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Abstract. The phrase–based statistical machine translation (PBSMT) model can be viewed as a
log-linear combination of translation and language model features. Such a model typically relies
on the phrase table as the main resource for bilingual knowledge, which in its most basic form
consists of aligned phrases, along with four probability scores. These scores only indicate the co-
occurrence of phrase pairs in the training corpus, and not necessarily their semantic relatedness.
The basic phrase table is also unable to incorporate contextual information about the segments
where a particular phrase tends to occur. In this paper, we define six new features which express
the semantic relatedness of bilingual phrases. Our method utilizes both source and target side
information to enrich the phrase table. The new features are inferred from a bilingual corpus by
a neural network (NN). We evaluate our model on the English–Farsi (En–Fa) and English–Czech
(En–Cz) pairs and observe considerable improvements in the all En↔Fa and En↔Cz directions.

Keywords: Statistical machine translation, phrase embeddings, incorporating contextual infor-
mation.

1 Introduction

The process of PBSMT can be interpreted as a search problem where the score at each
step of exploration is formulated as a log-linear model (Koehn, 2010). For each candi-
date phrase, the set of features is combined with a set of learned weights to find the best
target counterpart of the provided source sentence. Because an exhaustive search of the
candidate space is not computationally feasible, the space is typically pruned via some
heuristic search, such as beam search (Koehn, 2010). The discriminative log-linear
model allows the incorporation of arbitrary context-dependent and context-independent
features. Thus, features such as those in Och and Ney (2002) or Chiang et al. (2009)
can be combined to improve translation performance. The standard baseline bilingual
features included in Moses (Koehn et al., 2007) by default are: the phrase translation
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probability φ(e|f), inverse phrase translation probability φ(f |e), direct lexical weight-
ing lex(e|f) and inverse lexical weighting lex(f |e).1

The scores in the phrase table are computed directly from the co-occurrence of
aligned phrases in training corpora. A large body of recent work evaluates the hypothe-
sis that co-occurrence information alone cannot capture contextual information as well
as the semantic relations among phrases (see section 2). Therefore, many techniques
have been proposed to enrich the feature list with semantic information. In this paper,
we define six new features for this purpose. All of our features indicate the semantic
relatedness of source and target phrases. Our features leverage contextual information
which is lost by the traditional phrase extraction operations. Specifically, in both sides
(source and target) we look for any type of constituents including phrases, sentences or
even words which can fortify the semantic information about phrase pairs.

Our contributions in this paper are threefold: a) We define new semantic features
and embed into PBSMT to enhance the translation quality. b) In order to define the new
features we train bilingual phrase and sentence embeddings using an NN. Embeddings
are trained in a joint distributed feature space which not only preserves monolingual se-
mantic and syntactic information but also represents cross-lingual relations. c) We indi-
rectly incorporate external contextual information using the neural features. We search
in the source and target spaces and retrieve the closest constituent to the phrase pair in
our bilingual embedding space.

The structure of the paper is as follows. Section 2 gives an overview of related
work. Section 3 explains our pipeline and the network architecture in detail. In Section
4, experimental results are reported. We also have a separate section to discuss differ-
ent aspects of embeddings and the model. Finally, in the last section we present our
conclusions along with some avenues for future work.

2 Background

Several models such as He et al. (2008), Liu et al. (2008) and Shen et al. (2009) studied
the use of contextual information for statistical machine translation (SMT). The idea is
to go beyond the phrase level and enhance the phrase representation by taking surround-
ing phrases into account. This line of research is referred as discourse SMT (Hardmeier,
2014; Meyer, 2014). Because NNs can provide distributed representations for words
and phrases, they are ideally suited to the task of comparing semantic similarity. Unsu-
pervised models such as Word2Vec2 (Mikolov et al., 2013a) or Paragraph Vectors (Le
& Mikolov, 2014) have shown that distributional information is often enough to learn
high-quality word and sentence embeddings.

A large body of recent work has evaluated the use of embeddings in machine trans-
lation. A successful usecase was reported in (Mikolov et al., 2013b). They separately

1 Although the features contributed by the language model component are as important as the
bilingual features, we do not address them in this paper, since they traditionally only make use
of the monolingual target language context, and we are concerned with incorporating bilingual
semantic knowledge.

2 http://code.google.com/p/word2vec/
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project words of source and target languages into embeddings, then try to find a trans-
formation function to map the source embedding space into the target space. The trans-
formation function was approximated using a small set of word pairs extracted using an
unsupervised alignment model trained with a parallel corpus. This approach allows the
construction of a word-level translation engine with very large monolingual data and
only a small number of bilingual word pairs. The cross-lingual transformation mecha-
nism allows the engine to search for translations for OOV (out-of-vocabulary) words by
consulting a monolingual index which contains words that were not observed in the par-
allel training data.The work by Garcia and Tiedemann (2014) is another model follows
that the same paradigm.

However, machine translation (MT) is more than word-level translation. In Martı́nez
et al. (2015) word embeddings were used in document-level MT to disambiguate the
word selection. Tran et al. (2014) used bilingual word embeddings to compute the se-
mantic similarity of phrases. To extend the application of text embedding beyond single
words, Gao et al. (2013) proposed learning embeddings for source and target phrases
by training a network to maximize the sentence-level BLEU score. Costa-jussa et al.
(2014) worked at the sentence-level and incorporated the source side information into
the decoding phase by finding the similarities between phrases and source embeddings.
Some other models re-scored the phrase table (Alkhouli et al., 2014) or generated new
phrase pairs in order to address the OOV word problem (Zhao et al., 2014).

Our network makes use of some ideas from existing models, but also extends the
information available to the embedding model. We train embeddings in the joint space
using both source and target side information simultaneously, using a model which is
similar to that of Devlin et al. (2014) and Passban et al. (2015b). Similar to Gao et
al. (2013) we make embeddings for phrases and sentences and add their similarity as
feature functions to the SMT model.

3 Proposed Method

In order to train our bilingual embedding model, we start by creating a large bilingual
corpus. Each line of the corpus may include:

– a source or target sentence,
– a source or target phrase,
– a concatenation of a phrase pair (source and target phrases which are each other’s

translation),
– a tuple of source and target words (each other’s translation).

Sentences of the bilingual corpus are taken from the SMT training corpus. Accordingly,
phrases and words are from the phrase tables and lexicons, generated by the alignment
model and phrase extraction heuristic used by the SMT model. This means that the
bilingual corpus is a very large corpus with size of 2 ∗ |c| + 3 ∗ |pt| + |bl| which |c|
indicates the number of source/target sentences, |pt| is the size of the phrase table and
|bl| is the size of the bilingual lexicon.

By use of the concatenated phrases and bilingual tuples we try to score the quality
of both sides of the phrase pair, by connecting phrases with other phrases in the same
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language, and with their counterparts in the other language. Section 3.1 discusses how
the network benefits from this bilingual property.

Each line of the bilingual training corpus has a dedicated vector (row) in the embed-
dings matrix. During training embeddings are updated. After training, we extract some
information to enrich the phrase table. First we compute the semantic similarity be-
tween source and target phrases in phrase pairs. The similarity shows how semantically
phrases are related to each other. The Cosine measure is used to compute the similarity:

similarity(Es, Et) =
Es.Et

||Es|| × ||Et||

where Es and Et indicate embeddings for the given source and target phrases, respec-
tively. We map Cosine scores into the [0,1] range. This can be interpreted as a score
indicating the semantic relatedness of the source and target phrases. The similarity be-
tween the source phrase and target phrase is the first feature and is referred as sp2tp.

Among source-side embeddings (word, phrase or sentence embeddings) we search
for the close match to the source phrase. There might be a word, phrase or sentence
on the source side which can enhance the source phrase representation and ease its
translation. If the closest match belongs to a phrase, probably that is a paraphrased
form of the original phrase and if the closest match belongs to a word, probably that is
a keyword which could enhance the word selection quality. We refer to this source-side
similarity score as sp2sm.

We also look for the closest match of the source phrase on the target side. As we
jointly learn embeddings, structures that are each other’s translation should have close
embeddings. We compute the similarity of the closest target match to the source phrase
(sp2tm). We compute the same similarities for the target phrase, namely the similarity
of the target phrase with the closest target match (tp2tm) and the closest source match
(tp2sm). The source and target matches may preserve other type of semantic similarity
(sm2tm), therefore these features should add more information about the overall quality
of the phrase pair. All new features are added to the phrase table and used in the tuning
phase to optimise the translation model. Figure 1 tries to clarify the relation among
different matches and phrases.

sm2tm  

tp2tm  sp2sm  

sp2tp  

source phrase 

source embeddings 

target phrase 

target embeddings 

Fig. 1. sp, tp, sm and tm stand for source phrase, target phrase, source match and target match,
respectively. The embeddings size for all types of embedding are the same. The source/target-
side embedding could belong to a source/target word, phrase or sentence. The labels of arrows
indicate the Cosine similarity between two embeddings which is mapped into the [0,1] range.
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3.1 Learning Embeddings

Our network is an extension of Le and Mikolov (2014) and Passban et al. (2015b). In
those methods, documents (words, phrases, sentences and any other chunks of text) are
treated as atomic units in order to learn embeddings in the same semantic space as the
space used for the individual words in the model. The model includes an embedding
for each document which in our case may be a monolingual sentence, a monolingual
phrase, a bilingual phrase pair or a bilingual word pair. During training, at each itera-
tion a random target word (wt) is selected from the input document to be predicted at
the output layer by using the context and document embeddings. The context embed-
ding is made by averaging embeddings of adjacent words around the target word. Word
and document embeddings are updated during training until the cost is minimized. The
model learns an embedding space in which constituents with similar distributional ten-
dencies are close to each other. More formally, given a sequence of Si = w1, w2, ..., wn

the objective is to maximize the log probability of the target word given the context and
document vector:

1

n

n∑
j=1

log p(wt
j |Cwt

i , Di)

where wt
j ∈ Si is randomly selected at each iteration. Di is the document embedding

for Si and Cwt

indicates the context embedding which is the mean of embeddings for
m preceding and m following words around the target word.

As previously mentioned, Si could be a monolingual sentence or phrase, in which
case wt and adjacent words are from the same language. In other words, the context
includes m words before and m words after the target word. Si also could be a con-
catenation of source and target phrases. In that case context words are selected from
both languages, i.e. m words from the source (the side from which the target word is
selected) and m words from the target side. Finally Si could be a pair of source and
target words where Cwt

is made using the target word’s translation. The word on one
side is used to predict the word on the opposite side. In the proposed model m is the
upper bound.

Table 1. Context vectors for different input documents. wt is better and m = 5. Italics are in
Farsi.

D1 know him better than anyone
Cbetter

1 [know, him, than, anyone]s
D2 know him better than anyone . āv rā bhtr āz hrks myšnāsy
Cbetter

2 [know, him, than, anyone]s + [āv, rā, bhtr, āz, hrks]t
D3 better . bhtr
Cbetter

3 [bhtr]t
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Table 1 illustrate some examples of the context window. The examples are selected
from the En–Fa bilingual corpus (see Section 4).3 In C1 the context window includes
2 words before better and 2 words after. In this case the target word and all other
context words are from the same language (indicated by a ‘s’ subscript). In the second
example the input document is a concatenation of English and Farsi phrases, so C2

includes m (or fewer) words from each side (indicated with different subscripts). In the
final example the input document is a word tuple where the target word’s translation is
considered as its context.

As shown in Huang et al. (2012), word vectors can be affected by the word’s sur-
rounding as well as by the global structure of a text. Each unique word has a specific
vector representation and clearly similar words in the same language would have sim-
ilar vectors (Mikolov et al., 2013a). By use of the bilingual training corpus and our
proposed architecture we tried to expand the monolingual similarities to the bilingual
setting, resulting in an embedding space which contains both languages. Words that are
direct translations of each other should have similar/close embeddings in our model. As
the corpus contains tuples of < wordL1

, wordL2
>, embeddings for words which tend

to be translations of one another are trained jointly. Phrasal units are also connected
together by the same process. Since the bigger blocks encompass the embeddings for
words and phrasal units they should also have representations which are similar to the
representations of their constituents.

3.2 Network Architecture

In the input layer we have an embedding matrix. Each row in the matrix is dedicated
to one specific line in the bilingual corpus. During training embeddings are tuned and
updated. The network has only one hidden layer. A Softmax layer is placed on top of the
hidden layer to map values to class probabilities. Softmax is a vector-valued function
which maps its input values to the [0,1] range. The output values from the Softmax
can be interpreted as class probabilities for the given input. The Softmax function is
formulated as follows:

P (wt
j |Cwt

i •Di) =
exp(hj .wj + aj)∑

j′∈V exp(hj .wj′ + aj′)

Intuitively, we are estimating the probability of selecting the j-th word as the tar-
get word from the i-th training document. The input for the Softmax layer is h =
W (Cwt

i •Di) + b, where W is a weight matrix between the input layer and the hidden
layer, b is a bias vector and • indicates the concatenation function.wj is the j-th column
of another weight matrix (between the hidden layer and the Softmax layer) and aj is a
bias term. The output of Softmax, V ∈ R|V|, is the distribution probability over classes
which are words in our setting. The j-th cell in V is interpreted as the probability of se-
lecting the j-th word from the target vocabulary V as the target word. Based on Softmax
values the word with the highest probability is selected and the error is computed ac-
cordingly. The network parameters are optimized using stochastic gradient descent and

3 We used the DIN transliteration standard to show the Farsi alphabets;
https://en.wikipedia.org/wiki/Persian alphabet
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back-propagation (Rumelhart et al., 1988). All parameters of the model are randomly
initialized over a uniform distribution in the [-0.1,0.1] range. Weight matrices, bias val-
ues and word embeddings are all network parameters which are tuned during training.
The embedding size in our model is 200. Figure 2 illustrates the whole pipeline.

1
𝑛∑ 

w2 

w4 

w5 

w6 

w1 

Ds 

Cs
w3

 

h 

Target  
Vocab. 

w3 

Fig. 2. Network architecture. The input document is S = w1 w2 w3 w4 w5 w6 and the target
word is w3.

4 Experimental Results

We evaluated our new features on two language pairs: En–Fa and En–Cz. Both Farsi
and Czech are morphologically rich languages; therefore, translation to/from these lan-
guages can be more difficult than it is for languages where words tend to be discrete
semantic units. Farsi is also a low-resource language, so we are interested in working
with these pairs. For the En–Fa pair we used the TEP++ corpus (Passban et al., 2015a)
and for Czech we used the Europarl4 corpus (Koehn, 2005). TEP++ is a collection of
600,000 parallel sentences. We used 1000 and 2000 sentences for testing and tuning,
respectively and the rest of the corpus for training. From the Czech dataset we selected
the same number of sentences for training, testing and tuning. The baseline system is a
PBSMT engine built using Moses (Koehn et al., 2007) with the default configuration.
We used MERT (Och, 2003) for tuning. In the experiments we trained 5-gram language
models on the monolingual parts of the bilingual corpora using SRILM (Stolcke et al.,
2002). We used BLEU (Papineni et al., 2002) as the evaluation metric. We added our
features to the phrase table and tuned the translation models. Table 2 shows the impact
of each feature. We also estimated the translation quality in the presence of the all fea-
tures (we run MERT for each row of Table 2). Bold numbers are statistically significant
according to the results of paired bootstrap re-sampling with p=0.05 for 1000 samples
(Koehn, 2004). Arrows indicate whether the new features increased or decreased the
quality over the baseline.

4 http://www.statmt.org/europarl/
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Table 2. Impact of the proposed features.

Feature En–Fa ↑↓ Fa–En ↑↓ En–Cz ↑↓ Cz–En ↑↓
Baseline 21.03 0.00 29.21 0.00 28.35 0.00 39.63 0.00

sp2tp 21.46 0.43 ↑ 29.71 0.50 ↑ 28.72 0.37 ↑ 40.34 0.71 ↑
sp2sm 21.32 0.29 ↑ 29.74 0.53 ↑ 28.30 0.05 ↓ 39.76 0.13 ↑
sp2tm 21.40 0.37 ↑ 29.56 0.35 ↑ 28.52 0.17 ↑ 39.79 0.16 ↑
tp2tm 20.40 0.63 ↓ 29.56 0.35 ↑ 28.00 0.35 ↓ 39.68 0.05 ↑
tp2sm 21.93 0.90 ↑ 29.26 0.05 ↑ 28.94 0.59↑ 39.81 0.18 ↑
sm2tm 21.18 0.15 ↑ 30.08 0.87 ↑ 28.36 0.01 ↑ 39.99 0.36 ↑

All 21.84 0.81 ↑ 30.26 1.05 ↑ 29.01 0.66 ↑ 40.24 0.61 ↑

Results show that the new features are useful and positively affect the translation
quality. Some of the features such as sp2tp are always helpful regardless of the trans-
lation direction and language pair. This feature is the most important feature among
others. The sm2tm feature always works effectively in translating into English and the
tp2sm feature is effective when translating from English. In the presence of all features
results are significantly better than the baseline system in all cases. Some of the features
are not as strong as the others (tp2tm) and some of them behave differently based on
the language (sp2tm).

5 Discussion

Numbers reported in in Section 4 indicate that the proposed method and features result
in a significant enhancement of translation quality, but it cannot be decisively claimed
that they are always helpful for all languages and settings. Therefore we tried to study
the impact of features not only quantitatively but also qualitatively. We mainly focus on
three issues in this section. First we show how the features change SMT translations.
Then we show ability of the network in capturing cross-lingual similarities and finally
we discuss the way we learn embeddings.

Based on our investigation, the new features seem to help the model determine the
quality of a phrase pair. As an example for the English phrase “but I’m your teammate”
in the phrase table, the corresponding Farsi target phrase is “āmā mn hm tymyt hstm”
which is the exact translation of the source phrase. The closest match in the source side
is “we played together” and in the target side is “Ben mn ānjā bāzy krdm” (meaning
“I played in that team”). These retrieved matches indicate that this is a high-quality
phrase. By comparing the outputs we recognized that before adding our features the
word “your” was not translated. In translation into Farsi, possessives sometimes are not
translated and the verb implicitly shows them, but the best translation is a translation
including possessives. The translation of “your” appeared in the output after adding
our features.

The proposed model is expected to learn the cross-lingual similarities along with
the monolingual relations. To study this feature Table 3 shows two samples. Results in
Table 3 show the proposed model can capture cross-lingual relations. It is also able to
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model similarities in different granularities. It has word level, phrase level and sentence
level similarities. Retrieved instances are semantically related to the given queries.

Table 3. The top 10 most similar vectors for the given English query. Recall that the retrieved
vectors could belong to words, phrases or sentences in either English or Farsi and word or phrase
pairs. The items that were originally in Farsi have been translated into English, and are indicated
with italics.

Query sadness
1 <apprehension, nervous>
2 emotion
3 <ill,sick>
4 pain
5 <money,money>
6 benignity
7 <may he was punished,punished harshly>
8 is really gonna hurt
9 i know tom ’ s dying
10 <bitter,angry>

Tang et al. (2015) proposed that a sentence embedding could be generated by aver-
aging/concatenating embeddings of the words in that sentence. In our case the model
by Tang et al. was not as beneficial as ours for both Farsi and Czech. As an example if
the sp2tp is computed using their model, it degrades the En–Fa direction’s BLEU from
21.03 to 20.97 and its improvement for the Fa–En direction is only +0.11 points (al-
most 5 times less than ours). Our goal is not to compare our model to that of Tang et al..
We only performed a simple comparison on the most important feature to see the dif-
ference. Furthermore, according to discussions from Le and Mikolov (2014) document
vectors (such as ours) work better than averaging/concatenating vectors. Our model
also contains both source and target side information in word and phrase embeddings.
Averaging cannot provide such rich information. Our results are aligned with Devlin et
al. (2014), who showed the impact of using both source and target side information.

6 Conclusion and Future work

In this work we proposed a novel neural network model which learns word, phrase, and
sentence embeddings in a bilingual space. Using embeddings we define six new fea-
tures which are incorporated into an SMT phrase table. Our results show that the new
semantic similarity features enhance translation performance across all of the languages
we evaluated. In future work, we hope to directly include the distributed semantic repre-
sentation into the phrase table, allowing on-line incorporation of semantic information
into the translation model features.
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