[From: A.Zampolli, N.Calzolari (eds.) Computational and mathematical linguistics.
Proceedings of the International Conference on Computational Linguistics, Pisa, 1973, vol.Il
(Firenze: Olschki, 1980)]

CHrisTiaAN Borter

TOWARDS AN ADAPTATIVE AND INTERACTIVE SYSTEM
IN AUTOMATIC TRANSLATION

The models of the A.T. systems generally comsist in two kinds:

— some divide the operation of translation in specialized, inde-
pendent and successive phases;

— the others consider translation as a unique complex operation.

The models of the first kind present the advantage of easy con-
ception and allow to implement successively the different informatic
tools adapted to each stage. The C.ET.A.’s stages (B. Vauquors, 1967)
for instance were the morphological analysis, the syntactical analysis,
the transformation into an intermediate, or ‘pivot language’, the
transfer and the synthesis. On the other hand, the models of this kind
provide one algorithm for each stage, and the user can give the data
(grammars, dictionaries) independently. The best example of this
tendency is given by the TAUM project (1971), which uses a single
informatic tool and a single algorithm, the Q-system. It is generally
difficule to modify the algorithm in such systems.

However, the models of the second kind offer the advantage of
flexibility; as a whole, the process of translation is described step by
step, allowing exceptions to be treated case by case. This often forbids
the separation of the linguistic tool from the linguistic data, hence
one has to modify the program every time the data change. The models
Folcrum 1 et it due to P. L. GArvIN (1967) are good examples of this
situation.

The aim of this paper is to propose a model which allies the conspicu-
ousness and the relative ease of implementation of the models of the
first kind to the flexibility of those of the second one, while adding
some other properties.

As a matter of fact, our aim is to build 2 tool which might simulate
a wide collection of different translation strategies’, ranging from
the word-by-word translation to the sentence by sentence, or paragraph
by paragraph translation and including the  quick translation ’, analo-
gous to the operation performed by human interpreters.



732 CHRISTIAN BOITET

In section 1 we'll present the basic notions, followed by a very
anthropomorphic description of the proposed model and a sketch of
the possible practical developments. Section 2. will give some precisions
about networks in order to clarify section 3., (which will present in
a more detailed manner the new tools of the models, especially the
* algogrammar’).

1. FIRST APPROACH

1.1. Basic #notions.

We are interested in the following problem: given a text written
in a certam natural language, the source language’, translate it auto-
matically into another language, the ‘target’ language. We suppose
the source text is given on a magnetic tape containing only the text
and edition markers. _

We don’t allow any pre-analysis by hand, and don’t care how we
get this magnetic tape. One could note the increasing use of such tapes
by editors, which somewhat decreased our interest in optical readers,
for the sake of fiability. However, the task of translating a source text
in which there are impression errors, as in a real situation, is very in-
teresting and opens possibilities towards mechanical oral translation.

By “text” we design a string of characters, including the ordinary
alphabet, the blank and special edition markers (type of alphabet,
upper- andfor lower-case, paragraph ...}

A “form ” is a string of alphanumeric characters delimited by two
blanks.

The “ morphological analysis” of a form consists in finding in a
dictionary the root(s) it is derived from, and the derivation type, char-
acterised by the value of certain variables.

For example, the number variable NBR could have the singular
and plural values, SNG and PLU, which we would schematically
denote by NBR : = (SNG, PLU). If we consider that the lexical unit
(UL) of a form is a value of the variable UL, the total result of the
analysis is a “ variable mask ™ containing the values of the different
variables. A form can easily accept several morphological analyses {can,
use, ...}). Such a form is morphologically ambiguous.

The * syntactical analysis ” of a group of forms consists in building
one or several tree stuctures where the forms of the group appear at



TOWARDS AN ADAPTATIVE AND INTERACTIVE SYSTEM 733

certain nodes, in order to represent the links between the different
forms. In general, we can normally distinguish between the “ consti-
tuent structures” where the forms appear on the leaves of the tree,
and the “dependency structures ”, where those forms appear on all
the nodes. For example, the analysis of the group John eats the bread
would give:

sentence ' cals
verb

subject verb  complement John bread

/\ subject object

article  poun

| I the

Johu eats the bread determinative
constituent structure dependency structure

One could remark that in the field of A.T., the search for such
structures has more and more given place to the search of “deep ™
structures, since the sixties.

“ To find the deep structure (* pivot’) of a group of forms " consists
in building one or several tree structures representing the elementary
enunciations appearing in the group and their links. The previous
example would give only one such enunciation

sentence
Cats
ARG1 AK\GZ
John bréad

(Not to be confused with Chomsky’s deep structures).

Every node of all these tree structures is labelled by a variable mask.
We only give here the values of one or two variables.

In order to transfer such a tree structure one must find, in a bilingual
dictionary, the UL of the target language corresponding to the source
UL appearing on the tree, replace the first ones by the second ones
and if necessary execute some structural transformations (expressions).



734 CHRISTIAN BOITET

The synthesis of the linguistic tree-structure is the converse of its
analysis, that is the transformation of the tree in a string of forms,
which is the °surface’ expression of the structure.

1.2, Anthropomorphic presentation of the model,

The proposed system can be thought of as a controller, or monitor,
together with specialists (modules) of the different operations used in
a translation process. We add an operation of automatic updating to
the operations mentioned in 1.1., so as to avoid the necessity of modi-
fying the linguistic data of the system after each tIy On 2 new corpus.

The monitor corresponds with the modules by sending them com-
mands and receiving their responses. It can also communicate with
an outside “oracle’, the user, in order to allow external interventions
during the treatment.

Let us present the different modules and the monitor.

1.2.1. The morphological analyser.

This analyser works on a string of forms. Its clementary action
consists in analysing a form, denoted by C, and in linking the different
solutions found for C to the solutions found for the preceding form,
PL. It uses dictionaries and a grammar which can include (linking)
conditions on the four preceding forms, P1, P2, P3 and P4, and on
the following form, S. If a form admits no solution, one can modify
it, add items to the dictionaries or continue.

Schematically, the output of the analyser can be represented as a
graph where the nodes on the same vertical bear the different solutions
produced for the form written below.

The sentence Le grond lit le livie would then yield, with appro-
priate grammar and dictionaries:

/,(Pronoun) Adjective  Verb Pronoun_—-_.Vcrb\.S

\‘Articlc-——--Substantivized Noun a——sArticie —+Noun/
adjective

E



TOWARDS AN ADAPTATIVE AND INTERACTIVE SYSTEM 735

1.2.2. The algogrammar.

This tool allows the finding of a “course’ of a *transition and
ruption network ’ compatible with a chain-graph.

For the linguistic application, the chain-graph is the output of the
morphological analyser. The transition and ruption network’ is
written by the linguist. It is analogous to W. A. Woobs’s *“ augmented
transition networks ” (1970}, in as much as its arcs bear conditions and
actions. It differs from it by two features:

-~ it doesn’t include its own searching and stack controlling al-
gorithm: the monitor commands its running from the outside;

—- It includes numerical registers and functions associated with the
arcs enabling the linguist to control the search and to value the current
analysis. '

In contrast to W. A. Woons’s (1970) and T. WiNoGraD’s {1971)
systems, the algogrammar does not include its own algorithm: the
search (that is, the way of progressing through the choice tree) is de-
termined from the outside. Hence, the algogrammar can admit a whole
family of such algorithms.

As a matter of fact, an clementary action of the algogrammar is
a simple stack operation. The stack used is a linear representation of
the partial analyses done so far.

Let us give a very simple representation of the noun phrase in French:

GN
article noun
(4

(2
nowny,* f.
adjcctik @/ adjecnive

The algogrammar allows the building, step by step, of a relatively
‘low " structure of the recognized groups: for instance, the group le

petit cheval blane could yield:

Art. 4@ Adj  Adj

l | | l

le cheval petit blanc




736 CHRISTIAN BOITET

As in W. A. Woobs (1970), we can already obtain a uniform re-
presentation for different surface structures at this level,

1.23.  The transformer.

The transformer realizes changes in a tree by means of a transfor-
mational grammar, This tool allows the movement from the syntactical
structure to the deep structure, or perhaps even directly from the sur-
face string structure, to the deep structure. A very classical example is
the obtaining of the same deep structures from the {different) syntactical
analyses of two equivalent sentences, the first in the active form and
the second in the passive form.

Example:
/g( cat
verbMactive verb, passive
vhn
Jehu bread bread Jel
noun noun noun noun
subject object subject complement

The transformation consists in transforming subject and object into
ARG1 and ARG?2 if the verb is active, or into ARG2 and ARG! if
the verb is passive, so as to obtain:

eat
pre/d\icatc
Jokn a bn;ed
ARG1 ARG2

The command of the transformer consists in giving it a transfor-
mational grammar, that is a set of transformation rules and the way to
apply them, and a tree to be transformed.

It answers by giving the resulting tree.

1.2.4. The translater.

The translater is given by a tree representing the analysis of a group
of forms at a certain (e.g. morphological, syntactical or deep) level.
Using information about the n last groups given before, it lets the
group wait or immediately transfers it.



TOWARDS AN ADAPTATIVE AND INTERACTIVE SYSTEM 737

Hence, the ‘interpreter’s tricks* can appear here: 2 human inter-
preter translates group by group, often before the whole sentence is
finished, but in certain cases he modifies the order of the groups. Let
us for example consider the German sentence: den Feind hatte er schon
gesehen, als er ankam. The translater can translate it by He had already
seen the enemy when he arrived, even if only the analysis of the groups
but not of the whole sentence had been performed.

The transfer of a group consists in two stages. During the first one,
possibly optional, one looks for the expressions of the group occuring
in the bilingual dictionary, transfers the lexical units and executes the
structure’s transformations attached to the transition form the “ source ”
expression to the ‘ target’ expression. In the second stage, one transfers
all the *source’ lexical units Jeft and possibly modifies the value of
certain variables according to the dictionary.

The translater answers that it will wait or outputs the result of
the transfer, which is in input form for the generator,

1.2.5. The generator.

Once a group is analysed and transferred, it can again pass through
structural transformations in order to prepare its output in the target
language in a linear form. For example, one transforms the structure
so that a certain string of nodes of the tree corresponds to the mor-
phological analysis of the target group. This * certain string ™ can be,
for instance, to ‘ word of the leaves’, that is the string of the terminal
nodes, or, using any enumeration of the nodes, the substring of nodes
verifying a certain condition. This enumeration can be calculated using
weights, as did the C.ET.As generator.

For instance, the generator could be given such structures as:

scntence efa\t
verb, 3rd person
sub_llect verb complement  or indicative, present
John eat the bread John bread
- . - I
proper noun verb, indic. article noun  proper noun noun
male present  singular singular male singular
singular ~ 3rd person _ singular {
the
article

singular



738 CHRISTIAN BOITET

The aim of the generator is to transform the given tree into a string
of variable masks, and this string into a string of words of the target
language, using rules and dictionaries written by the linguist and anal-
ogous to those of the morphological analyser. The rules must akso
allow the use of the restricted context, in order to take care of elisions
or contractions {/ in French, don’¢ in English, fm in German).

1.2.6. The learner.

This module has different tasks of different complexities. First of
all, it allows the user to introduce new data during the treatment,
that is for example new indexings of words, or new equivalents.

It can also increment certain counters referring to the use of certain
parts of the other modules, so as to be able to speed up parts of the
treatment. If; for instance, an analyser uses rules in a certain order, it
can reorder them according to their frequencies.

A third task of the leamner is to modify parameters related to the
control of a module. Hence, the learner can modify weights associated
to the transitions of the algogrammar, so as to adapt it to the corpus
being translated, that is to give preference to the frequent constructions,
which will be tried first.

Another task could be the construction of hypothetical transitions
of the algogrammar with the use of the past failures, trying to generalize
the “break-points’. However, it seems now very difficult to realize,
and, on the other hand, the philosophy of the system is more to begin
with a linguistic basis as sure and as complete as possible and adapt it
according to the results than to try to build grammars with the usc
of a collection of correct sentences.

1.2.7. The conserver.

This module is intended to keep certain results of the treatment
of the 1 groups preceding the processed group, so as to allow the search
for antecedents and transmissions information concerning, for example,
the ‘target words* used in the translation, 5o as to refine the trans-
lation’s style! ‘ ST

Hence, the conserver may be used in the analysis as well as in the

synthesis.



TOWARDS AN ADAPTATIVE AND INTERACTIVE SYSTEM 739

Another use of the conserver can also be to keep the two or three
‘better * {from the system’s point of view) translations of a group in
case the user refuses the first proposed. '

1.2.8. The transmitter.

This module transmits to the user the system’s messages and is
intended to receive the user’s messages, to verify their correctness and
in certain cases to remember them permanently.

If, for example, the user wants to index 2 new word, it must verify
the correctness of the new dictionary entry, keep it and send it to the
morphological analyser, which will compile it into a more compact
form and add it to its data,

The transmitter must also provide the user, if desired, with a trace

of the actions of a specified module. '

1.2.9. The monitor.

‘We arrive at our last module, which determines the strategy of
the translation, that is the way of chaining the actions of the previous
modules according to the user’s commands.

The monitor directs the system with the use of elementary actions
such as the call of a module, and of tests on the module’s answers. If
one wants to be able to simulate different strategies of translation, they
must correspond to certain commands of (or parameters given by)
the user, so that the monitor must also be able to test these commands
to determine its next move.

The linguist who writes the moniror begins hence with declar-
ations of the names and the values of the commands: with exactly the
same format as in the analysers and in the generator. He then writes
the monitor in an ALGor-like, but simple langage using only:

— elementary actions

— tests on the commands

— an interruption test

— branching facilities.

The interruption is a special signal indicating that the user wants
to interfer with the treatment, for example by changing his commands,

In such a system, which is also in a certain sense 2 model of trans-



740 CHRISTIAN BOITET

lation, the linguist could try different strategies and different degrees
of learning with the use of the same linguistic data.

These strategies could be, for example, the word by word trans-
lation, the ‘ quick translation’ (one begins to translate before having
even reached the end of the sentence), the stage-translation’ (the
CETA's strategy) or ‘ heuristic translation” (one tries to find the first of
all the correct best translations or whatever the linguist could imagine
to do with these tools).

1.3.  Possibilities of implementation.

This model tries to make use of the informatic tools developed by
the GETA, in certain cases with minor modifications. On the other hand,
certain modules, which will be briefly described in section 3., must
be implemented.

The first group includes the morphological analyser, the transformer,
the translater and the generator.

a) The morphological analyser currently in use in the era had
to be slightly modified in order to allow the insertion of new entries
to the dictionary during the analysis, the modification of an input form
and the output as a ‘chain-graph’. As a matter of fact, its output is
now the set of all possible * morphological strings ™ of each sentence
of the translation unit (about 500 words). These modifications are now
in progress,

by The cransformer now being implemented can be used as it is.

¢) The cera’s translater is not yet written, It is likely that one
would have to add to it the possibility to change the order of the

groups.
: d) The generator can be that of the cera.

The second group includes the algogrammar, the learner, the trans-
mitter and the monitor.

) The algogrammar, although its principle is directly inspired
by W. A. Woobs's Transition networks (1970), differs sensibly from
them and would require a new informatic tool allowing different
algorithms to explore the tree generated by a ‘ transition and ruption
network ” and a chain-graph (cf. sections 2 and 3).

b) The learner would be more simple to implement, but for
its last task. It essentially consists in tables of counters incremented



TOWARDS AN ADAPTATIVE AND INTERACTIVE SYSTEM 741

once a group is successfully parsed or translated, in a mechanism for
periodically updating the linguistic data andfor the control parameters
according to these tables, and in a set of files to keep trace of the sup-
plementary information supplied by the user during the treatment.

¢) The transmitter could be a very simple or very sophisticated
program of man-machine communication.

d) The monitor requires the description and the compilation of
a very simple language.

e) Of course one would have to write some auxiliary programs
not mentioned here becausé the linguist doesn’t use them directly.
Essentially, they would be the compilers, the loaders and the programs
to measure the efficiency of the system. ’

The modular conception of the system could allow the obtaining
of partial results even before modules like the learner or the conserver
are written.

2. NETWORKS

2.1. First definitions.
2.1.1. Network element.

A Network Element {N.E.) is a mapping ¢ from IN, into INZ
In the following text, we shail only consider finite N.E. {that is to
say Domp is finite), with one exception in part 2.5.4.

By m, and =, we shall denote the two canonical projections from
N2 into IN,.

Then, 6 =, - p is the *“ source-mapping ™ associated with ¢, and
T =7, * p is the “ target-mapping ”’ associated with p.
Domp = A(p) is the set of the “arcs™ of ¢.
7y (Imp) U wy(Imp) = Sp) is the set of the “ nodes " of p, where Inp
stands for range p.

If ne A(p), we say that the arc n links o{n) to t{n).
It is possible to represent a finite N.E. with a set of 3-uples of integers
of the form (n, p(v)), or with a planar graph.



742 CHRISTIAN BOITET

‘G

21.2. Some particular nodes.

Example:

TR
—_

RN
R0 e

-

—
SN

The set of the predecessors of a node s, denoted by PR(s), consists
of the nodes of p linked to s. In the same way, the successors of s are
the nodes to which s is linked.

Hence,

PR(s) = {t| (@n) [a(n) =
SU(s) = {¢] @n) [+(n) =

The next two properties are related to p as a whole. The origins of
e, Dfp), are the nodes with no other predecessor than themselves, and
the ends of p, F(p), are the nodes with no other successor than themselves.
Thus,
D(e) = {s| PR(s) < {s}}
Flp) = {s]1 SU(s) = {s}}

The entries of p, I(p), are the nodes without predecessors, and the
exits of p, Ofp), are the nodes without successors,
In the above example, 1 is an origin, 2 an exit and 3 an entry.

21.3. Ways and chains.

A “way” (path) of a N.E. p is an application y from an initial
segment of IN into A(p), that is a finite or infinite sequence of arcs
of p, such that: o :

(Vie Domy —{o}) [v - vy (-1} =6 - v (D]

A “chain” ofa N.E. g is way without loops, that is an one-one
way ‘of p.



TOWARDS AN ADAPTATIVE AND INTERACTIVE SYSTEM 743

In the above example, (9, 9, 2) is 2 way but is not a chain.
The length of a way v is of course set equal to | Domey |.

2.2. Network.
2.2.1. Isomorph:sms of N.E.

One can generally define 2 mapping f from FF into F’ E using two
mappings f,: E» E’ and f;: P-—-> F' (but not all f are definable in
that manner).

Then, fle) (fule)) = fal(e))- |

Hence, we will say that two N.E. p and ¢’ are “isomorphic™ if
there is a pair (£, &) of 1-1 mappings from IN into IN such that:

1) Dosmg’ —-E,I(Domp) '
2) €0 =d 51_ &gs'f=‘f’_°€1

If furthermore &, and &, are recursive, p and p’ are “recursively
isomorphic 7.

The property (2 only asserts that the Image of the source is the
source of the image, and the target of the image is the image of the
target, or that the following diagram is commutative.

£
T = w '—g'
1P TP =0
»
91
—_—
Ty rp=o e =1
¥ & o

The (recursive) isomorphy is clearly an' equivalence relation on
N.E. '

A “network " is a class of recursive isomorphy of N.E.

An “ordered network ” is a non decreasing class of recursive iso-
morphy of N.E. (we add the condition that §; preserves the order
between the arcs).



744 CHRISTIAN BOITET

2.2.2. Invariance.

All the properties introduced for N.E. or nodes of N.E. are clearly
preserved by isomorphisms of N.E. In particular, the isomorphic image
of a way (resp. a chain) is also a way (resp. a chain), and the prede-
cessors and successors of a node as well as the origins and ends of an
N.E. are preserved by isomorphy. This follows from the fact that &
and &, are one-one.

2.3. Particular networks.

The following properties {of N.E)) are compatible with the iso-
morphy of N.E., hence we will say a network verifies the property
P if it-contains a N.E. verifying P.

If p is one-one, p is an *‘ unredundant ” N.E.

If v is one-one, p is divergent, or ““arborescent”,

If o is one-one, p is convergent (or antiarborescent).

If p and 7 are one-one, p is a ““linear ” NL.E.

If every way of p is a chain, p is loopfree. To verify this property,
it is enough to test the ways of length less than | S{p) .

An arborescent network can be represented using only its nodes,
as a ‘forest’ labelled by its nodes.

Example:
o
% will be rep:resentcd by: 1(3, 4), 5(2)

O——0)

Let be the transitive closure of the successor relation. In an arborescent
network, a “section ™ is a sequence % of nodes such that
1) it contains no pair of nodes related by D



TOWARDS AN ADAPTATIVE AND INTERACTIVE SYSTEM 745

2) every leave (exit) of is an (extended) successor of a node in &:
Ofp) = D(#)

A loop-free network with exactly one entry and one exit is a chain-
graph. In a chain-graph there is only one origin, the entry, and one
end, the exit. Furthermore, every node belongs to a chain linking the
entry to the exit. Such a chain will be called complete.

2.4, Labelled networks.

A N.E. labelled on a (finite) alphabet E is a 3-uple

{o) &1, )€ lN?iN*' X (E* IN,)* where | Domg | < oo, Dome, = Alp)
and Dome, = S(p)

An isomorphism of labelled N.E. p and p' is an isomorphism of
N.E. preserving the labels, that is to say:

g1 b= & € -§=g

The labelled (ordered or unordered) networks are thus defined
as in 2.2. They will be denoted by Efp).

2.5. Transition networks.
2.5.1. Definitions.

The predecessors of the ends of a network will be called the “ doors ”
of the network, P{p) «» will denote the empty word in E*. A * tran-
sition network " is a labelled network with one exit and possibly many
exits, such that the nodes with nonempty labels are exactly the origins
and that the labels of the arcs pointing to the exit are not labels of node:

1) 1 Of) | =1
2) (Vn) [ea(n) + ~ = ne Dp})]
3) & -7t (O)) N =:(S(p)) =0



746 CHRISTIAN BOTTET

Example:

2.5.2. Course of a transition network.

A course of a transition network is an arborescent networlc labelled
by Afe) such that, if K is a binary relation on E, :

1) every wayy = aa, a4y, ..., 4, of p is a course of p with “ origin”
D(y) =0 (45} and “end” Fly} = -:(a,,) _

2) 1£8 is a course of p, if &,(g) Ke,(D(8)) and if F(3) is a door
of p, then ¢(8) is a course of p with origin D{g(8)) = 6(q) and end
Fg@) =1l

3) If 8 and 3’ are courses of p and if F(3) = D(3'), then §, &
is 2 course of p with origin D(3, 8') = D(8) and end F((3, ') = F(%').



TOWARDS AN ADAPTATIVE AND INTERACTIVE SYSTEM 747

Example: Taking the above example, if K is the equality,
=1, 2 (4,5 (10,12 (16), 14), 8), 3 is a course of p

If we represent the same course using as labels not the names but
the labels of the arcs, we obtain a clearer, but possibly ambiguous re-
presentation::

o, S(a.l’ T(ﬁ]_, U("s): a&)’ a&)) dg

% (p,. E} will denote the set of all the courses of p.

2.5.3. Course compatible with a chain-graph.

 Let p be a transition network with labels in E*.

x, be a chain-graph with labels in F*, and R © E* X F* a relation
between labels.

Let 3 be a course of p and 8,, 3y, ..., 8, = T{p) be its terminal word
(the sequence of its leaves).

3 will be said “ compatible with ™ y if there is 2 way y of y linking
I{x) to Ofy) denoted by vs, Y1, -+.> Yus1» such that the labels of the arcs
of T{p) and the labels of the nodes of y are in R, that is to say:

(Vie [0, n]} [2.(3) Roey- v(y)

The set of the courses of ¢ compatible with x with reference to y
will be denoted by % (e, %, E, F, R).

Example: E=F, R is the equality. Let us take the same course
as in 2.5.2. and the following chain-graph, where only the pertinent
nodes are labelled.

The way v we looked for is y =1, 3, 6, 8, 9, 13, 16, 19.
The sequence of the labels of the nodes is a, @, a; 45 4, 45 4, that is exactly
the terminal word in the second representation of 3 in 2.5.2.



748 CHRISTIAN BOITET

2.5.4. Tree of choices generated by a transition network and a chain-graph.

% (p, E) and % (p, x, E, F, R} are generally infinite. As a matter
of fact, it is enough to have a configuration such as

T

@D

1

in p in order to increase §. Hence, we will define an acceptable course
of ¢ as an element of % (p, E} which contains no ‘left chain’ of length
greater than | D{g)| linking arcs p such that & (p) €2 (D(p)).
A “left~chain’ of an arborescence is 2 chain of nodes without elder
(left) brothers. We will denote by afp, E) the acceptable courses of p.
Hence, using the above example, one would accept

T(ag, T(as bo)), but not T{T(hs)).

afp, 1, E, F, R) will denote the set of the acceptable courses of
¢{E) compatible with 3 (F) with reference to R.

Although afp, E) can be infinite, it should be clear that afp, y,
E, F, R) is always finite, and that there is a simple algorithm for enu-~
merating it, namely to enumerate the complete chains of y (linking
I{x) to Ofx)) and, at every node, to construct the beginnings (in the
sense of the linear representation of courses) of courses of p(E) so far
acceptable and compatible with ¥ (F).

At O(x) one gets afp, %, E, F, R).

Example: A ‘beginning ’ of 8 (as in 2.5.2.is 1,2 (4, 5 (10)). It cor-
responds to the beginning 1, 3, 6 of a complete chain of .

The tree of choices of a transition network p(E) is the (possibly
infinite} arborescent network labelled with the beginnings of a(p, E)
so that the label of each node is an imrediate ~ that is to say, maximal
and proper-prefix of the labels of its successors.

The clements of afp, E) are the labels of the leaves of this tree,
which will be denoted by ¢(p, E).

The tree of choices generated by a transition network p(E) and
a chain-graph y(F), denoted by %{p, x. E, F, R), is the subtree of
#(p, E) such that the labels of its nodes are exactly the prefixes of the
elements of afp, x E, F, R). Hence the elements of afp, %, E, F, R)
appear on the leaves of €(p, x, E, F, R).



TOWARDS AN ADAPTATIVE AND INTERACTIVE SYSIEM 749

Furthermore, ¢(g, x, E, F, R) is finite.

%(e, %> E, F, R) is a priori partially ordered (through the successor
relation). It is equivalent to find a total ordering compatible with this
partial ordering and to give an enumeration of the beginnings of the
courses compatible with the prefix reladon. A ‘strategy * on an algo-
grammar will be the choice of such a possibly partial enumeration.

2.55. Transition and Ruption networks.

A Transition and Ruption’ Network, or TRN, is a transition net-
work p{E) together with two sets of labels G and H such that:
1) G< E & '{(G) =0 (only on nodes)
2) Hc E & ¢;!(H) =0 (only on arcs)
3) every H-labelled arc is on a way linking a G-labelled origin
to the exit.
The courses of a TRN are defined as in 2.5.2. using rules (1), (2)
(3) and the additional rule:
4) Let K' be a fixed binary relation on E, and let ¢ and p’ be two
courses admitting the sections:

& = Xgy K1y ares xp; Cois =eey Cm yﬁ’ yl’ ey yq'
& = Ay Jiy oaeny By h9 B LA bm

such that:

) &le) K' &) 0<i<n
meala)eG & g(heH

Then we obtain a new course 8" by inserting in § the sequence
of trees of &' of roots h, by, ... b, to the right of ¢,. That is to say:
if

8 =aclB, 4, ¢, v, v) S, then
8 =wcB, u, ¢, h(.), bs(.)y s B,{0), v ) 8

where «, B; v, 8 stand for strings of symbols appearing in the linear
writing of 8.
Intuitively, under certain conditions, we can ‘jump’ to A and

return later in the notmal course.

% (p, E) will denote the set of courses of the TRN, ¢(E, G, H).
As in 2.5.2., we define alp, E), €{p, E, G, H) and %{p, %, E, G, H, F)
which is again fnite.



750 CHRISTIAN BOITET

Example: Let us anticipate section 3. and give a small example on
an English sentence:

John gives bread to Peter and water to Jane.

Let us take:
G={R}, H={COO}
E={PH, GS, GV, CD, CI, GN, PR, NP, NM, AD, AR, VB}
Suppose we have obuained the following chain-graph representation:
NP VB NM PR NP COO NM PR NP

I« 5.5 . 5.5 — — —

. . - +« = .0
John gives bread to Peter and water to  Jane

Let p be:

PHGS _GV CD /CrI

R GS VB CD CI COO CD CI

D—E~O--O—~B~D—a

The part with entry @ corresponds to the ‘ ruption *. Applying
{4), one verifies that '

8" = PH(GS(GN(NP)), GV(VB), CD(GN(NM)), CI(PR, GN{NP)),
- COO, CD{GN(NM)), CI(PR, GN(NP)))

is a compatible and acceptable course, with:

8 = PH(GS(GN(NP)), GV(VB), CD(GN(NM)), CI(PR, GN(NP)))
¥ = GS(GN), VB, CD(GN(NM)), CI(PR, GN(NP)), COO, CD(GN
(NM)), CI{PR, GN(NP))



TOWARDS AN ADAPTATIVE AND INTERACTIVE SYSTEM 751

With: dg, 4y, da, oy h, bg, bl’ bs = GS, VB, CD, CI, COO, CD, CI
Xgy Xpy vos Xp=Ya» »0rs Y =0
Eay €1y Cgy €g == GS, VB, CD, CI
K’ the equality relation.

3. THE NEW MODULES

3.1. The algogrammar.

The morphological analyser was presented elsewhere {(aTer, 1973).
We admit here it is possible to modify it in such a way that its output
is a chain-graph, constructible step by step reading the input text from
left to right. Hence we immediatly go ahead with the formal descrip-
tion of the algogrammar.

3.1.1.  Defnitions.

An algogrammar is a Transition and Ruption Network (TRN)
where the labels (in E) are of the form (¢, v, ¢, 4, M, C, A) and
£4(O(p)) = my(E). An arc will be called a * transition ”,

¢, v, §, a are four recursive primitive functions on registers, M is
the {(proper) “label ”, generally a variable mask, C is a condition and
A an affectation. '

The four functions are the control on the algorithms using the
algogrammar, '

The remaining is the linguistic part of the transition.

A strategy on an algogrammar is an algorithm for enumerating
the tree of choices generated by the algogrammar and any M-labelled
chain-graph. Such 2 strategy is essentially independent of the algogram-

niar,
3.1.2. Registers and labels.
The algogrammar is to be written by a linguist. He begins by de-

claring registers Ry, Ry, Ry, Ry, Ny, ooy N Ly, o, L.
Registers R; contain numerical values associated to the current



752 CHRISTIAN BOITET

course, Hence, it is possible to value partial analyses (beginnings of
courses), and the chosen strategy may use the weight of an analysis
in order to decide to go ahead or to drop it {permanently or not).

Registers Ry, R,, R,, Ry are mandatory. However, registers N,
and L, are free. registers N, contain numerical values (which may
be, for example, used to limit the depth of the analysis), and regis-
ters L, contain names (addresses) of groups.

At every step of the construction of an “analysis” of a chain-graph
{(compatible course}, Ry contains the address of the node causing the
last transition,

R, contains a weight C to be given to the transition to be tried

R4 contains the weight of the current partial analysis

R, contains the weight of the last transition.

e: {e} X Ry X m; N;— R, is used to calculate the “ initial weight ”
to give to the transition to be tried. ¢, is the * proper weight ” of the
transition.

v: m;N; > Ry calculates the weight of the course consisting of this
transition.

t: Ry X Ry X Ry — R, calculates the weight of the new partial
analysis obtained by adding this transition to the preceding partial
analysis.

a: Ry X Ry X Ry X mN; —» m;N; is used to modify the numerical
registets. :

M: is homogeneous with a part of the labels of the chain-graph,
for instance with the “ syntactical category ’ part of the variable-mask.

C is a condition on the values the variables of the group which
‘causes " the transition. .

A is an affectation, that is a function from R, X m,L; into m,L,
allowing the storing of parts of a structure and the building of new
structures. A is analogous to W. A. Woops’s BUILDQ function
(1970).

3.1.3. Linear representation of the search in a tree of choices.

We will call “search in a tree ™ any (possibly partial) enumeration
of the nodes of the tree compatible with the successor relation. It is
possible to write linearly any search in afp, E) as a string of 3-uples
(2, n, m), where _

« is the current node (corresponding to an arc of the algogrammar)



TOWARDS AN ADAPTATIVE AND INTERACTIVE SYSTEM 753

n is the index of the 3-uple
m s the index of its unique predecessor
Example:

DEEEEEHEEH="

through the paths: (4, B, C), (4, F), (4, B, D, E), (4, G, H).
Remark that the enumeration is partial.

3.1.4. The Mechanism.

A strategy on an algogrammar uses a stack which is the linear rep-
resentation of the partial analyses already tried. The stack can only
increase during the analysis of 2 chain-graph, and is emptied before
analysing a new one. For instance, the input text can be represented
by a string of chain graphs corresponding to sentences or paragraphs.

The elements of the stack consist of:

— the node Q of the chain graph where the course is arrived;

— the arc « of the algogrammar used to attain it;

— the node § of the algogrammar from which the course will
go on;

— a flag indicating if Q is the last of its brothers;

— a flag indicating if « is the last arc issued from o(x);

— a flag indicating if the analysis is complete or not;

— the values of the registers;

— a flag indicating whether the strategy drops the analysis at this
point permanently or temporarily or if all the possibilities have been
tried.



754 CHRISTIAN BOITET

The elementary actions of a strategy are of 3 kinds: to empty the
stack, to write 2 new element on its top or to go backward to an ele- .
ment and possibly to modify its flags. If one adds an element, it can
be the immediate successor of the topmost element (one continues the
curtent analysis) or of one of the elements in the stack {one drops the
current analysis and continues with another one at the point where
it was previously dropped).

The commands of the algogrammar are:

— to apply the first possible transition;

— to go to the first possible node of the chain-graph;

— to drop temporarily an analysis;

— to return to the last analysis temporarily dropped;

— to return to the last ‘ branching point’ (where another analysis
was possible);

— to give the mask of the group recognized, if any;

— to go on from the current point; ‘

—- to ‘put in the data’ the recognized group;

— to stop. '

The answers of the algogrammar are:

— the last node, the last transition and the weight of the {partial)
analysis;

~— the mask of the recognized group, if any;

~— the fact that one arrives to a ‘ pseudo-exit’ of the chain-graph
(recall it is constructed step by step), that is to say the morphological
analysis has not yet reached the end of the sentence (of the paragraph).

3.1.5. Storing in the data.

Essentially, the algogrammar examines one possibility at a time:
there is no parallel search. Hence, it is useful to have a way for storing
the (partial) results of an analysis in order not to repeat the same cal-
culation in several analyses. This is modeled by labelling the chain
graph on (F*)* rather than on F*, that is to say the nodes can bear
lists of variable-masks.

On the other hand, a group can ‘cover’ several nodes on a way
in the chain-graph. Hence, the labels of the chain-graph are rather
elements of (F* X S{x)*)*, that is to say we describe the way covered
by the group (with label in F*).



TOWARDS AN ADAPTATIVE AND INTERACTIVE SYSTEM 755

Example:
GN(1,2,3,4)
AR AD NM AD VB
I« > . 5 . 5> . 5. 5 . 30

1 2 3 4 5
le  petit garcon blond  boit

After having recognized a (sufficiently complex) group, one stores
it in the data, that is in the chain-graph.

There could be a problem if two group structures with the same
name can cover the same group.

The strategy must then look for another structure with the same
name. This search is possible because the “history * of the past analyses
for the group are in the stack. Furthermore, we can associate a flag
with a certain label in the label-list of a node in order to avoid looking
for another analysis satisfying the same conditions — if for example

this has already been tried.

3.1.6. Names for groups.

Every time 2 group is found and used (that is, it is * heavy ’ enough),
the algogrammar gives it a number. The different noun phrases of a
sentence would hence be called GN1, GN2, ...

This makes it possible to have the same name for the different struc-
tures of different levels associated with a group, and to use wanslations
already obtained in a (dropped) preceding analysis.

32, The learser.
3.2.1. Preliminary discussion.

E. M. Gorp (1967) has shown that it is impossible to find the grammar
of 2 regular language using only an enumeration of this language.
However, if one knows a language to be context-sensitive, one can
find a grammar of this language, “in the limit’, using an enumeration
of all the possible strings together with the value of the characteristic
function on each string (* informant presentation ’).



756 CHRISTIAN BOITET

As he points out, learnability is a property of classes of languages.
To the best of my knowledge, nobody has yet given the * class of natural
languages * — perhaps it is even impossible in terms of formal grammars,
and one has to formalize very precisely the notions of semantics and
communication to approach it.

For this reason as well as for praticability we do not consider a system
learing all from nothing, but one where linguistic data (dictionary,
grammars, weights...) representing a great bulk of knowledge in a
condensed form can be locally modified.

3.2.2. Learning in dictionaries.
3.2.2.1. Updating.

At running time the user must have the possibility of adding new
items to the dictionaries {on to auxiliary dictionaries). One of the tasks
of the learner is to merge these additions with the preceding diction-
aries,

3.2.2.2. Optimization.

Certain dictionaries can have a very simple structure, as for instance
the morphologic dictionaries. However, bilingual dictionaries have a
fairly complex structure, they can be viewed namely as trees labelled
on ‘strata’ (sce C. BorreT, 1973) called “ astrabonds ” when the labels
include weights.

The search for an equivalent may be oriented by these weights
and not exhaustive: one could be satisfied with the first correct
(w.r.t, given conditions} equivalent without going to the end of an
mwem.

The learner may then increment counters associated to given nodes
in the items when they are used in the treatment and finally change
the weights and reorder of the dictionary after a long enough pass on
a corpus.

Furthermore, if the dictionaries are very large, it can be useful to
have dictionaries specialized to certain domains and a ‘ basic ’ dictionary.
If the system works on a mathematical text, one would load the mathe-
matical and the basic dictionaries. Only in case a word is not found



TOWARDS AN ADAPTATIVE AND INTERACTIVE SYSTEM 757

would the system load the appropriate page of the large original dic-
tionary, and in case of success the learner can add the new item to the
specialized dictionary.

Let us finally remark that operations on dictionaries such as merging,
specialization, ..., can be realized by the transformer (see C. Borrer,
1973).

3.2.3. Learning in the algogrammar.

Labels of transitions in the algogrammar contain a weight or a
“ weight function ” C including a constant, the “ proper weight” C,.

The learner contains a set of counters associated with the transitions.
It can then increment them if the associated transitions have been used
in a successful analysis and finally calculate a new weight for a tran-
sition using Cy and the value of the counters associated to the tran-
sitions issued of the same source.

Hence, this modification of the weight will modify the order in
which the analyses are tried so that correct analyses are generally tried
first, which is very interesting for strategies looking for a * first correct
solution °.

3.3. Conserver.

It is only a storing mechanism using a given space cyclically.

3.4,  Transmitter,

It is a program working as an interface between the monitor and
the user. It can be fairly simple if the messages are predetermined or
use analysers and possibly deductive algorithms in a sophisticated version,
as in recent man-machine systems (T. WiNocraD, 1971).

3.5. Monitor.

It is a finite statc automaton written by a linguist. Its language
contains:



758 CHRISTIAN BOITET

— names and values of the commands (declared by the linguist);

— labels;

— logical operators 4, a, 7, =, #;

— conditionals and go to statements;

— elementary actions: tests or commands or operations on the
variables;

— nurmerical variables {cut-points).

Example of a command declaration.:

MODE = (AUTO, CONV)
QUALITY := (HI, LO, MI)
OPTION  := (LEARNING, NOLEARN)

STRATEGY: = (WORD BY WORD, STRING, QUICK,
INTERACT)
CONTEXT :=(1,2,3,4,5 6,78 9, 10)

Example of instruction:
If MODE == AUTO then go to FIRST else TRANSMITTER (MSG)

To write a monitor is to write 2 whole set of strategies of translation
corresponding to different values of the commands.

CONCLUSION

To implement such a model would make it possible to use the flex-
ibility of programming at the highest level without the difficulties of
first generation systems, and to allow specialists in translation to try
different ‘ models of translation ’.

Let us finally remark that we don’t know if the splitting of the
process (corresponding to the different modules) described here cor-
responds in any way to the human way of translating. We can only
rely on linguistic studies and intuition as we do not know of any physio-
logical results in this field. But it is our hope that such 2 model, once
implemented, could give new insight into the very process of trans~
lating.



REFERENCES

C. Borrer, Astrabonides ef Dictionnaires,
Document G.E.T.A., Grenoble, Février
1973.

P. L. GawrviN, The Fulorum Syntactic
Asalyser for Russian, in 2° conference
internationale sur le Traitement Awuto-
matique des Langues, rapport n. 5,
Grenoble, 23-25 Aoiit 1967.

E. M. Goip, Language Ideutification in
the Limit, I & C, X (1967}, pp. 447-
474,

B. Vauvquos, Le Systéme de Traduction

Automatique du c.ET.A, Document
CETA, 1967.

T. WINOGRAD, Procedures as a Represen-
tation for Data in a Computer Program
for understanding natural languages, Cam-
bridge (Mass.), 1971.

W. A. Woops, Transition Network gram-
mars for natural language analysis, in
« Communications of the acme, XIII
(1970 10.

ATEF, Systdme & Analyse de Textes en
Eiats Finis, Document G.E.1.A., Gre-
noble, Février 1973,

TAUM T1, Grospe de Recherches pour la
Traduction Automatique, Université de
Montréal, cNr, Janvier 1971,



