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Introduction 
A formalism is a set of notation with 

well-defined semantics (namely for the 
interpretation of the symbols used and 
their manipulation), by means of which 
one formally expresses certain domain 
knowledge, which is to be utilised for 
specific purposes. In this paper, we are 
interested in formalisms which are being 
used or have applications in the domain 
of machine translation (MT). These can 
range from specialised languages for 
linguistic programming (SLLPs) in NIT, 
like ROBRA in the ARIANE system 
and GRADE in the Mu-system, to 
linguistic formalisms like those of the 
Government and Binding theory and the 
Lexical Functional Grammar theory. Our 
interest lies mainly in their role in the 
domain in terms of the ease in 
expressing linguistic knowledge required 
for MT, as well as the ease of 
implementation in NIT systems. 

We begin by discussing formalisms 
within the general context of MT, clearly 
separating the role of linguistic 
formalisms on one end, which are more 
apt for expressing linguistic knowledge, 
and on the other, the SLLPS which are 
specifically designed for MT systems. 
We argue for another type of formalism, 
the general formalism, to bridge the gap 
between the two. Next we discuss the 
role of formalisms in analysis and in 
generation, and then more specific to 
NIT, in synthesis. We sum up with a 
mention on a relevant part of our current 
work, the building of a compiler that 
generates a synthesis program in SLLP 
from a set of specifications written in a 
general formalism. 

On formalisms in MT 
The field of computational linguistics 

has seen many formalisms been 
introduced, studied and compared with 
other formalisms. Some get established 
and have been or are still being widely 
used, some get modified to suit newer 
needs or to be used for other purposes, 
while some simply die away. Those that 
we are interested in are formalisms 
which play some role in MT. 

The MT literature has cited formalisms 
like the formalisms for the government 
and Binding Theory (GB) [Chomsky 
81], the Lexical Functional Grammar 
(LFG) [Bresnan & Kaplan 82], the 
Generalized Phrase structure Grammar 
(GPSG) [Gazdar & Pullum 82] (here 
we refer to the formalisms provided by 
these linguistic theories and not the 
linguistic content), Context Free 
Grammar (CFG), Transformational 
Grammar (TG), Augmented Transition 
Networks (ATN) [Woods 70], ROBRA 
[Boitet 79], grade [Nagao et al. 80], 
metal [Slocum 84], Q-systems 
[Colmerauer 71], Functional Unification 
Grammar (FUG) [Kay 82], Static 
Grammar (SG) [Vauquois & Chappuy 
85], String-Tree Correspondence 
Grammar (STCG) [Zaharin 87a], 
Definite Clause Grammar (DCG) 
[Warren & Pereira 80], Tree Adjoining 
Grammar (TAG) [Joshi et al. 75], etc. 
To put in perspective the discussions to 
follow, we present in Figure 1 a rather 
naive but adequate view of the role of 
certain formalisms in biT. 
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Fig. 1 - The role of formalisms in MT. 

GB, LFG and GPSG formalisms are 
classed as linguistic formalisms as they 
have been designed purely for linguistic 
work, clearly reflecting the hypotheses 
of the linguistic theories they are 
associated to. Although there have been 
'LFG-based' and 'GPSG- inspired' MT 
systems, a LFG or GPSG system for 
MT has yet to exist. Whether or not 
linguistic formalisms are suitable for MT 
(one argues that linguistic formalisms 
tend to lean towards generative 
processes as opposed to analysis, the 
latter being considered very important to 
MT) is not a major concern to linguists. 
Indeed it should not be, as one tends to 
get the general feeling that formal 
linguistics and MT are separate 
problems, although tapping from the 
same source. If this is indeed true, there 
is no reason why one should try to 
change linguistic formalisms into a form 
more suitable for MT. 

Linguistics has been, is still, and will 
continually be used in MT. What is 
currently been done is that linguistic 
knowledge, preferably expressed in 
formal terms using a linguistic 
formalism, is coded into a MT system by 
means of the SLLPs. SLLPs include 
formalisms like ATN, ROBRA, GRADE, 
METAL and Q- systems. Tree 

structures are the main type of data 
structure manipulated in MT systems, 
and the SLLPs are mainly tree 
transducers, string-tree transducers 
and/or tree-string transducers. Such 
mechanisms are arguably very suitable 
for defining the analysis process 
(parsing a text to some representation 
of its meaning) and the synthesis 
process (generating a text form a given 
representation of meaning). SLLPs 
which work on feature structures have 
also been introduced, but these also 
work on the same principle. 

Despite the fact that SLLPs are 
specifically designed for programming 
linguistic data, and that most of them 
separate the static linguistic data 
(linguistic rules) from the algorithmic 
data (the control structure), the problem 
is that they are still basically 
programming languages. Indeed, during 
the period of their inception, they may 
have been thought of as the MT's 
answer to a linguistic formalism, but it is 
no longer true these days. To begin with, 
most if not all SLLPs are procedural in 
nature, which means that a description 
can be read in only one direction (not 
bidirectional), either for analysis or for 
synthesis. Consequently, for every 
natural language treated in a MT 
system, two sets of data will have to be 
written: one for analysis and one for 
synthesis. Furthermore, also due to this 
procedural nature, ling.uistic rules in 
SLLPs are usually written with some 
algorithm in mind. Hence, although 
separated from the algorithmic 
component, these linguistic rules are not 
totally as declarative as one would have 
hoped (not declarative). For these 
reasons, as well as for the fact that 
SLLPs are very system oriented, data 
written in SLLPs are rarely retrievable 
for use in other systems (not portable). 

It was due to these shortcomings that 
other formalisms for MT which are 
bidirectional, declarative and not totally 
system oriented have been designed. 
Such formalisms include the SG and its 
more formal version, the STCG. One 
first notes that these formalisms are not 
designed to replace linguistic 
formalisms. There may be some 
linguistic justifications (e.g. in terms of 
the linguistic model [Zaharin 87b], but 
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they are designed principally for bridging 
the gap between linguistic formalisms 
and SLLPs. Such formalisms are 
designed to cater for MT problems, and 
hence may not directly reflect linguistic 
hypotheses but simply have the 
possibility to express them in a manner 
more easibly interl?.retable for MT. They 
are declarative m nature and also 
bidirectional. Only one set of data is 
required to describe both analysis and 
generation. They are also general in 
nature, meaning that it is possible to 
express different linguistic theories 
using these formalisms, and also that it 
is possible to implement these 
formalisms using various SLLPs. One 
can view such formalisms as 
specifications for writing SLLPs, as 
illustrated in Figure 2 (akin to 
specifications used in software 
engineering). 

I linguistic knowledge 
(in linguistic formalisms) 

I specifications 
(in general formalisms) 

% 
implementation 

(in SLLPs) 

Fig. 2 General formalisms as 
specifications 

Other formalisms that can be 
considered to be within this class of 
general formalisms are TAG, FUG, and 
perhaps DCG. With such formalisms, 
one may express knowledge from 
various linguistic theories (possibly a 
mixture), and that the same set of 
represented knowledge may be 
implemented for both analysis and 
synthesis using various SLLPs in 
different MT systems (as illustrated in 
Figure 3). 

D I LF° I l°PS°l . . . . .  

l 
ROBRA 

in 
ARIANE 

general 
formalisms 

GRADE 
inMu- 

system 

ATLAS 

Fig. 3 - the central role of general 
formalisms 

On specifications for analysis 
and synthesis 

The two main processes in MT are 
analysis and synthesis (a third process 
called transfer is present if the approach 
is not interlingual). Analysis is the 
process of obtaining some 
representation(s) of meaning (adequate 
for translation) from a given text, while 
synthesis is the reverse process of 
obtaining a text from a given 
representation of meaning 1. Analysis 
and synthesis can be considered to be 
two different ways of interpreting a 
single concept, this concept being a 
correspondence between the set of all 
possible texts and the set of all possible 
representations of meaning in a 
language. This correspondence is 
basically made up of a set of texts (T), a 
set of representations (S), and a relation 
between the two R(T,S), defined in 
terms of relations between elements of 
T and elements of S. We illustrate this 
in Figure 4. 
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R ( T , S )  = 

{R(T ,S )  : t ~ T,  s ~ S} 

Fig. 4 - The correspondence between 
texts and their representations 

Supposing that a correspondence as 
given in Figure 4 has been defined, 
analysis is then the process of 
interpreting the relation R(T,S) in such a 
way that given a text t, its 
corresponding representation s is 
obtained. Conversely, synthesis is the 
process of interpreting R(T,S) in such a 
way that given s, t is obtained. Clearly, 
a general formalism to be used as 
specifications must be capable of 
defining the correspondence in Figure 4. 

Defining the correspondence may entail 
defining just one, two, or all three 
components of Figure 4 depending on 
the complexity of the results required. 
When one works on a natural language, 
one cannot hope to define the set of 
texts T (unless it is a very restricted 
sublanguage). Instead, one would 
attempt to define it by means of the 
definition of the other two components. 
As an example, the CFG formalism 
defines only the component R(T,S) by 
means of context-free rules. This 
component generates the set of texts (t) 
as well as all possible representations 
(S) given by the parse trees. The 
formalism of GB defines the relation 
R(T,S) by means of context-free rules 
(constrained by the Xbar-theory), move- 
o~ rules (constrained by bounding 
theory), the phonetic interpretative 
component and the logical interpretative 
component. This relation generates the 

set of all texts (T) and all candidate 
representations (S) (logical structures). 
The set S is however further defined 
(constrained) by the binding theory, 0- 
theory and the empty category principle. 
As a third example, the STCG formalism 
defines R(T,S) by means of its rules, 
which in turn generates S and T. The set 
S is however further defined by means of 
constraints on the writing of the STCG 
rules. 

Having set the specifications for 
analysis and synthesis by means of a 
general formalism, one can then proceed 
to implement the analysis and 
synthesis. Ideally, one should have an 
interpreter for the formalism that works 
both ways. However, an interpreter 
alone is not enough to complete a MT 
system : one has to consider other 
components like a morphological 
analyser, a morphological generator, 
monolingual dictionaries, and for non- 
interlingual systems, a transfer phase 
and bilingual dictionaries. In fact, such 
an interpreter alone will not complete 
the analysis nor the synthesis, a point 
which shall be discussed as of the next 
paragraph. For these reasons, the 
specifications given by the general 
formalism are usually implemented using 
available integrated systems, and hence 
in their SLLPs. 

For analysis, apart from the linguistic 
rules given by the general formalism, 
there is the algorithmic component to be 
added. This is the control structure that 
decides on the sequence of application of 
rules. A general formalism does not, and 
should not, include the algorithmic 
component in its description. The 
description should be static. There is 
also the problem of lexical and structural 
ambiguities, which a general formalism 
does not, and should not, take into 
consideration either. A fully descriptive 
and modular specification for analysis 
should have separate components for 
linguistic rules (given by the formalism), 
algorithmic structure, and 
disambiguation rules. Apart from being 
theoretically attractive, such modularity 
leads to easier maintenance (this 
discussion is taken further in [Zaharin 
88]); but most important is the fact the 
same linguistic rules given by the 

- 322 - 



formalism will serve as specifications for 
synthesis, whereas the algorithmic 
component and disambiguation rules will 
not. 

In general, synthesis in MT lacks a 
proper definition, in particular for transfer 
systems 2. It is for this reason (and other 
reasons similar to those for analysis) 
That the specifications for synthesis 
given by the general formalism play a 
major role but do not suffice for the 
whole synthesis process. To clarify this 
point, let us look at the classical global 
picture for MT in second generation 
s.ystems given in Figure 5. The figure 
gives the possible levels for transfer 
from the word level up to interlingua, the 
higher one goes the deeper the 
meaning. 

Inter]ingua 

Relations 

Logical Relatk 
mum 

Syntactic Function 

Syntagmatic Class 
I b  

Lexical Units 

Lemmas 

Words 

Source Target 
Text Text 

Fig. 5 - The levels of transfer in second 
generation MT systems 

Most current systems attempt to go as 
high as the level of semantic relations 
(eg. AGENT, PATIENT, 
INSTRUMENT) before embarking on 
the transfer. Most systems also retain 
some lower level information (eg. logical 
relations, syntactic functions and 
syntagmatic classes) as the analysis 

goes deeper, and the information gets 
mapped to their equivalents in the target 
language. The reason for this is that 
certain lower level information may be 
needed to help choose the target text to 
be generated amongst the many 
possibilities that can be generated from 
a given target representation; the other 
reason is for cases that fail to attain a 
complete analysis (hence fail-soft 
measures). 

The consequence to the above is that 
the output of the transfer, and hence the 
input to synthesis, may contain a 
mixture of the information. Some of this 
information are pertinent, namely the 
information associated to the level of 
transfer (in this case the semantic 
relations, and to a large extent the 
logical relations), while the rest are 
indicative. The latter can be considered 
as heuristics that helps the choice of the 
target text as described above. 
Whatever the level of transfer chosen, 
there is certainly a difference between 
the input to synthesis and the 
representative structure described in the 
set S in Figure 4, the latter being 
precisely the representative structure 
specified in the general formalism. In 
consequence, if the synthesis is to be 
implemented true to the specifications 
given by the general formalism (which 
have also served as the specifications 
for analysis), the synthesis phase has to 
be split into two subphases: the first 
phase has the role of transforming the 
input into a structure conforming to the 
one specified by the formalism (let us 
call this subphase SYN1), and the other 
does exactly as required by the general 
formalism, ie. generate the required text 
from the given structure (call this phrase 
SYN2). The translation process is then 
as illustrated in Figure 6. 

As mentioned, the phase SYN2 is 
exactly as specified by the general 
formalism used as specifications. What 
is missing is the algorithmic component, 
which is the control structure which 
decides on the applications of rules. 
However, the phase SYN1 needs some 
careful study. Some indication is given in 
the discussion on some of our current 
work. 
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Fig.6 - The splitting of synthesis 
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Some relevant current work at 
PTMK-GETA 

Relevant to the discussion in this 
paper, the following is some current 
work undertaken within the cooperation 
in MT between PTMK (Projek 
Terjemahan Melalui Komputer) in 
Penang and GETA (Groupe d'Etudes 
pour la Traduction Automatique) in 
Grenoble. 

The formalisms of SG, and its more 
formal version STCG, have been used as 
specifications for analysis and synthesis 
since 1983, namely for MT applications 
for French-English, English-French and 
English-Malay, using the ARIANE 
system. However, not only the 
implementations have been in the SLLP 
ROBRA in ARIANE, the transfer from 
specifications (given by the general 
formalism) to the implementation 
formalism has also been done manually. 

One .project undertaken is the 
construction of an interpreter for the 
STCG which will do both analysis and 
generation. Some appropriate 
modifications will enable the interpreter 
to handle synthesis (SYN2 above). At 
the moment, implementation 
specifications are about to be completed, 
and the implementation is proposed to 
be carried out in the programming 
language C. 

Another project is the construction of a 
compiler that generates a synthesis 

program in ROBRA from a given set of 
specifications written in SG or STCG. 
Implementation specifications for SYN2 
is about to be completed, and the 
implementation is proposed to be carded 
out in Turbo-Pascal. The algorithmic 
component in SYN2 will be 
automatically deduced from the 
REFERENCE mechanism of the 
SG/STCG formalism. The automatic 
generation of a SYN1 program poses a 
bigger problem. For this, the output 
specifications are given by the SG/STCG 
rules, but as mentioned earlier, the input 
specifications can be rather vague. To 
overcome this problem, we are forced to 
look more closely into the definitions of 
the various levels of interpretation as 
indicated in Figure 5, from which we 
should be able to separate out the 
pertinent from the indicative type of 
information in the input structure to 
SYN1 (as discussed earlier). Once this 
is done, the interpretation of SG/STCG 
rules for generating a SYN1 program in 
ROBRA will not pose such a big 
problem (the problem is theoretical, not 
of implementation in fact, 
specifications for implementation for this 
latter part have been laid down, pending 
on the results of the theoretical 
research). 

Concluding remarks 

The MT literature cites numerous 
formalisms. The formalisms, can be 
generally classed as linguistic 
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formalisms, SLLPs and general 
formalisms. The linguistic formalisms 
are designed purely for linguistic work, 
while SLLPs, although designed for MT 
work, may lack certain desirable 
properties like bidirectionality, 
declarativeness and portability. General 
formalisms have been designed to bridge 
the gap between the two extremes, but 
more important, they can serve as 
specifications in MT. However, such 
formalisms may still be insufficient to 
specify the entire MT process. There is 
perhaps a call for more theoretical 
foundations with more formal definitions 
for the various processes in MT. 

Footnotes 

1. The term generation has sometimes 
been used in place of synthesis, but this 
is quite incorrect. Generation refers to 
the process of generating all possible 
texts from a given representation, 
usually an axiom, and this is irrelevant 
in MT apart from the fact that synthesis 
can be viewed as a subprocess of 
generation. 

2. Interlingual systems may not lack 
the definition for synthesis, but they lack 
the definition for interlingua itself. To 
date, all interlingual systems can be 
argued to be transfer systems in a 
different guise. 
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