = vp
< Vcomp head form> = pastpart
< Vcomp subcat> = [Subj]
< Subj cat> = np
!Agree (Subj, 3, singular)
< * head sem pred> = perfective
!Arg (1, Vcomp)

have v < * head form> = finite
< * subcat> = [Vcomp, Subj]
< Vcomp cat> = vp
< Vcomp head form> = pastpart
< Vcomp subcat> = [Subj]
< Subj cat> = np
!Agree (Subj, _, plural)
< * head sem pred> = perfective
!Arg (1, Vcomp)

persuades v < * head form> = finite
< * subcat> = [Obj, Vcomp, Subj]
< Obj cat> = < Subj cat> = np
< Vcomp cat> = vp
< Vcomp head form> = infinitive
< Vcomp subcat> = [Obj]
!Agree (Subj, 3, singular)
< * head sem pred> = persuade
!Arg (1, Subj)
!Arg (2, Obj)
!Arg (3, Vcomp)

to v < * head form> = infinitive
< * subcat> = [VP, NP]
< NP cat> = np
< VP cat> = vp
< VP head form> = nonfinite
< VP subcat > = [NP]
< * head sem> = < VP head sem>

arthur np !Agree (*, 3, singular)
< * head sem> = arthur

cornwall np !Agree (*, 3, singular)
< * head sem> = Cornwall

knights np !Agree (*, 3, plural)

Margaret King / 371

< * head sem> = knights

Define relations

Agree (X,
< X head agreement person >,
< X head agreement number>)

Arg (N, X) < * head sem arg N > = < X head sem >

Lookup root < * cat > = v/np

Restrict Cat Form

< * cat> = Cat
< * head form> = Form

References

Carroll, J., G.J. Russell, and S. Warwick. (forthcoming) Adapting unification grammars for
generation. ISSCO WP56.

Johnson, R. 1988. Le traitement automatique de la langue. In: Workshop on Artificial
Intelligence and Robotics, Sion.

Johnson, R., and M. Rosner. 1989. A rich environment for experimentation with unification
grammars. ACL-Europe.

Rupp, C. J. 1989. Situation semantics and machine translation. ACL-Europe.
Shieber, S. M. 1986. An introduction to unification based approaches to grammar. Chicago:

University of Chicago Press.
Warwick, S. 1986. Building up a lexicon for NLP applications. LDV-Forum, 5.4, Sept.

