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Abstract. This paper reports on an initial study that aims to understand whether the acceptability 

of translation memory (TM) among translators when contrasted with machine translation (MT) 

unacceptability is based on users’ ability to optimise precision in match suggestions. Seven 

translators were asked to rate whether 60 English-German translated segments were a usable basis 

for a good target translation. 30 segments were from a domain-appropriate TM without a quality 

threshold being set, and 30 segments were translated by a general domain statistical MT system. 

Participants found the MT output more useful on average, with only TM fuzzy matches of over 

90% considered more useful. This result suggests that, were the MT community able to provide an 

accurate quality threshold to users, they would consider MT to be the more useful technology. 

Keywords: Machine Translation, Human Evaluation, Translation Memory, Confidence 
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1. Introduction 

The role of the translator has changed considerably over the past 25-30 years, with tech-

nology playing an ever more vital role in a specialised translator’s workflow. Bota et al. 

(2013) noted that some translation technology tools are “more highly regarded than 

others”. Translation Memory (TM), for example, is considered acceptable and necessary 

(Heyn, 1998), whereas Machine Translation (MT) remains unpopular among many 

translators. Surveys support the first of these claims, in that while users may have 

problems with certain extrinsic aspects of TM tools such as pricing or user-friendliness, 

they have no objection to leveraging previous human translations (Lagoudaki, 2008; 

Kelly et al., 2012).  

For those of us with longer memories, it was not always this way. When commercial 

TM tools were first introduced, many translators resented the imposition of this new 

technology. However, early adopters found that, once past the initial learning curve, they 

could achieve perceptible productivity gains, although the financial benefit of these gains 

was mitigated to an extent when discounts based on TM matches became common 

(García, 2006).  

As regards the second claim above, a disadvantage for MT is that in exactly the same 

way as with the introduction of TM, translators further resent the imposition of the 

newer technology, especially when associated discounts are expected immediately. 

Translators have complained about having to make tedious repetitive corrections to MT 

output, lack of creativity, and “limited opportunity to create quality” when post-editing 
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(Moorkens and O’Brien, 2015). These complaints are exacerbated by the perishable and 

often poorly-written source content that is pushed towards MT in localisation workflows 

(Way, 2013; Moorkens and O’Brien, 2015). Despite many studies having shown that 

MT post-editing increases productivity, users do not always perceive this increase 

(Koehn, 2009; Gaspari et al., 2014). Despite the increasing incorporation of MT into 

translation workflows via post-editing (PEMT) or sub-segment auto-suggestion, MT 

does not yet appear to be widely accepted by translators (cf. Penkale and Way, 2013; 

Way, 2013). 

While this is obvious to many, we consider it worth pointing out the main difference 

between TM and MT: namely that while MT attempts to translate all sentences in an 

input document, TM does not (except in the case of 100% matches, for which translators 

receive little or no remuneration in any case); TM systems merely search the source side 

of a set of translation pairs for the closest-matching instances above some pre-

determined threshold imposed by the translator (so-called ‘fuzzy matches’; Sikes 

(2007)). A ranked list of the said translation pairs is then presented to the translator with 

user-friendly colour-coding to help the user decide which parts are useful in the 

composition of the target translation, and which should be ignored and discarded. The 

addition of project-specific or historical information from the suggested TM segment 

metadata may help the translator with this decision (Teixeira, 2014). Accordingly, we 

note the different roles played by the human-in-the-loop here: when using TM, the 

human still translates, whereas with MT, the MT output is usually post-edited. There are 

exceptions here as the delineation between TM and MT has become somewhat blurred, 

with some tools incorporating both technologies and others adding sub-segment 

autosuggestions from MT output (Green et al. 2014; O’Brien and Moorkens, 2014). 

Given that today’s statistical MT (SMT) engines have greatly improved in terms of 

the quality of their output (cf. Way (2013) for a list of use-cases where MT demonstrably 

plays an invaluable role), it is disappointing for MT developers to learn that human 

translators still appear to draw greater satisfaction from slow, interactive TM tools as 

opposed to fully automatic, fast MT systems. For example, 75% of respondents to 

Moorkens and O’Brien’s (2016) survey of translators agreed that TM helps with their 

work, whereas only 30% said the same of MT; what’s more, 56% indicated that they 

considered MT a problematic technology. Participants in another study by Moorkens and 

O’Brien (2015) said that they found post-editing tiring as they are required to be 

“constantly vigilant … due to the absence of any confidence indication”. 

More positively, Koskinen and Ruokonen (2016) suggest that translators are “quite 

willing to adopt new technology as long as it makes their work more efficient”. 

Consequently, we feel that some of the problems with MT reside in how it is presented. 

In particular, if making productivity improvements could be made demonstrable to and 

perceptible for users, there would be far fewer objections to MT as a technology in its 

own right than we have seen heretofore. Accordingly, this paper reports on an initial 

study that seeks to answer the following question: Is comparative acceptability of TM 

over MT predicated on the user’s ability to optimise the precision and usefulness of 

match suggestions by setting a minimum match threshold?  

We contend that the answer to this question is yes, and that:  

1. MT would be considered more acceptable to users if only those matches that 

required relatively small amounts of editing were presented to post-editors. 

2. TM would be less acceptable to users if matches that required large amounts of 

editing were presented to translators. 
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In other words, we suggest that translators’ comparative preference of TM over MT 

demonstrates their preference for precision over maximum recall. 

Guerberof (2012) found that the average post-editing time for English-to-Spanish 

MT trained on a source text-appropriate technical domain was roughly equivalent to the 

time required to edit an 85-94% fuzzy TM match. Not all MT output will be of this 

quality of course, and the translator’s bugbear of repetitive mistakes to correct in MT 

output remains a problem, although great strides are being made to incorporate translator 

feedback into iterative retraining of SMT systems (cf. Du et al., 2015). However, if the 

ability to set an accurate threshold is one of the things that makes TM useful and 

acceptable to translators, this highlights the need for accurate confidence prediction of 

MT quality that correlates with human judgement (e.g. Specia et al. (2009); Specia 

(2011); Turchi et al. (2013)), the absence of which we believe to be a major stumbling 

block for acceptability. 

This study is reported with the caveat that the research was carried out with a small 

number of translators for a single domain and language pair, and is intended to preface a 

larger-scale study that will include measures of actual post-editing effort. However, all 

participants have substantial translation experience (on average 11.4 years of 

professional translation experience and 4.5 years of professional post-editing experience) 

and the chosen language pair of English-German is acknowledged to be a difficult one 

for MT systems. 

The remainder of this paper is organised as follows. In Section 2, we describe the 

methodology chosen to test the central hypothesis in this paper. In Section 3, we present 

the results of the experiments conducted, which are discussed further in Section 4. In 

Section 5, we conclude, and list a number of avenues for further work in this area. 

2. Methodology 

In this study, seven translators were asked to rate the usefulness of 60 match suggestions 

in German for 60 English source text segments. Source segments were taken from the 

documentation for the open-source computer-aided design (CAD) program FreeCAD 

and from the Wikipedia page for CAD.
1
 Table 1 shows the homogeneity of all segments, 

the segments used for TM matching, and those translated using MT, which all exhibited 

similar characteristics (well within the standard deviation for each text) using common 

corpora analyses (such as the type/token ratio of lexical variation) in the WordSmith 

WordList tool.
2
 Note that some types appear in both TM and MT corpora. 

 
Table 1. Wordsmith statistics for source data. 

 Overall Segments for MT Segments for TM 

Types (distinct words) 447 260 268 

Type/token ratio (TTR) 42.21 46.93 53.07 

Mean word length (chars.) 4.82 4.87 4.76 

                                                 
1
 https://en.wikipedia.org/wiki/Computer-aided_design 

2
 http://www.lexically.net/wordsmith 

https://en.wikipedia.org/wiki/Computer-aided_design
http://www.lexically.net/wordsmith


144  Moorkens and Way 

 

 

30 segments were translated into German using the generic Microsoft Bing SMT 

system
3
 and 30 target segments were fuzzy match suggestions offered by the Omega-T

4
 

tool loaded with an English-German TM. The TM was created from the translation of 

documentation from a commercial CAD software tool, and contained 301,583 translation 

units (although 7,659 of these contained only numbers, dates, or punctuation symbols). 

The TM tool suggested only a few matches – there were 42 matches for 141 segments, a 

match rate of just 29.8% – with most of those suggestions having a low fuzzy match 

score.
5
 For this reason, matches were not taken sequentially, but chosen to provide a 

reasonable variety of fuzzy match scores. The top-10 fuzzy matches ranged from 73 to 

100% and the lowest 10 from 19 to 46%. The range of fuzzy matches are shown in 

Figure 1. 

 

 
Figure 1. TM target segments’ fuzzy-match percentage. 

Source text segments and their associated TM or MT target segments were 

randomised and copied into a six-page survey,
6
 where each page contained 10 target text 

suggestions without any indication of provenance or quality. Participants – all of whom 

were paid – were informed about the background of the study, and that they could 

withdraw at any time without penalty (although none did). They were then asked to fill 

in details of their translation experience, age range, and opinion of MT (all non-

mandatory questions) before beginning to rate the 60 segments. Ratings were based on a 

decision as to whether to retain or delete the target suggestion before beginning to edit or 

translate from scratch, and were similar to those used by Krings (2001) and Specia et 

                                                 
3
 http://www.bing.com/translator/ 

4
 http://www.omegat.org/ 

5
 We take this as supporting evidence of our claim that TM technology is actually of 

little use to most translators, and certainly nowhere near as potentially useful as MT. 
6
 The survey used the Limeservice platform, available at www.limeservice.com. 
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al. (2009), and modified from the rating descriptions used in Moorkens et al. (2015), 

which were found to be an inconsistent predictor of post-editing effort. The ratings 

chosen by participants via radio button for each segment were as follows: 

 

1. Not usable – delete and translate from scratch, 

2. Useful – editing is faster than translation from scratch, 

3. Almost perfect – only requires minor edits or none at all. 

 

This study used purposive sampling, gathering participants appropriate to the 

research question. Participants were requested to take part via an open call on social 

media and direct emails to translators with the appropriate language pair listed on the 

website of the Irish Translators and Interpreters Association.
7
 Participants reported 

between one and 22 years’ translation experience. Five participants had experience of 

post-editing of between five months and 11 years. Users’ attitudes to MT tended to be 

positive, with one considering it “useful for repetitive texts”. Users did not consider MT 

a threat to translators, an attitude consistent with translators in other studies (Katan, 

2011). One participant suggested that they are complementary technologies and said “I 

highly doubt MT can ever replace HT”. Another wrote: “Some think MT will replace 

[human] translation, but although it's getting better and better, that is not possible for the 

majority of content out there”.
8
 Another participant said that MT is an “excellent 

productivity tool when used for suitable content”, and that its “greatest advantage is the 

often higher consistency in terminology and style”. Two participants were less effusive, 

with one writing that it’s only useful for “technical texts with a simple sentence 

structure”, and another considering that he or she works faster without MT, which is “not 

usable for professional translations without heavy editing”. We have to acknowledge the 

possibility that translators with a very negative opinion of MT chose not to take part on 

the basis of the project description in the emailed invitation to participate, although we 

do not consider this to be very likely. 

3. Results 

Participants spent on average 31.6 minutes (max. 53 minutes 14 seconds, min. 14 

minutes 28 seconds) completing the rating survey, including one participant who 

completed the survey in two sittings on consecutive days. Inter-rater agreement was 

considered moderate using Fleiss’ kappa, where К=0.446. Percentage agreement was 

77.8% overall, with greater consistency amongst raters for TM matches (84.3%) than for 

MT output (71.3%), a more consistent result than in Moorkens et al. (2015), albeit with 

fewer participants. 

On average, participants rated the MT output more positively as a basis for post-

editing, with a median segment rating of 2 (where 1 is not usable and 3 is almost 

                                                 
7
 http://www.translatorsassociation.ie/ 

8
 It is refreshing to see well-informed translators speaking with authority on MT, owing 

the great strides taken by the MT community to reach out to translators on this issue. It 

is all the more disappointing, then, to see TAUS’ recent blog “The Future Does Not 

Need Translators” (https://www.taus.net/blog/the-future-does-not-need-translators) 

which in our opinion seeks to undermine the status quo and unnecessarily antagonise 

translators. 

http://www.translatorsassociation.ie/
https://www.taus.net/blog/the-future-does-not-need-translators
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perfect). It is interesting to note that no machine-translated segment received a rating of 

1 from all participants. The median rating for TM matches without a fuzzy match 

threshold was 1.14. Segments were randomised and presented without any indication of 

fuzzy match percentage, or whether the target text came from MT or TM. Despite this, 

there was a very strong correlation between fuzzy match percentage and average 

participant rating, where r=0.838 (and p < 0.001). Table 2 shows how many times each 

rating was chosen by a participant for segments from MT and TM. 

 
Table 2. Number of occurrences of each rating. 

 

Rating Overall TM MT 

1 185 136 49 

2 146 37 109 

3 89 37 52 

 

 

 
 

Figure 2. Relationship between average rating and fuzzy match percentage for TM.  

Ratings for MT output are shown for comparison, charted in order of average rating. 

Figure 2 shows the relationship between fuzzy match percentage and average 

participant rating. Ratings for MT output are shown for comparison, charted in order of 
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average rating (as they had no fuzzy match percentage). Trend lines for TM and MT 

output clearly show the comparatively higher quality of MT output amongst participants. 

Note too that at 70-75% fuzzy match thresholds, settings which are often applied in 

practice (SDL Trados Studio’s default threshold is 70%), many TM matches are ranked 

well below equivalent MT suggestions, with many ranked as not useable at all. This 

further demonstrates (cf. Simard and Isabelle, 2009) that arbitrarily imposing a cut-off as 

is the norm in the translation industry above which TM is used and below which MT is 

used, harms translator performance. 

Participants were presented with a free text box after every ten segments in which to 

make comments. One participant mentioned the amount of time required to make a 

quality judgement on a proposed target text segment. He wrote that “MT Output has to 

make some kind of general sense (syntactically) to trigger within the post-editor a 

positive impulse to start post-editing and not dismiss [it]”. Another participant 

commented that “the main thing to keep in mind is that the analysis of MT output takes 

time and the smart decision is to dismiss such segments early.”  De Almeida (2013) 

believes that this decision-making at speed is problematic for some translators, 

especially for mid-ranking MT outputs. Koehn (2009), when discussing periods spent by 

translators pausing during the translation process, notes that “different lengths of pauses 

indicate the different problems which the translators are dealing with”, and that for post-

editors “most of the time is spent on contemplating changes, but very little on executing 

them”. Speculating about the translator’s behaviour during such pauses, Koehn (2009) 

intuits that the translator “is reading more of the MT output and looking for mistakes to 

be corrected”. Mesa-Lao (2014) also stresses this focus on the target text for post-

editing, noting that study participants either give the source text a cursory read or skip 

“straight to the target text in search of errors”. In this study we found a moderate 

correlation between the number of mid-ranking (ranked 2: “useful – editing is faster than 

translation from scratch”) segments on a survey page of ten and the amount of time (in 

comparison to the participant’s median time) required for completing a survey page of 

ten ranking exercises (rs=0.44141, p=0.006). We suggest that while some translators can 

decide quite quickly whether to accept and post-edit good MT outputs, and reject poor 

MT output in favour of translating themselves from scratch, those of a middling quality 

slow down the translators’ decision-making process, exactly what we are trying to avoid 

by introducing technology into the translation pipeline. 

11 of the 30 TM match proposals in this study received scores of 1 (not usable) from 

all participants, suggesting that they considered the matches wholly dissimilar to the 

source text, despite five of these proposals receiving match percentages of around 50%. 

One participant betrayed some irritation with these poor TM proposals, commenting that 

they contained “serious mistranslations that cannot be understood without reading the 

source a few times.” In a small number of instances, TM match proposals were 

dismissed when they might have been used as a basis for editing, or might have been 

perceived more favourably when displayed with a high fuzzy match percentage or with 

sections for leverage highlighted or colour-coded within a TM tool. For example, the 

proposed target text for the source segment ‘Cmd-1 turns the Tool Sets palette on and 

off.’ was ‘Aktiviert und deaktiviert den Fangmodus’ [Activates and deactivates the snap 

mode]. Here the ‘activates and deactivates’ phrase could have been leveraged by users, 

but all participants considered the segment as a whole unusable and eschewed this 

option. 
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4. Discussion 

The strong association between fuzzy match percentages and participant ratings, despite 

the fact that percentages were not displayed onscreen, demonstrates an advantage that 

TM has over MT: fuzzy matches are reasonably accurate gauges of quality that correlate 

with human judgement, whereas “the correlation between human judges and all 

[contemporary] automatic measures of MT quality” is “quite low” (Turian et al., 2003). 

Some progress has been made in research on MT confidence estimation without use of 

reference translations. Specia et al. (2009), in a study that aimed to eliminate very poor 

MT results, identified 84 segment-level features that could be used to estimate MT 

quality, with results that correlated far better with human judgements than several 

commonly-used automatic evaluation metrics. Accurately gauging the quality of time-

consuming mid-ranking MT output will be a more onerous task. Turchi et al. (2013) 

noted the subjectivity of human judgements and the associated difficulty in confidence 

estimation using machine learning based on human annotation. Specia (2011) suggested 

machine-learning models based on user post-edits as a route for accurate MT confidence 

estimation. It is less likely that users would have accepted TM were it not possible to 

impose a quality threshold that users can confidently consider accurate and personalise 

to their own requirements based on years of experience. Once this threshold is removed, 

participants in this study commented on the low-quality match proposals and rated many 

segments poorly. For this reason, we consider the answer to the research question 

presented in Section 1 to be answered – at least in part – in the affirmative, such that 

comparative acceptability of TM over MT is indeed predicated on the user’s ability to set 

a minimum fuzzy match threshold. 

In Section 1, we mentioned users’ complaints that MT output requires “constant 

vigilance”, but results in Section 3 also highlighted the time required for manual 

evaluation of MT output prior to post-editing. TM tools not only provide users with 

accurate measures of quality, indicating words and colour-coded sub-segments that may 

be left untouched, but the time and effort required for manual evaluation is also 

removed. This suggests that the ability to set an accurate threshold for MT quality 

(which would be made easier if an automatic metric can be found that correlates strongly 

with human judgement) should lead to further productivity gains by saving the time 

required for manual evaluation, as well as reducing the user’s cognitive effort. 

Note that this is harder than it might seem, as translators are not necessarily good 

arbiters of MT quality, especially vis-à-vis TM quality. In their work on combining SMT 

and TM for optimal translation recommendation to post-editors, He et al. (2010) note in 

their evaluation that while end-users are not made aware of which segments come from 

SMT and which from TM, one post-editor “obviously mistakes MT outputs for TM 

outputs”. They note that this indicates not only that “phrase-based SMT system[s] [are] 

able to produce outputs that are … grammatically acceptable enough to be recognized as 

human translations in the TM”, but also “how much the post-editors subconsciously trust 

the TM [which] may be an explanation for the relatively low acceptance of MT 

technology in the localization industry and demonstrates the need for TM–MT 

integration”. In a similar line of work, we note here the recent effort by STAR to 

combine TM and MT in an interesting way, where MT matches are used to reinforce 

fuzzy matching (Hofmann, 2015). 

Participants in this study were reasonably satisfied with the quality of MT output 

despite the use of a generic engine for a difficult language pair. This suggests that, 
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contrary to perceived wisdom in the field, quality is not the sole barrier for widespread 

MT acceptance. The results of Moorkens et al. (2015) showed that the addition of 

onscreen MT confidence indication alone does not immediately lead to behavioural 

changes for post-editors. Users need to learn to trust measures of quality or confidence, 

but also need to be presented only with proposals (as segments or sub-segments) that 

will be useful to them. 

Participants in this study were mostly well-disposed to MT, and as such were willing 

to rate segments without prejudice, despite the lack of provenance metadata. They had 

the confidence to participate in MT research without being suspicious of the research 

motives. The challenge will be to convince those less well-disposed to MT that 

automatic translation can be perceptibly beneficial, despite the increasingly large body of 

evidence to support this point of view. As a move in that direction, we suggest that the 

ability to only display useful MT output will greatly improve acceptability. 

5. Conclusions and Further Work 

In this paper, we have set out to challenge the perception among translators that TM is a 

more useful technology than MT is. While this does not appear to be true per se, what is 

unquestionably important is the translator’s ability to control the fuzzy match threshold. 

When low- and mid-ranking fuzzy matches are presented to translators without the 

accompanying fuzzy match scores, translators find the suggestions irritating, and for 

over 36% of such instances, useless for their purposes. In contrast, all of the MT matches 

suggested were rated as having some utility to post-editors. 

Accordingly, we contend that this finding demonstrates very clearly a serious 

mistake that has been made by introducing MT into the PEMT pipeline. Translators are 

quite used – one might even say ‘happy’ – to not having help from CAT tools for every 

segment, as TM offers useful suggestions only some of the time; in this study we found 

fuzzy matches for 29.8% of segments, although many of these at 13-70% (see Figure 1) 

could not be considered useful. In contrast, MT developers have allowed the soft 

underbellies of their engines to be exposed ‘warts and all’ to translators, as MT outputs 

are typically provided for every source segment. What we have demonstrated in this 

paper is that when the constraints on fuzzy match thresholding are relaxed, translators 

actually find TM to be of (much) less use than SMT. This suggests to us very strongly 

that robust, reliable MT confidence measures need to be developed as a matter of 

urgency which can be used by post-editors to wrest control over what MT outputs they 

wish to see, and perhaps more importantly still, which ones should be withheld. 

In further work, we aim to extend this study to more language pairs, and larger 

amounts of data translated using both TM and MT, assigned randomly to a wider range 

of translators not only for rating, but also for post-editing. We expect the conclusions 

drawn in this initial study to be confirmed in further research, which will, we hope, 

concentrate the minds of MT engine developers to develop a consistent measure of 

quality for each MT segment output by the system, which can be relied upon – and 

configured – by human translators. We expect that once translators can control what MT 

output they actually get to see, then MT will meet with considerably wider acceptance 

from the translator community. 
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