DLT feasibility study 1983 page VI-1i

VI. DLT*S IMPLEMENTATION: HARDWARE AND SOF TWARE.

1. Storage capacity
1.1, Storage requirements.

An MT system generally requires a large amount of storage
capacity. Apart from a transient workspace during the
translation process, permanent storage of the system’s
software - including grammars and dictionaries - must be
provided for.

DLT is no exception in this regard. Its projected storage
requirements are even considerably higher than those of most
other MT systems, because of the planned extensive inclusion
of collocations, microcontextual procedures, etc. in the DLT
dictionaries [see IIl.3.2.5, IIl.3.3.3, 1Il.4.2.4e]. Loosely,
one could say that the DLT translation method derives its
strength from an increased use of lexicon-based information,
in addition to the fact that the *double-translation’
principle [see 1I].1.4. and I11.2.3] requires a double
quantity of lexicon.

A detailed design of the format of lexicon entries and an
assessment of their exact space requirements based on DLT’s
needs in connection with lexicographic and statistical proper-
ties of the various languages is outside the framework of this
feasibility study. The same applies to other components of the
DLT software, such as grammars. For all these, we have to work
with careful estimates, partly based on comparison with other
MT systems, partly on intuition. As will be shown in the
hardware design below, there are no critical storage capacity
limits at stake, which permits an estimation approach. Only
one storage estimate has been made with a comfortable physical
size in mind (the estimate for the size of a lexicon entry).

A general remark concerns compaction. Although some of the
storage figures presented here may appear high in comparison
with other MT systems, rigorous compaction has been assumed
consistently, implying of course the existence of conversion
mechanisms between readable (external) and bit-compressed
(internal) formats for the sake of development and maintenance.
This is exemplified by the deliberately designed compaction of
the morphem-coded IL [see IV.5 and also II1.5.21, whose
variable-length bit-patterns will be used throughout the
lexicons, including many collocations and microcontextual
procedures stated in terms of IL [see 1I11.4.3].

For SL- and TL-elements, variable-length character-coding may
be used, among other techniques, to compress lexicons, indexes
etc. [see also Martin, 1977: S517,5811.

As a consequence, the byte as a unit of storage will have




DLT feasibility study 1983 page VI-2

less importance in detailed memory and formatting considera-
tions for DLT; nevertheless, it is used in the gross storage
calculations here because of ease and convention.

The projected extension of DLT lexicons with encyclopedic
"warld knowledge’, to enable the use of Al during translation,
still further reinforces the demands for storage space and
compaction. Again, the latter is assured by the dominant use
of compacted IL [see also I[I1.6.21.

Table VI-1 gives an averview of the most important storage
needs (a more comprehensive overview is given in section 1.2).
We distinguish between ’'fixed’ and ’variable’ information:

*Fixed’” information is part of the DLT system or terminal
equipment sold to the user (who will call it *system software’).
This software will be stored within the user’s terminal perma-
nently, to be activated at the beginning of each translation
session. Periodic updating and maintenance of the ’fixed’
software (especially the lexicons!) will be necessary.

’Variable’ information consists of the user’s text passing
through the system (the ’data’), and all its intermediate
representations, derived trees etc. during the translation
process. It also includes the lexicon extract (a collection of
lexicon entries) temporarily made available for the processing
of a particular piece of text (basically a sentence). ’Variable’
information is overwritten or removed many times during and at
the end of a session.

An exception is the saving of a statistics block. For a selected
circle of users, DLT.will record the disambiguation dialogues
and related information, as part of the system’s long-term
optimization and development. Cumulated statistics blocks will
then have to be transferred to the DLT support center periodic-
ally.

Table VI-1 has further been divided according to whether the
calculated space is required in the SL-module only, in the TL-
module only, or in both. We will come back upon the separation
of SL- and TL-modules and their corresponding system software
parts later in this chapter. We proceed with explanations on
some separate items of the table now:

The size of a lexicon entry.

A fixed size of 912 bytes (40946 bits) is projected here. In
comparison, the size required for entries of a consultative
electronic dictionary has been calculated at 2800 bits (364 of
which goes for speech output) [Fox,19801. Such a consultative
dictionary contains 65 English words per entry on average, for
definitions, examples of use, synonyms. Though an MT dictionary
serves a different purpose, its needs show some parallels:
semantic subclassification, valency patterns and microcontextual




DLT feasibility study 1983 ' page VI-3

FIXED® INFO:

Lexicon-entry size: 512 B

(10.000 entries: S MB)
SL- or TL- (30.000 entries: 15 MB)
30.000 entries: ' 25 MB

[ Lekical SL-parser
(incl. spelling correction): 285 KB

Syntactical SL-parser (SL-qrammar): 60 KB

SL-
Paraphrase generator
(for disambiquation dialogues): 50 KB
_IL-recognizer (error-filtering): 40 KB
IL-parser: 25 kB
TL-
TL-synthesis
(incl. IL-TL transfer): 50—-150 kB
"VARIABLE® INFO:
SL~ or TL- Gross lexicon extract
(incl. ’buckets’): 200 ¥B
SL-parser output
("trails’, worst case): 30 kKB
SL-
Statistics
{average session): 25 KB

Table VI-1. Overview of the most important storage
usage in DLT.




DLT feasibility study 1983 ' page VI-4

procedures take the place of definitions and examples, while
synonyms will be included in DLT dictionary entries too (for
paraphrase generation in disambiguation dialogues). Taking

into account the more compressed (primarily machine-readable)
and - at the same time - more exhaustive nature of the DLT
lexicon (including collocations, idioms, etc.), an estimate of
more than twice the size of the consultative lexicon (minus
speech output) appears safe.

Note that the fixed size of 512 bytes applies to SL~IL and to
IL-TL entries separately, i.e. 1KB reckoned over an SL-TL

pair, which is nearly 3 times as high as the figure quoted

for the Russian-to-French GETA ARIANE-78 system [Whitelack,
19821.

Also note that extralingual Al-related additions, the so-
called "world knowledge’, is NOT included in the estimated

size of the lexicon entry. The large needs of this encyclopedic
information - which will probably be organized in a different
way than the lexicon proper - are taken into account separately
in this chapter.

0f course, the compact object version is understood here, not
the PROLOG source. The figure of &0 KB is based on the reported
size [Bates, 1978: 2381 of a large semantic ATN-grammar: 448
states, 881 arcs and 2280 actions. Assuming 4 bytes/state, 12
bytes/arc, 20 bytes/action and S0 memberlists of 40 bytes

each, we arrive at approx. 60 KB. Semantic grammars are gener -
ally much larger than syntactic grammars; on the other hand,
DLT may require more elaborate augmentations.

The estimates for the IL-parser and IL-recognizer have been
made been made intuitively and in relation to the SL-grammar.

During the processing of a sentence, all its related lexicon
entries (10 on average, see Table VI-2) must be kept available.
For the fast retrieval of one lexicon entry -~ here more
properly called ’record’ -~ , a bucket of 20-40 records will
be involved (based on an estimated index size of 1250-2500
keys to access a lexicon of S0.000 records).

In fact, the surrounding bucket contents can be disposed of as
soon as the retrieval of the record (e.g. by binary search of
the bucket) has been completed. If a search fails, the bucket
is useful in connection with spelling-correction (minimum-
distance match). But depending on the available storage space,
garbage removal may not at all be attractive (except at
incidental storage demand peaks). For this reason we assume a
permanent 200 KB occupation, the contents of which change per
sentence.

As a worst case, a momentary cumulation of &0 parse trails
[see II1.4.2.3 for the concept 'trail’]l during the processing




DLT feasibility study 1983 page VI-0

of a sentence has been assumed. A parse trail may be expected
to require up to 10 times as much information as the final BCE
representation of a sentence (400 bits), i.e. 4000 bits.

Statistics.

We reckon with an SL-translation session of maximally 120
sentences, i.e. 2 hours at a speed of 1 sentence per minute
(including typing of the source text). Per SlL-sentence, a
disambiquation dialogue of 3 question-answer cycles is taken
as an average [see Table VI-2]. To record the course and the
outcome of this dialogue (including generated paraphrases,
microcontext, etc.), a space demand of 4 times the space of a
BCE sentence is guessed at.

The above considerations all concern quantity requirements,
but of course there are other aspects as well. The total set
of storage requirements for DLT can be characterized as
follows:

1
1]
oo
c
po]
[= %
1]
=
ﬁ

fa]
=
[
o
+
-
ﬁ

<

e —

I
n
C
-,
-+
-
n
-
1]
3
ﬁ

wn

o
L]
LY
Q.

[
(=%
1)
n
T
rt
o]

o
°
3
2]
h el
o
]
ﬁ
-
Q
3
"

i
wn
[n}
-+
r-,-
b3
1Y
5
m
(=8
-
n
rt+
R
‘-
[ng
[
~+
N
n]
3
-+~
[+
n
-
—
-
rf
-
L)
n

t
-
=)
I
N
[w]
n
rt
n

In a system which relies on human input and interactive
assistance for one part, and medium-speed data transmission

to end-user terminals for another, memory access speed is not
as critical as it would be for a high-throughput batch MT
system. Nevertheless, speed conditions have been checked here
in the section on timing relations [VI.2], in conjunction with
the storage realization proposed belaow.

Reminding the reader to the ’outside look’ of DLT [Chapter
111, any staorage solution must fulfil the demand for desk-top
proportions. This includes economic power consumption as well
as physical dimensions. No special provisions should be
required to save the system software when power goes off.

In the ’distribution’ concept of DLT, the translation process
is decentralized, distributed over sending and receiving ter-
minals. Each terminal translates with its own copy of the DLT
system software for the one or the other language. As a prac-
tical consequence, one will want an easy way of distributing the
software, exchanging it for new releases, arranging updates etc.

All these requirements must be brought into agreement with




DLT feasibility study 1983 page VI-4

each other and with the low-cost requirement, especially for
the receiving (IL-to-TL) equipment: what we talk about is -
eventually - the environment of videotex-enhanced TV’s and
personal computers, at home and on everybody’s desk.

1.2. Storage realization.

The hardware configuration proposed in this chapter features 3
levels of memary, which will be discussed and detailed now in
the light of the earlier-mentioned storage requirements.

e i s R e e it s o o s v T e i s e o O e

As non-volatile high-capacity memory, we propose the optical
disc, a videodisc-like product developed by Philips and also
announced by several other manufacturers for computer applica-
tion now [Sebestyen, 1982; Megadoc, 1983; Fujitani, 19831.

We will refer to this product by its Philips acronym: DOR
(Digital Optical Recording). Though higher capacities are
expected in the course of the 1980s, we will assume here a
capacity of 1 GB (gigabyte), a conservative assumption for
this new medium.

Fig. VI-1 gives an impression of how the large DLT lexicons
and translation software easily fit on a DOR disc, leaving
an enormous extension capacity to accomodate dictionaries
for special terminolaogy and Al-related encyclopedic
knowledge.

The DOR disc is a write-once medium. Track-sectors of S12
bytes (Philips) are the units of reading/writing. A sector
cannot be physically averwritten. In order to operate the
disc as an updatable storage medium, we consider its logical
capacity to be one fourth of its physical capacity, allowing
all information to be updated four times on average (of
course, software provisions will be needed for this). The
only DLT cateqgory for which no updating requirement exists is
the cumulated statistics block, which is in fact archival
information (over 2000 translation sessions, 50 MB will have
been cumulated, leaving 930 MB physical or 237 MB logical -
storage).

As part of a DLT terminal, the DOR will be used as follows:
at the beginning (power-on) of a session, the translation
software (200-400 KB for an SL-, 100-200 KB for a TL-
terminal) will be transferred to the (volatile) on-board
memory [see belowl. As for the lexicon, separate entries
(which coincide with track-sectors of the disc) will be
accessed on request by the lexical parser when scanning the
SL-input. What actually happens is the transfer of a
‘bucket® of 20-40 lexicon entries, which will then be




DLT feasibility study 1983 page VI-7

customized terminology
(4000 entries)
1MB

210 MB
translation LEXICON EXTENSION
software &
(grammar etc.)
<1MB

Fig. VI-ia. DOR containing a complete set of software for a
’one-way’ DLT terminal, i.e. either an SL- or a TL-
module (translating sender or translating receiver).

customized terminology
(4000 enta%s IL-TL)
1

translation
software —
{grammars etc.)
<1MB

customized terminology —~
(4000 entries SL-IL)
i1MB

Fig. VI-1b. DOR containing a complete set of software for a
“two-way’ DLT terminal, i.e. equipped with both an
SL- and a TL-module (SL=TL). The world knowledge
1s written in IL and needs to be stored only once.

—.




DLT feasibility study 1983 page VI-8

turther searched in common main storage [see belowl; this
arrangement keeps indexing within proportions and also
facilitates spelling correction.

The mean random access time for Philips DOR is 137.5

msec [Megadoc, 19831. In our timing calculations [...1, we
have used a figure of 150 msec, which includes the transfer
time for a bucket (the transfer rate for DOR is several
Mbits per second). By and large, the access speed seems
sufficient.

Reloading aof software will occur if one exchanges the disc
(e.g. if a German user leaves his terminal to a French
user), or after a power-break. At the end of a session, a
statistics block built in main storage is written to the
disc.

DOR offers lowest cost-per-bit and the drives designed far
it are reported [Fujitani, 19831 to consume less than 200
Watt, which makes them attractive for the office and home
computer environment. Initial costs announced for this pro-
duct ($ 6000 - & 7000 in OEM gquantities, early 1984) still
are prohibitive for its inclusion in a ’consumer product’,
but expectation of a steady price decline through the 1980°s
seems justified, especially if combined drives for data
processing as well as audio/video appear on the market
[Sebestyen, 19821.

The fact that the DOR disc is removable satisfies the
requirement for easy software distribution. Updates can also
effectuated by down-line loading of user terminals from a
DLT support center, as long as the transmission time and
caosts do not become prohibitive.

Integration of the DOR into a computer system is facilitated
by the availability of controllers which are de facto stan-
dards for 5.25 and B inch Winchester disc drives. These
controllers perform error correction, which is vital for
reliable operation of the compactly coded software of DLT.
The residual error after correction, quoted as 1 in 10¥%12
bits, corresponds to 1 in 10.000 translation sessions, assum—
ing a transfer of 100 Mbits (including AI) per session.

Though the DOR excellently meets the DLT requirements,
Winchester appears acceptable as a second choice, consider-
ing its increased compactness and cartridge removability.
Especially for the development period in the next few years,
as long as DLT’s lexicons are still limited and the DOR is
still expensive, a small Winchester (e.g. 18 MB) will be
attractive. Apart from that, its mean access time (40 msec)
is better than that of DOR.

Other alternatives that presented themselves have been
rejected: dynamic RAM for the whole DLT lexicon would




DLT feasibility study 1983 page VIi-9

require bulky battery back-up provisions and remain more
expensive, without solving the software distribution
problem., As for MBM, there is no consensus about their
future support in industry.

This is a volatile memory for the fast handling of transient
data during the translation process. It will be realized by
a 1 MB dynamic RAM board, connected to the disc controller
and processors by the configuration’s main bus [see section
31. The various process—steps of the DLT translation (to be
realized by separate processors, as will be explained in
this chapter) have commonly access to this main workspace.
Apart from information of the DLT category ’variable’ [see
Table VI-1], the common storage board will also accomodate
lexicon extracts.

As with the background mass storage, one must consider
separate main memory boards for SL- and TL-modules, because

these modules will be distributed over separate terminals
(the very essence of DLT!). We therefore have the following
typical use of common main memory at send and receive side:
Sl-side: - SL-IL lexicon entries of current
sentence (incl. ’buckets”): 200 kB
- current IL sentence (BCE): 400 bits
- macrocontext (up to 120
sentences), SL and IL: 18 kB
~ SL-parser warkspace ("trails’): 30 KB
-~ dialogue statistics: 25 KB
~ extract of Al-related
world-knowledge (’scenario’): 100 KB
- cumulated SL-parser results

in case of postponed-dialogue

mode (see section 21: S00 KB
TL-side: - IL-TL lexicon entries of current
sentence (incl. ’buckets’): 200 kB
- current IL sentence (BCE): 400 bits
- macrocontext (up to 120
sentences), IL and TL: 18 E£B

As appears from this list, a 1-MB capacity is sufficient at
the SL-side, and abundant at the TL-side. When SL-modules
would require higher-capacity boards in the future, these
will be available off-the-shelf (as 2~MB boards already are).




DLT feasibility study 1983 page VI-10

e s o e e T R e

Of the 3 levels of storage for DLT, this one provides the
tfastest access. As for the common main memory, dynamic RAM

is used, but the on-board memory is faster because a process-—
or can access it without having to contend for the compu-
ter’s main bus. On-board memory is therefore particularly
suited to hold instructions.

So whereas the common main memory will primarily be used for
data’ (including DLT lexicon extracts), the on-board memory
is primarily intended for ‘pragrams’ (parsers, algorithms)
and will be loaded with them at the beginning of each transla-
tion session (system booting).

Fig. VI-5 shows the amounts of on-board RAM and a brief
indication of their main contents for the various processors
that make up the DLT terminal, the sending as well as the
receiving terminal [the motivation for parallel processors

is given in sections 2 and 31. Evidently, each processor has a
specified task, for which the programs and tables reside on
the same board. The following list sums up the proposed
storage capacity and its estimated utilization for each
processor board (SBC = single-board computer):

SL-side: SBC 1 -~ Lexical Parser (128 KB):
- lexical Sl-parser
(incl. algorithms and tables

for spelling correction): 25 kKB
- index to the lexicon
(1230 index entries of 8 bytes): 10 KB

- word-syntax analyzer
(for compounds not in the lexicon): 15 KB

SBC 2 - Syntactical Farser (254 KB):
- syntactical SL-parser

(complete SL-grammar in ATN-form): &0 KB
- dictionary aof 200 function words

(pronouns, prepasitions, etc.): 10 kKB
- high-frequency dictionary

of 240 other words: 120 KB
SBC I - Al Processar (512 EB):

- advanced semantics and

macrocontext-oriented Al
algorithms: 200-400 KB




DLT feasihility study 1983 page VI-il

SBC 4 -~ Dialogue Processar (254 KB):
-~ dialogue—-disambiguation planner

(best sequencing of questions): 30 KB
- paraphrase—-generating

software (SL-synthesis): 50 kKB

8BC 5 - Il-coder (128 KB):
- tree-to-string conversion
(ordering, adding of agreements,
insertion of separating elements): 20 KB
- IL-recognizer
{comprehensive IL-grammar in
ATN-form, with error—filtering): 40 KB

TL-side: SBC & - IL-decoder & TL-synthesis (256 kB):
- IlL-parser
{IL-grammar in ATN-form): 25 kB
- IL-TL transfer % TL-synthesis
saftware: S0-150 KB

The list indicates ample dimensioning of the on-board memo-
ries. For SBC 3, the Al-board, extension of the on-board
memory (currently limited to 256 KB) with a piggy-back ar
separate memory board may be necessary (this can be connect-
ed onto the Al-board’s local bus).

The three-level memory facilities discussed above provide the
best solution for the total set of DLYT storage requirements.
With regard to capacity, there are practically no restric-
tions: the development of Al-related software will very probably
always lag behind the expanding storage sizes offered by

the hardware technolagy.




DLT feasibility study 1983 page VI-12

In order to check the sufficiency of storage access speed and
to assess the required degree of parallel processing, the
timing relations in DLT must be considered. These involve
human as well as computer process components of the semi-
automatic DLT translation process. The human activities
(typing, thinking, reading) are generally slow and time-
consuming, compared to the performance of computer equipment.
With the hardware configuration proposed in this chapter, one
would expect the following order of (potential) speed bottle-
necks:

human speed (typing: 30 sec/sentence,
thinking: 30 sec/dialogue,
reading: 2-5 sec/sentence);

mass storage access speed
(DOR: 1.9 sec/sentence);

network transmission speed
(1200 bps: 0.3 sec/sentence);

main storage access speed
(incl. contention for main bus);

processor speed

The art of the DLT hardware design exists in exploiting the
fact that the human speed is the real bottle-neck. This again
emphasizes the character of DLT as a non-batch translation
system.

Figs. VI-2 and VI-3 show the timing relations for a whole
translation cycle, based on model assumptions listed in table
VI-2. A more detailed timing diagram of a part of the transla-
tion proces is given in fig. VI-4. For sake of clarity, all
these diagrams use average values; in practice, statistical
variation of typing, dialogue and processing time will of
course occur.

Fig. VI-2a shows one complete translation cycle, starting with
typing of the SL-sentence, followed by the interactive disam-
biguation dialogue, and ending with the reading of its TL-
translation. As DLT is a distributed system, SL-text genera-
tion and disambiguation (in the °sending’ terminal) and
display of the TL-translation (in the ’receiving’ terminal)
are - in principle - separated in space and time, a gap to
be bridged by transmission and intermediate storage. In the
diagrams of figs. VI-2 and VI-3, this main interface “gap’
(which would be somewhere in the middle of Tr2-6) has not been




DLT feasibility study 1983 page VI-13

accounted for. In fact, fig. VI-2a represents a non-standard
DLT mode of usage: the translation of each sentence is read by
the operator before he types the next one. This practice will
only be observed during system development, for demonstrations
and for special applications in which bilingual operators
require immediate feedback [see V.4l. For development and for
verification purposes, a loop-test (in which TL=5L) can be
useful. Besides, the time profile of fig. VI-2a can represent
some other human activity (e.g. reading in the SL-manuscript)
preceding the typing of the next sentence.

The standard-mode of DLT operation is represented by fig.
VI-2b. The overlap of typing with the after-dialogue transla-
tion (Tr2-6) of the previous sentence underlines the
'decoupling’ of the two *halves’ of the translation process.
The parallelity of typing (and its simultaneocus pre-
translation Tril) with Tr2-46 is however motivated by another
reason:

If the operator at the SL-side is ready to continue typing
immediately after the disambiguation dialogque, a delay of
several seconds may be annoying. From dialogue design and
response-time psychology considerations [Martin, 19731 we
conclude that this delay will be less acceptable after a
relatively short dialogue than after a relatively long one.
As the figs. VI-2b through VI-2d suggest, the long-term evolu-
tion of DLT will yield a gradually shorter dialogue (balanced
by an increasing Al component): whereas in VI-2b the average
dialogue consists of three question-response pairs, in VI-2c¢
this has been reduced to two and in VI-2d even to one. At the
same time, the diagrams show an increase of Tr2-6, represent-
ing the increase in sophistication of TL-modules (translation
quality improvement by macracontext-oriented TL-word choice
praocedures [see I11.61).

gradually increasing future AI component might result in a
substantial response time there. If that would be the case,
the ’postponed-dialoque mode’ (fig. VI-2e) should be used. All
disambiguation dialogues (and cansequently all subsequent
process steps) are postponed till some time after the typing
(and automatic pre-translation) of the text. This has the
advantage that typing can go en uninterruptedly, with parallel
automatic processing permitting the immediate compl:tion of
both the Trl1 and the AI parts. The postponed dialogues and
further processing are shown in fig. VI-3g.

Apart from its future use for avoiding Al-induced delays, it
should be remarked that the postponed-dialogue maode may well
be preferred by operators who want to type their SL-text
without being disturbed or distracted by any computer-
initiated interaction (e.qg. authors who create their text
during typing).

=




DLT feasibility study 1983 page VI-14

In all the above cases, translation or at least the first part
of it (Tr1) takes place immediately during typing. We refer to
this as the ’immediate-translation mode’.

A different situation is covered by tig. VI-3: here the ini-
tial input to DLT is a file of SL-text already in the computer
(previously typed or obtained by other means). We call this
the ’queued-translation made’. Notice that raw St-text is
assumed as input here (with the exception of fig. VI-3g, which
belongs to the postponed-dialogue mode). The translation cycle
is not atfected by human typing speed now, and Tril can be
compressed drastically.

With the disambiguation dialogue as the only human component
left (except for the reading activity in fig. VI-3a), the aim
is now to make the dialogue throughput as high as possible.
This can be done by reducing the delay between dialogues, i.e.
by parallelity between Tr2-6 and Tri (fig. VI-3c), but also by
reducing the dialogue length itself, via a gradually increasing
weight on the Al-component (figs. VI-3d and VI-3e). But simil-
arly as in the immediate-translation mode of fig. VI-2, this
again tends to increase the gap between successive dialogues,
which justifies the arrangement of parallelity between Tri and
the dialogue of the preceding cycle (fig. VI-3f). In fact,
further compression is imaginable: Tri,n+l can already start
during Al,n; such an overlap of {Tr1,Al},n+1 with {AI,D},n
would reduce the inter-dialogue gap to about 1 sec, quite
attractive with a typical dialogue length of 5-8 seconds.
Accordingly, the translation throughput (at the SL-side, with
parallel processors for Trl, Al and D) would correspond tao

6&-9 sec/sentence,

The postponed-dialogue mode of fig. VI-3g (and fig. VI-2e)
seems to give the same throughput without the need for paral-
lel operation of Al and D. Its disadvantage however is the big
amount of intermediate storage required to buffer the cumu-
lated results of pretranslation.,

For simplicity, we assumed here that the translation of sen-
tence n+l is independent of the translation (especially the
disambiquation) of sentence n, which is certainly not true in
general. This even questions the feasibility of fig. VI-2e (Al
may not make much sense without full disambiguation of the
preceding context). Also, it would not permit total compres-
sion of fig. VI-3f, limiting the throughput to 10 sec/sentence
on average.

Like the postponed-dialogue made, the queued-translation mode
can be attractive faor operators who prefer to type their SL-text
uninterruptedly, and work through the dialogues atfterwards.

As DLT s Al-component will develop in the future, the gueued
mode will become even more attractive, because annaying ARI-
induced delays could build up otherwise.




DLT feasibility study 1983 page VI-1S

‘ Typing, n . D@/og&n Reading, n " N
@ L T, n . I I | I ‘
. L_Tr2-6,n
Dialogue, n ,
' Typing, n B /?\ _Typing.n+1
@ | T, n+1
. T, n } i—i —_——
L Tr26,n
- Typing, n ~ lm}loq{e ~ Typing, n+1
Tr1, n+1
@ T, n U ——— ————
— +—t K A
Al l—Tr2~6. n
Typing, n Dialogue . Typing, n+1
Tr1, n+1
@ . Tr1 , n . . F——-—-—-‘—-——- -----
; Al L—Tr2-6,n
— Typing, n - Typing, n+1 " Typing, ";"?_ .
@ b Tri.n Tri, n+1 Tn+2
— .
Al n Al, n+1
: -
LEGEND: HOR. SCALE: 2 mm &« 1 sec

Typing = entering of SL-sentence from keyboard
Dialogue= disambiguation dialogue
Reading = reading of the translation (TL+= SL)

or back-translation (TL = SL)

™ = Step 1 of the translation process (except for Al and dialogue)
Tr2-6 = Steps 2 thru 6 of the translation process [see Ili. 4.1}
Al = sentence-final advanced semantic part of Step 1
(.Artificial Intelligence”)
n, n+1,... denote subsequent units of translation (sentences)

Fig. VI-2. Timing relations for DLT’s ’immediate-translation’
mode, shown tor O stages (a through e) of future
system evolution. Notice the parallelity of typing
and processing (Trl) in all stages.

Rl




DLT feasibility study 1983

page Vi-lé

=

Dna}fg& n Reading —"4 Dialf)gue. n+1
™ II || Tr l l ll
Pt —
@ n Tr2-6 n+1
Dialogue, n Dialogue, n+1
/1\ T
® ol T 1w Uy L.
n Tr2-6
Dialogue, n Dialogue, n+1
Il |I ™ | ! ||
T — — -
@ n_ o g | ey
Tr2-6,n Tr2-6, n+1
Dialogue, n Dialogue, n+1 Dialogue, n+2
@\ T Al l l T Al | U TN Al | U L
J n .+___.‘ L*_q -
Tr2-6,n Tr2-6, n+1
D.n D, n+1 D, n+2 ‘D. n+3.
T: Al ™ Al Tr1 . Al Tr1 . Al
T— L b— L-
Tr2-6, n Tr2-6, n+1 Tr2-6, n+2
D.n D, n+1 D, nt+2 D, n+3 D, n+4
1126 Tr2-6 Tr2-6 126 Tr2-6
(:) Tr1 Al s L———q e + -4
' n t Tri Al Tt AL T AL Tr1, Al Tr1 Al
n+1 n+2 n+3 n+4 n+5
Dn Dn+t D,n+2 D,n+3 Dn+4 D,n+5 D,n+6 D, nt7 D,n+8 .
Tr26 Tr2-6 Tr2-6 Tr2-6 Tr2-6 Tr2-6 Tr26 Tr2-6 Tr2-6
n n+1 n+2 n+3 n+4 n+5 n+6 n+7 n+8
LEGEND: D = dialogue HOR. SCALE: 2 mm & 1sec
[see also fig. VI-2]
Fig. VI-3. Timing relations for DLT’s ’'queued-translation’
mode, agaln shown for various evolutionary stages.
Note the gradual compression of dialogue activity.




typing:

lexical
parsing:

syntactical
parsing:

DLT feasibility study 1983 page VI-17

The future extension of DLT with Al has deliberately been
included in the timing considerations here, in order to

derive a hardware design configuration into which it can be
integrated easily and in a modular way, without disrupting the
system’s overall work rhythm and throughput. Such a configura-
tion should therefore have parallel processors for Tri, Al and
D (D=dialogue), in addition to separate processors for Tr2-6.

A closer look on Trl makes apparent its two-level structure
(fig. VI-4), corresponding with a lexical and a syntactical
parser [see III.4.1]. Assuming a sentence of the model of
Table VI-2, short function words alternate with longer content
words. The lexical parser will follow the typing rhythm. Its
task includes the retrieval of lexicon-entries from mass sto-
rage. The gross access time (incl. bucket transfer and binary
search) for each content word has been separately indicated in
the diagram.

The syntactical parser can only proceed when it receives
another word from the lexical parser. As soon as this happens,
syntactical processing - on the basis of the newly received
word - is continued at full speed, independent of the typing
or lexical parse speed. Mostly, the syntactical parser will be
ready and idle before receiving the next word, but now and
then (notably with 2- or l-letter words, as the English ’I%),
it may be overtaken by a new word’s arrival.

N 2 34 5 6 7. 8 9 10 M 31213 14 J15 16 1718 19 20 r
e r— o g puanl L | oy
i |
Ly nmn L _14 s nnn b L w
LEGEND: HOR. SCALE: 5 mm = 1 sec.

= accessing lexicon entries from mass-storage

1,2 3..... denote the words of the SL-sentence

Fig. VI-4, Close-up of the simultaneous typing and Tri proces-
sing of a 20-word model sentence, showing the two
parse levels. Despite its amount of idle time, the
syntactical parser may occasionally lag behind
(here at word 8).




<

DLT feasibility study 1983 page VI-i8

human typing speed:

4 chars/sec [cfr. Martin, 19731
(short bursts up to B chars/sec);

language statistics:

& chars/word (incl. space or punctuation);

20 words/sentence, of which:
10 content words (typing time: 2 sec),
10 function words (typing time: 0.7 sec);

disambiguation dialogue:

3 question-response pairs
(with “think’ times of 3, 16 and 8 sec respectively)

computer time Tri per sentence:

10 DOR mass storage accesses
(one for each content word,
and 150 msec each [see VI.11): 1.5 sec

syntactical parse time, estimated at

the tenfold of the reported fast version

of the ’LUNAR’ ATN [Bates, 19781, which

parses 8-12 word sentences in 150 msec: 1.9 sec

interleaved basic semantics, estimate: 0.5 sec

computer time Tr2-6 per sentence:
10 DOR mass storage accesses (as above): 1.5 sec
IL-parse, transfer & synthesis,
estimated at the fourfold of the
*LUNAR’ ATN: 0.6 sec

microcontext-hased word selection
routines, estimate: 0.5 sec

IL transmission rate:

3 sentences/sec
(based on BCE: 400 bits/sec [see IV.5],
and 1200 bits/sec transmission speed).

Table VI-2. Model assumptions used in the timing diagrams of
this chapter. As for the parallelity of the compu-
ter time components, storage access time will
partially overlap with processing time.

B



DLT feasibility study 1983 page VI-19

0+ the various technical solutions to handle this ’receive-
averrun’, considering also the clear functional separation
between both parsers, the most attractive approach is to run
them on two separate processors.

Summarizing our timing considerations, which have mainly been
directed at the SL-side of DLT, we have the following
throughput:

1 sentence/minute (incl. typing and disambiguation);
&6 sentences/minute (without typing, with Al-support).

0+ course, these figures are no more than global indications
of averages: for a more complete and detailed picture (in
which for instance the speed difference between a typing and a
non-typing disambiguator is taken into account), the results
of dialogue simulation [see Chapter VII, W.P. IV] must be
awaited for.

and is displayed at the terminal or TV screen, sentence after
sentence. With a human reading speed of 2-5 sec/sentence, the
processing time derived on the basis of table VI-2 (approx.

2 seconds) appears to be just enough. Accordingly, the through-
put at the TlL-side will be 30 sentences/minute.

In our timing diagrams, Tr2-6 has been used to indicate all
translation steps after dialogue disambiguation. This implies
the need for at least two processors, one for Steps 2, 3 and 4
(at the SL-side), the other for Steps S and & (at the TL-side).
This brings the total number of processors to six.

On some of the six processors, the processing time consumed by
grammars and algorithms will approach or even exceed the mass
storage access time per sentence (see Table VI-2; note that the
interleaved basic semantics and the microcontext-based word
selection routines run on the same processors as the parsers).
This means that DOR speed is not so much a critical factor in
the DLT design.

0f course, the various time estimates made in the framework of

relations. For a complete, detailed and reliable assessment a
trial system based on the proposed hardware will be needed.

As for the future extension of DLT with AI- and macrocontext-
based procedures, the number of storage accesses (encyclopedic
knowledge) as well as the processing time (algorithms) may
increase.




DLT feasibility study 1983 page VI-20

T e e e e e = e B R R el SRS S e D

Three types of implementation can be considered for a DLT
terminal:

- a 32-bit minicomputer
- specially developed VLSI

- current technology 16/32 bit micros

A 32-bit minicomputer must be rejected: it collides with the
desk-top environment (compact terminals) envisaged for DLT,
and would make the unit price of a commercial product too
high. However, a 32-bit mini configuration can be recommended
tor development of software and dictionaries [section 4.21.

Specially developed VLS] is extremely expensive and could aonly
be contemplated in a more advanced stage of DLT development,
when confidence in selling very large production quantities
will have been acquired.

Secondly, current technology microprocessors already represent
the VLSI state-of-the-art, and are readily available.

Thirdly, the type of device being developed for the ’fifth
generation’ machines [Moto-oka, 1982; Treleaven, 19821, which
would be close to the type required for DLT, will at least
partially rely on replicated general-purpose processors.

This leaves current technology 16/32 bit processor chips as
the most attractive basis for DLT hardware development.

The timing relations [section 1.21 of the DLT translation
process (and its distribution over an SL-side and a TL-side
terminal) showed the need for & pracessors: 5 for the SL-
module and 1 for the TlL-module. The programs to be run by each
processor have already been listed in section 1.2.

At least for the hardware prototype, off-the-shelf Single-
Board Computers (SBC’s) with an adequate amount of on-board
dynamic RAM and the usuwal interface provisions are proposed.
These SBC’s communicate with each other via a main bus [fig.
VI-51, to which also a common 1 MB RAM storage board is
connected.

The ’peripheral’ functions of the DLT terminal will be dealt
with by separate B8-bit processors on the SBC’s and by additional
standard boards: a communications controller, a disk controller
(for the DOR), and a video board.

The SBC’s will also have 32 kKB PROM each (for booting, diagnostic
programs, etc.).




e

DLT feasibility study 1983 page VIi-21

As for the choice of microprocessor, the application requires:
- a cycle time in the nanoseconds rangej;

- simple addressing structure for several MB of storage
(32-bit addressing);

- easy manipulation of addresses for fast tree searching;

- built-in string manipulation and string matching
tunctions.

The processor currently on the market which best meets these
requirements, is the Motorola MC4B8000 (also made by Mostek and
Fhilips/Signetics). Of course, we do not preclude the use of
newer processors, not yet announced.

The proposed bus architecture is the VME bus of Motorola,
Mostek and Fhilips/Signetics. This bus satisfies the technical
requirements for speed (MHz range) and addressing (up to 4 GB).
It is compatible with the Eurocard standard, and the required
racks and cards for such a system are readily available from
several (European) manufacturers. A ’bus arbiter’ [not shown in
fig. YI-5] is required as a separate card to support the VME
bus system.

A prototype for such a Eurocard-based DLT system [fig. VI-G5]
will require the following number of boards (incl. 3

peripheral boards and the bus arbiter):

- 10 boards for a separate one-way SL-terminal;
- & boards for a separate one-way TL-terminal;
- 12 boards for a combined two-way terminal,

which could fit in (e.g. a 15-slot) 19-inch rack, passibly in
a tabletop chassis. The hardware costs, based on 1983 retail
prices (in Dutch guilders, excluding VAT), are estimated at:

Dfl. 124,000 for the one-way SL-terminalj;
Dfl. SB.000 for the one-way TL-terminal;
Dfl. 151.000 for the two-way terminal,

including a small Winchester (18-34 MB). The attachment of

a DOR unit will probably require Dfl. 25.000 more (the choice
of DOR or Winchester for mass storage has been motivated in
section 1.2.). In addition, & man—-months must be accounted for
basic software support, including the testing and validation
of inter-processor communication.

The use of a Eurocard-based prototype will provide maximum
flexibility for experimentation. It will also permit gradual
development, in such a way that the pilot project proposed in
Chapter VII could make use of it from the completion of the

R,



5
At o

page VI-Z&

DLT feasibility study 1983

SISAYJUAS

1%
Rpo2eq
o *a(npow-] (4211eWs) 8y} S3uasaddas 9 1385 yIM 34ed
ay] "sJossaloud (1a11e4ed) ot13sinbutl pajedipap ayl
904dS ButMoys ‘seulwi@l-|TqQ 404 uotieunbrjuod adA303044 °C-IA D1y
(INA) snq urew
aoedsyiom R
10BIIXD UODIXD) WvH G L
-
fioweyy u aoedsyiom
N JoRIIXD UODIX3] PJEOQ 0BPIA -
LS 19]]013UOD SUOHEDIUNWIIOD —
Wvdan L Kiowep uew 191jOIIUOD XSIP ~
uouRuUo?) '
'spieoq |eiayduad
(3WA) snq urew
S 08sS ¥ 08S €04S ¢08S 1 08S
Ppon J0883001d 1088320id Jesied Josiegd
n anBojeiq v (LoD E U7 edixen)
swiyjuobe
Bunjoayo-1i 10}eiauab sojuewIasS (NLY) : wyjuobe
uonoedwo) aseiydeied padueApy rewweiB-g %28ys buijleds
AVH SN % Wvd giN v/, NYH 8N % WVH giN ¥ NVY g &




DLT feasibility study 1983 page VI-23

s MB RAM s MB RAM Y« MB RAM
CCk —~ BCE Compaction IL-
& spelling check & IL-checking Decoder
& TL-
Lexical iL- Synthesis
Parser Coder
SBC1 SBC 2 SBC3
main bus (VME)
Common
Main Memory
IL-TL
lexicon extract
& workspace
1 MB RAM

Fig. VI-ba. Initial use of the prototype hardware far the
development and testing of the IL-kernel and the
IL-to-TL translation stretch.

s MB RAM

Spelling check

algorithm

Lexical

Parser

SBC1

main bus (VME)
Main M ry Fig. VI-4hb.
SL-IL As part of SL-module development,
lexicon extract the lexical parser with its spel-
& workspace ling check program can be tested
separately on the prototype.

1 MB RAM

e




DLT feasibility study 1983

page VI-24

SL = (L i TL = German
- |
CCE~BCE| i1l liL-decoding
. IL-coding &TL-
l,;::gg?' ! synthesis
test | test test
| I
SL = French i TL = German
: -
Lexical Syntactical Dialogue . decoding
Parser Parser Processor (| | |!L-coding &TL-
| synthesis
|
a | a b
| f
|
SL = German i TL = French
I -
Lexical Syntactical Dialogue | : " ecoding
Parser Parser Processor | IL-coding &TL-
| synthesis
b l b a
I
. _ 1 o .
Translation Step 1 Step 2, 3,4 Step 5,6
[N — —t _—-v———-—-l
‘SEND’ ‘RECEIVE’
station station
Fig. VI-7. Modularity of DLT development. Each square corres-

ponds with an SBC in the prototype, and each hori-

zontal row represents a translation process.

The

double chain-dashed line indicates the transmission
interface hetween (remote) terminals, a and b. The
single dashed line shows the development interface
faor different SL-teams.

DR

R R———



DLT feasibility study 1983 page VI-25

(extended) IL-kernel [fig. VI-4al. Useful DLT-functions like
lexical parsing with spelling check can be tried out separately
[tig. VI-6bl, as the partitioning of the prototype hardware
well reflects the modularity of the DLT praocess [fig. VI-71].

One of the objects of the prototype is to investigate several
cost-performance trade-offs and to establish parameters such
as processing capacity, memory capacity, bus traffic etc. more
accurately, in order to make a cost-effective design for the
tinal DLT product, aimed at quantity production. The final
product will no doubt be more compact and economic, and its

hardware will be more reliable (due to the decreased number of
interconnectians).

The prospects for a low-priced desktop DLT terminal in the
next decade are reinforced by the current technology outlook.
Memory density on chips is doubling every two years and is
expected to reach 4 Mbit (0.5 MB) by 1990 [Bursky, 1983: 871.
Existing processors will become faster, more versatile, smaller
(more highly integrated) and cheaper. Increasing compactness
and decreasing price also appears to be a continuing trend in
Winchester technology, and may be expected for optical disk
units as well.

Based on an assumed reduction of all DLT processing and semi-
conductor memories (occupying & SBC’s in the prototype) to
just one 'DLT-board” in 1990, the hardware costs for a DLT-
terminal may well come within the Dfl. 20.000-40.000 range
(projected retail price, not counting inflation).

N




DLT feasibility study 1983 page VI-24

—— s e e e e e [ e o e s

4,1. The choice of PROLOG.

ARs a vehicle for the development and maintenance of the large
amount of DLT-software (450-550 KB, not counting the lexicons
and the Al-extension), PROLOG has been chosen.

PROLOG is a non-procedural programming or specification
language, which originated in Europe in the early 1970°s. In
the last five years, it increasingly gained ground upan LISP,
with which it roughly shares the same application environment:
Artificial Intelligence (Al). PROLOG is being used for a
diversity of specific applications in industry as well as in
academic institutions now [Colmerauer, 1978; S:eredi, 1982;
Clark, 19821, in particular in:

- natural language interfaces

- expert systems implementation
~ knowledge acquisition systems
- computer-aided design

- modelling and simulation

- formal system specification

A big impact on the future importance of PROLOG has been made
by the start of the Japanese Fifth Generation project, in
which PROLOG will serve as the basis for a core language to be
embedded in all machines [Agapeyeff, 1982; Kowalski, 19821,

PROLOG can be used and has indeed been used for the
specification of ATN’s [Sciarone, 1983; Wielinga, 19821, and
the language is well suited for pattern matching and tree
structure aperations [McDermott, 19801.

Interpreters are available for FDP-11, VAX and Z80-based hard-
ware [Goodall, 19831 and under development for the Motorola
68000. In addition to interpreters, also compilers exist or
are being developed. lmplementation languages include C, CDLZ2
[Szeredi, 19811 and FROLOG itself, the latter usually to
implement FROLOG extensions,

Programming environments built around PROLOG (such as MFROLOG
[kbves, 19821} support modular programming and testing, and
offer advanced file handling and editing facilities.

A comparison between PROLOG and LISF [Warren, 19771 revealed
that, without a significant loss in efficiency, FROLOG
programs are generally more compact and transparent.




DLT +easibility study 1983 page VI-27

As a toal for DLT development, PROLOG will provide an inter-
face to the participating linguists, who will use it as their
standard method to specify grammars, tree structures, micro-
contextual patterns etc., without being distracted by computer-
related programming details and peculiarities. Similarly,
PROLOG can be used to specify the structure of dictionary
entries, valency subentries etc. [so far as this does not
collide with the take-over of the dictionary-building tool
COMSKEE from Saarbr@cken, as suggested in Chapter VII, W.P.
[lal.

Thus, in accordance with the nowadays widely adhered principle
of separation between linguistic data and algorithmic proces-
ses [Hutchins, 19821, the choice of PROLOG aims at long~term
ease of updating and maintenance.

4,2. Practical considerations.

To develop, produce and distribute DLT ’systems’, clearly a
powerful software development facility will be needed.

After several years of intensive initial development of a
first set of SL- and TL-modules, this facility could play the
role of a "DLT software support and distribution center’, in
addition to the development of further language—-modules.

The development machine must be capable of:

X creation, compilation etc. of programs in PROLOG;
¥ running translation software for test purposes;

¥ running various linguistic development support
sottware;

X containing the large dictionaries and grammars
for all supported languages;

¥ distibution of new software and dictionaries to
DLT users, by means of optical disk or Winchester
cartridge;

¥ distribution of updates by means of data communications
{e.g. X29).

For these purposes a machine of the 32-bit ’super-mini’® class
(DEC VAX, SEL 32, etc.) would be suitable - with a large
amount of backing store: currently estimated at basically
100MB, plus another plus 10OMB for each language supported.
Also the required number of terminals will depend on the
number of lanquages being developed: 2 terminals for general
software development, plus another 2-3 per language (taking

Rl



DLT feasibility study 1983 page VI-28

into account lexicon build-up by interactive data entry).

In addition to a Winchester disk of (for instance) 300 MB, a
small Winchester or optical disk, similar or equal to the one
proposed for the prototype terminal [see sections 1.2 and 31,
should also be available on the development machine.

Moreover, a line connection directly to the prototype terminal
should be provided for down-line software loading and testing.
Remote data-communication facilities (incl. X25), a line
printer and adequate back-up provisions (presumably a tape
drive) should complete the development hardware.

As to software, UNIX is recommended as time-sharing operating
system, because of its proven excellence and its increasingly
wide acceptance [Tanenbaum, 1982; Evanczuk 1983]. Where
needed, C (which normally goes with UNIX) can be used.

The choice of PROLOG as a tool for DLT linguistic software
development has already been mentioned [see 4.1]. Some of the
facilities included in a PROLOG software package (e.g. edi-
ting, file handling) may overlap with UNIX facilities, but
this should cause no problems.

Finally, a cross—assembly/link facility for the target machine
(MC&BOO0) of the terminal prototype will be necessary. The
prototype itself should be provided with a real~-time multi-
processor operating system, down-line loading and data commu-
nications software (X235, Ethernet). It should have its own
debugging facilities and a compiler/assembler for low-order
systems programming.




