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Abstract

Translation memories (TM) are widely
used in the localization industry to im-
prove consistency and speed of human
translation. Several approaches have been
presented to integrate the bilingual trans-
lation units of TMs into statistical ma-
chine translation (SMT). We present an
extension of these approaches to the in-
tegration of partial matches found in a
large, monolingual corpus in the target
language, using cross-language informa-
tion retrieval (CLIR) techniques. We use
locality-sensitive hashing (LSH) for ef-
ficient coarse-grained retrieval of match
candidates, which are then filtered by fine-
grained fuzzy matching, and finally used to
re-rank the n-best SMT output. We show
consistent and significant improvements
over a state-of-the-art SMT system, across
different domains and language pairs on
tens of millions of sentences.

1 Introduction

A translation memory (TM) is a computational
tool used by professional translators to speed up
translation of repetitive texts. At its core is a
database, in which source and target of previ-
ously translated segments of text are stored. TMs
are capable of retrieving not only exact, but also
partial matches, where only a certain percentage
of source words overlap with the query, called
fuzzy matches. A computer-assisted translation
(CAT) tool presents possible matches found in the
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database to a user, if the match is considered sim-
ilar enough to the current source sentence. Even
if the presented target sentence is not a perfect
translation, a fuzzy match can be a good starting
point for the translation of the current sentence and
reduce translation time and effort. Furthermore,
the approach can help with translation consistency
and terminology control. In contrast to statistical
machine translation (SMT), TM tools are widely
used in the translation industry, since the results
presented to the translator are fluent translations.
They are especially successful for translation of
texts from repetitive domains, e.g. technical docu-
ments such as IT manuals, that are the predominant
use case in the localization industry.

The idea of combining the strengths of TM and
SMT tools has been successfully explored in re-
cent years. In this paper, we extend these ap-
proaches to the integration of a large, monolingual
corpus in the target language as a TM into an SMT
system using cross-language information retrieval
(CLIR). Our approach utilizes locality-sensitive
hashing (LSH) as an efficient coarse retrieval tech-
nique to select candidate translations. In a next
step, search is performed at a finer-grained level
using distance metrics customary in CAT. Given
a match, our model re-ranks the n-best list out-
put by an SMT decoder using features modeling
the closeness of the hypothesis and the target of
the TM match. Since our approach does not rely
on an alignment between source and target side of
the TM match, we are able to search for potential
matches in large, monolingual corpora that might
only be available in the target language. We show
consistent and significant improvements on differ-
ent domains (IT, legal, patents) for different lan-
guage pairs (including Chinese, Japanese, English,
French, and German), achieving results compara-
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ble to or better than using a target-language refer-
ence of source-side matches.

2 Related Work

Work on integrating MT and SMT can be divided
into approaches at the sentence level that decide
whether to pass SMT or TM output to the user (He
et al., 2010a,b), and approaches that merge both
techniques at a sub-sentential level (Smith and
Clark, 2009; Koehn and Senellart, 2010; Zhechev
and van Genabith, 2010; Wang et al., 2013). While
the goal of the former is to improve human trans-
lation effort in a CAT environment, the second line
of research aims to improve SMT performance.

Biçici and Dymetman (2008) were among the
first to propose a combined system. They start
by identifying matching subsequences between the
current sentence and a fuzzy match retrieved from
a translation memory. Source and target of the
match together with the corresponding alignment
are used to construct a non-contiguous bi-phrase,
which is added to the SMT grammar with a strong
weight. The decoder is then run as usual using the
augmented grammar. The approaches of Koehn
and Senellart (2010), Zhechev and van Genabith
(2010), and Ma et al. (2011), force the SMT sys-
tem to translate only the unmatching segments of
the source, either by restricting translation or by
adding a very high feature weight to rules or bi-
phrases extracted from the TM match. While all
presented approaches make use of the alignment
between source and target of the fuzzy match, our
approach uses only the target side to restrict the
translation, making it possible to use matches that
can be found in a target-only corpus.

The use of TM matches to generate additional
features for SMT has been explored by Simard and
Isabelle (2009), Wang et al. (2013), Wang et al.
(2014) and Li et al. (2014). Our re-ranking ap-
proach is very similar, with the novelty of using not
only matches found by querying the source side of
the corpus, but also the target.

The idea of directly searching for translations in
a monolingual target language corpus has been ex-
plored by Dong et al. (2014). They retrieve target
side translation candidates using a lattice represen-
tation of possible translations of a source sentence.
The system is successfully applied to the task of
identifying parallel sentences, but no SMT experi-
ments are reported.

3 Integrating monolingual TM into SMT

Our integrated model uses a coarse-to-fine ap-
proach for integrating TM information into an
SMT system: First, efficient retrieval is done using
locality-sensitive hashing on large corpora. Sec-
ond, a more fine-grained search for the best match
is performed for a given sentence. Lastly, a re-
ranking step uses this information to re-score the
n-best list output of an SMT decoder.

3.1 Coarse-grained retrieval using LSH
In order to be able to use large corpora as trans-
lation memory, a fast method is needed to re-
trieve matches. In CAT practice, the goodness of a
TM match is calculated using the so-called fuzzy
match score (Sikes, 2007),

FMS(s1, s2) = 1− LD(s1, s2)

max(|s1|, |s2|
)

which is based on the Levenshtein distance LD,
i.e. the minimum number of operations1 needed
to transform the sequence s1 into the sequence s2.
Levenshtein distance can be computed with dy-
namic programming in O(mn) time. However,
computing edit distance against a corpus of tens
of millions of sentences is too slow for real-time
use, especially for long sentences that appear e.g.
in patent data. This leads us to a two-step approach
with a coarse pre-retrieval that delivers candidates
for good fuzzy matches for a given sentence in mil-
liseconds. For a smaller candidate set we can then
compute the exact fuzzy match score.

MinHash (Broder, 1997) is a way to estimate
the similarity of two documents by reducing the
dimensionality of the document signature using
sampling. It is an instance of locality-sensitive
hashing, where similar items hash to the same
bucket, which makes comparison extremely fast,
since only hashes have to be compared. It is usu-
ally employed for tasks such as near-duplicate de-
tection of websites, but can be applied to our task
as well. MinHash approximates the Jaccard simi-
larity of two sets X and Y ,

JC(X,Y ) =
|X ∩ Y |
|X ∪ Y |

by generating signatures of each set, from which
the Jaccard similarity can be estimated. The signa-
ture is gained by repeatedly hashing each member
1Allowed operations are removal, insertion, substitution or
transposition.
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of the set and storing only the minimal resulting
hash. By representing each sentence as a set of n-
grams we can use this technique to efficiently ap-
proximate the n-gram overlap of two sentences. n-
gram overlap has been found to be a good predic-
tor of TM match quality (Bloodgood and Strauss,
2014). In our experiments we used 3-grams to rep-
resent sentences in corpora with high average sen-
tence length (legal, patent) and 1-grams for data
sets featuring short sentences (IT).

To efficiently estimate the Jaccard Similarity
from the MinHash signatures, we apply the band-
ing technique described in Rajaraman and Ullman
(2012, Chapter 3), where similar items are likely
to get hashed to the same bucket. When setting the
similarity threshold t, which regulates how simi-
lar two items have to be in order to become candi-
dates, we are faced with a effectiveness-efficiency
trade-off (Ture et al., 2011), where we find false
positives, which slow down the second retrieval
step, and also false negatives, which will cost over-
all performance. We set the t for each dataset on
a held-out development set by choosing a setting
in which a candidate match is returned for at least
90% of the sentences. We then compute the actual
Jaccard Similarity for the set of match candidates
returned by the hashing step and rank them accord-
ingly. We take the 100 best matches for each query
qi and choose the best match from them in the fine-
grained step described in the following.

3.2 Fine-grained matching
In the standard bilingual case, choosing the best
TM match amounts to selecting the sentence pair
(s, t) from the coarse candidate set LSH(qi) that
achieves the highest fuzzy match score FMS of the
(source) query qi against the source side si,j of the
TM pair, and returning its target side ti,j .

(s, t)i,best = argmax
(s,t)i,j∈LSH(qi)

FMS(qi, si,j).

For the target-language scenario, however, this
step is not straightforward. We want to select a tar-
get sentence t from a set of target-only candidates
given a query qi in the source language, however,
in order to do this, we require a cross-language
similarity score CLIR. To generate a target can-
didate set with coarse retrieval we use the 1-best
translation Tr(qi) by an SMT decoder trained on
bilingual data as a query2.
2We also tested query constructions involving a larger set of

ti,best = argmax
ti,j∈LSH(Tr(qi))

CLIR(qi, ti,j).

To determine the best match among the candi-
dates in a fine-grained way, we investigate three
different cross-language techniques.

1-best FMS. This model uses as a selection cri-
terion the fuzzy match score of the candidate ti,j
given the most likely translation hypothesis pro-
duced for the query qi by an SMT model, Tr(qi).

CLIR(qi, ti,j) = FMS(Tr(qi), ti,j)

This corresponds to a direct translation baseline
in cross-language information retrieval.

In addition to this simple model, we explore two
methods that operate on the full translation hyper-
graph of the query. Both techniques are similar
to the translation retrieval technique presented by
Dong et al. (2014). They perform Viterbi search
on a translation lattice of the input sentence that is
enriched, besides the default SMT features, with
n-gram features that indicate the overlap status be-
tween the current state in the lattice and a given
TM match. We adopt this approach for the hy-
pergraph built by the cdec decoder (Dyer et al.,
2010). As a cross-lingual similarity measure we
then compute the Viterbi score on the query hyper-
graph Hg(qi) for each match candidate ti,j , i.e.

CLIR(qi, ti,j) = max
p∈Hg(qi)

∑
e∈p

wSMT·φSMT(e(qi))

+ wn-gr · φn-gr(e(qi), ti,j))

where p is a path through the hypergraph, e the
set of edges on the path, φ are feature values of an
edge, w the corresponding weights, and · denotes
the vector dot product. We explore two different
ways to incorporate n-gram features φn-gr in addi-
tion to the SMT feature set φSMT.

Unigram oracle. Since n-gram features are non-
local and the size of the hypergraph grows when
adding n-gram features for orders higher than n =
1 (Chiang, 2007), we restrict our first model to un-
igram precision and a brevity penalty feature; the
latter is only active at goal state. In this way, two
additional features are inserted into the log-linear
model, using the TM match candidate as an oracle.

possible translations, but found that using the 1-best transla-
tion prediction of the baseline system yielded superior results.
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Additional language model. To be able to in-
clude higher-order n-gram matches, we add the
match candidates as an additional language model
to the decoder.This approach makes use of the fact
that cdec handles the extension of the hypergraph
to accommodate for the non-local higher order n-
grams. Cube pruning (Chiang, 2007) is used to
make the search feasible.

In both cases, we keep the weights of the SMT
features fixed, which have been optimized for
translation performance on a development set, and
only adjust the additional weights in relation. This
is done by pairwise ranking (Hopkins and May,
2011). The gold standard ranking of the TM candi-
dates is given by FMS(ti,j , ri) with respect to the
reference ri for qi. The learning goal is to adjust
the weights of the n-gram features so as to rank the
TM match highest that has the smallest distance to
the reference. Note, that we do not optimize the
translation performance of the derivation, which
corresponds to the Viterbi path. This could poten-
tially replace the re-ranking step and we plan to
explore this option in the future.

3.3 Re-ranking SMT output

To incorporate the retrieved TM match into the
SMT pipeline we use a simple re-ranking model
on the n-best list output by the baseline SMT sys-
tem and select the best hypothesis ĥ under this
model. We balance information from the SMT
model and the TM by computing a linear interpo-
lation of SMT model score SMT and fuzzy match
score FMS between hypothesis h and best TM
target match ti,best. We also add a confidence-
weighted version of the FMS score using the re-
trieval score (CL)IR between TM match and orig-
inal query qi as confidence measure:

ĥ = argmax
h∈H(qi)

w1 × SMT(h)

+ w2 × FMS(h, ti,best)

+w3× ((CL)IR(qi, ti,best)×FMS(h, ti,best)).

We experimented with more features, including
n-gram overlap and a brevity penalty, but found
that they did not add any information that was not
already present in the model. We learn weights
for the different components of the score by pair-
wise ranking using PRO (Hopkins and May, 2011).
This time the gold-standard ranking is induced

on the n-best list of SMT outputs by TER match
against the reference.

domain sentences vocabulary size

src tgt

acquis (en-fr) 1M 121K 140K
oo3 (en-zh) 50K 6K 8K
ntcir (jp-en) 1.6M 96K 185K
pattr (en-de) 10.1M 728K 679K

Table 1: Statistics for experimental data.

acquis oo3 ntcir pattr

RR 16.85 5.98 16.9 5.85

SL 27.27 6.48 33.91 33.55

Table 2: Test set repetition rates (RR) and average
sentence length (SL) in tokens.

4 Experiments

Since translation memories are most effective on
text that has a certain amount of repetition, we
evaluate our approach on typical localization data,
from the IT, legal and intellectual property do-
mains3 (Table 1). All corpora are freely available
for research purposes. We report repetition rate
(Cettolo et al., 2014) and average sentence length
in Table 2 and show the number of matches for
each fuzzy match interval in Table 3. Among the
freely available corpora, only the JRC-Acquis cor-
pus has been used previously in combinations of
TM and SMT (Koehn and Senellart, 2010; Li et al.,
2014). Most works in this area report results on
TM data from industrial partners that are not pub-
licly available. Usually, these datasets feature a
large proportion of fuzzy matches in high ranges,
e.g. between 80% and 100%, which makes it pos-
sible for the combined systems to achieve a large
boost in score. Our reported results are in a smaller
range, but achieved on data with much less high-
percentage matches. We manage to gain improve-
ments in performance from matches with an asso-
ciated fuzzy match score between 10% and 80%.

3Europarl has been used as a dataset by (Koehn and Senellart,
2010), but performance of the enriched SMT system actually
dropped below the baseline, showing that less repetitive cor-
pora are badly suited for the TM adaptation methods.
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We prepared an English-Chinese corpus of IT
manuals from the OPUS4 corpus (Tiedemann,
2012), the OpenOffice 3 (OO3) data. We only kept
pairs that contained at least one Chinese charac-
ter5. The Chinese side was segmented using the
Stanford Word Segmenter (Tseng et al., 2005) with
the Penn Treebank standard. Development and test
sets were created by randomly sampling 1,000 sen-
tence pairs each and remaining pairs used for train-
ing. We used English-French legal data from the
JRC-Acquis corpus6 (Steinberger et al., 2006) and
sampled dev, devtest and test set from documents
published in 2000. The remaining years were used
for training. We evaluated our approach on two
patent data sets; English-German data from the
PatTR7 corpus (Wäschle and Riezler, 2012) and
Japanese-English data from the NTCIR8 challenge
(Utiyama and Isahara, 2007). We used NTCIR-10
dev, test9 and training set. Held-out data sets for
PatTR were sampled from documents from 2006,
the remaining data formed the training set.

acquis oo3 ntcir pattr

0-10% 5 0 15 17
10-20% 68 4 118 121
20-30% 89 3 200 205
30-40% 56 10 167 187
40-50% 51 3 95 88
50-60% 70 13 58 56
60-70% 52 14 28 19
70-80% 59 15 17 28
80-90% 109 29 8 18
90-99% 136 21 1 8

100% 292 500 6 19

Table 3: Number of test sentences with source
side fuzzy match score in a certain range.

We trained a baseline SMT system using the
cdec decoder (Dyer et al., 2010) and the accom-
panying tools, i.e. fast align (Dyer et al., 2013)
on each data set. A 6-gram language model was

4http://datahub.io/de/dataset/opus
5We tested for Chinese characters by checking if they were in
the Unicode range [0x4E00, 0x9FFF].
6https://ec.europa.eu/jrc/en/
language-technologies/jrc-acquis
7http://www.cl.uni-heidelberg.de/
statnlpgroup/pattr/
8http://research.nii.ac.jp/ntcir/
ntcir-10/
9We merged, shuffled and again split up the data into three
sets, to generate a devtest set.

genre size (sent.)

parallel train (en-de) cl. 6M
dev/devtest/test (en-de) desc. 1K (each)
LM-train (de) cl.+descr. 16.2M
TM (de) cl.+desc. 16.2M

Table 4: Data for domain adaptation scenario.

trained with SRILM (Stolcke, 2002) on the target
side of the training data. The weights of the log-
linear model were optimized with MIRA (Watan-
abe et al., 2007) on a held-out development set re-
served for this purpose (dev). We employed the
baseline model to produce query translations and
hypergraphs for the cross-lingual retrieval of target
matches as well as to produce 500-best lists, which
we re-ranked according to our model given the best
match found after fine-grained retrieval. Retrieval
and re-ranking parameters were optimized on an
additional held-out (devtest) set. All presented re-
sults were obtained on a third (test) data set. To
compare source and different target retrieval meth-
ods in a fair setting, we used the bilingual data
from training the SMT model as translation mem-
ory, restricted to the target side for target retrieval.
To evaluate our target retrieval approach in more
a realistic setting, we furthermore set up an exper-
iment for the English-German patent task, where
SMT training data and monolingual TM deviate.
We assume that we have parallel data from patent
claims and the task is to translate text from a differ-
ent genre, patent descriptions, for which only data
in the target language available as well as a small
amount of bitext to tune parameters on – a typical
domain adaptation scenario. The available mono-
lingual data is used to extend both the language
model as well as the target-language TM (Table 4).

We report BLEU (Papineni et al., 2002) and
TER (Snover et al., 2006) evaluation scores. Sta-
tistical significance of all results was assessed fol-
lowing the method described in Clark et al. (2011)
using the source code provided by the authors10.

4.1 Results

Results in Table 5 show that adding the TM in-
formation always improves over the baseline, up
to 1.23 BLEU and -3.77 TER. Improvements in
TER (the optimized metric) are always significant
at p < 0.05. Both source and target-side match re-
10https://github.com/jhclark/multeval
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acquis oo3 ntcir pattr

BLEU TER BLEU TER BLEU TER BLEU TER

baseline 61.43% 28.16% 36.04% 50.83% 24.52% 66.52% 26.89% 57.51%
+src-rr 62.62% 26.63% 36.65% 50.01% 25.51% 62.75% 27.11% 57.04%

+1.19% -1.57% +0.61% -0.82% +0.99% -3.77% +0.22% -0.47%

+tgt-FMS-rr 62.92% 26.79% 36.26% 50.13% 25.23% 63.59% 27.31% 56.78%
+1.48% -1.37% +0.22%∗ -0.70% +0.71% -2.93% +0.42% -0.73%

+tgt-Oracle-rr 62.23% 27.56% 36.16% 50.17% 24.55% 66.20% 27.03% 57.25%
+0.80% -0.60% +0.12% -0.66% +0.03%∗ -0.31% +0.13%∗ -0.26%

+tgt-LM-rr 62.29% 27.45% 36.09% 50.15% 24.63% 66.11% 26.98% 57.29%
+0.85% -0.71% +0.05%∗ -0.67% +0.11%∗ -0.41% +0.09%∗ -0.21%

Table 5: BLEU and TER difference to baseline for TM integration on by source-side matching and
re-ranking (+src-rr) and variants of target-side matching and re-ranking (+tgt-*-rr). All improvements,
except marked with ∗, are significant w.r.t the baseline at p < 0.05. Best results in bold face.
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Figure 1: ∆ BLEU and ∆ TER between baseline and system output on different fuzzy match intervals

trieval beat the baseline. Re-ranking using target-
side only matches beats source-side retrieval on
two datasets. n-gram based models for choosing
the best target match always perform worse than
the fuzzy-match-score based models.

Figure 1 shows detailed results on the different
fuzzy match intervals, in particular the difference
between +tgt-FMS-rr system and the baseline. It
is interesting to note that the highest gains are
achieved in the 70-80% range, while previous re-
search reports highest gains in the 95-100% range.
This is apparently dependent on the data set, but it
also suggests, that the baseline SMT system is al-
ready very good in the high match range, at least
for short sentences. For ntcir we achieve extremely
high numbers in the 90-100% range and for pattr in

the 60-70% but these scores are achieved on very
few examples (7 and 14, respectively) and there-
fore cannot be expected to be stable. The differ-
ence between the datasets is probably due to the
average sentence length – shorter sentences with
a perfect match in the TM are easier to reproduce
for the SMT system than longer ones, due to the
smaller number of translation options. It is also re-
markable, that for ntcir and pattr datasets even ex-
tremely low-range matches are beneficial. While
there are some drops in terms of BLEU, TER al-
ways goes down, even on 0-10% matches. Hav-
ing established that target-side retrieval performs
comparably to source retrieval, we evaluate our
approach in the domain adaptation setting, where
additional monolingual data for the TM is avail-
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able. Results are given in Table 6. We find signifi-
cant improvements over the competitive baseline
with an adapted language model without adding
any bilingual data.

BLEU TER

baseline 21.58% 62.54%
+tgt-FMS-rr 21.81% 62.18%

+0.23% -0.36%

Table 6: Results for domain adaptation scenario.

Figure 2 compares translation output between
baseline and the +tgt-FMS-rr extension, showing
that the system is able to correct syntactical er-
rors, but also, that some changes consist only of
swapping translations for a term, where both trans-
lations would be correct choices. In this case,
the translation both gains and loses from this phe-
nomenon with regard to the reference. We as-
sume that this holds for the whole test set: in some
cases out system will randomly pick the right (used
by the reference) translation; sometimes adding
a match will change a correct translation. Since
overall our system improves significantly over the
baseline, meaningful changes are made frequently.

5 Conclusion

We present an approach to integrate large cor-
pora as translation memories into an SMT sys-
tem, which yields consistent and significant im-
provements over baseline results on IT, legal and
patent data. In contrast to previous approaches,
the discriminative model is light-weight and needs
no phrase-segmentation or alignment between TM
source and target, allowing for the integration of
partial matches found in the target language. Re-
sults with target-language matches are comparable
to using a target reference of source-side matches.

In future work, we would like to extend our ap-
proach to multiple fuzzy matches for one source
sentence that cover different spans of the input,
as proposed in Li et al. (2014). Furthermore,
we would like to conduct experiments on a trans-
lation memory gained from real-world industrial
data with post-editing feedback.
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source in one particular embodiment , the aliphatic hydroxy carboxylic acids bear the hy-
droxyl group and the carboxyl group on the same carbon atom .

baseline in einer besonderen ausführungsform die aliphatischen hydroxycarbonsäuren , die
die hydroxylgruppe und die carboxylgruppe an ein und demselben kohlenstoffatom
tragen .

+tgt-FMS-rr in einer besonderen ausführungsform tragen die aliphatischen hydroxycarbonsäuren
die hydroxygruppe und die carbonsäuregruppe am gleichen c - atom .

tm match in einer besonderen ausführungsform des erfindungsgemäßen verfahrens tragen die
aliphatischen hydroxycarbonsäuren die hydroxy - und carbonsäuregruppe am selben
c - atom .

reference in einer besonderen ausführungsform tragen die aliphatischen hydroxycarbonsäuren
die hydroxy - und carboxyl gruppe am gleichen c - atom .

Figure 2: Example system output on patent test set: With the TM match, the syntax of the output has
been corrected: the subordinate clause has been removed and the verb tragen placed correctly in the
main clause. kohlenstoffatom became c - atom, which is both correct, but the latter is the term used in
the reference; on the other hand, carboxylgruppe was correctly output by the baseline, but changed to
carbonsäuregruppe – correct, but not the term used in the reference.
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