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Abstract

We describe our systems for the WMT14
Shared Task on Quality Estimation (sub-
tasks 1.1, 1.2 and 1.3). Our submissions
use the framework of Multi-task Gaus-
sian Processes, where we combine multi-
ple datasets in a multi-task setting. Due to
the large size of our datasets we also ex-
periment with Sparse Gaussian Processes,
which aim to speed up training and predic-
tion by providing sensible sparse approxi-
mations.

1 Introduction

The purpose of machine translation (MT) quality
estimation (QE) is to provide a quality prediction
for new, unseen machine translated texts, with-
out relying on reference translations (Blatz et al.,
2004; Specia et al., 2009; Bojar et al., 2013). A
common use of quality predictions is the decision
between post-editing a given machine translated
sentence and translating its source from scratch,
based on whether its post-editing effort is esti-
mated to be lower than the effort of translating the
source sentence.

The WMT 2014 QE shared task defined a group
of tasks related to QE. In this paper, we de-
scribe our submissions for subtasks 1.1, 1.2 and
1.3. Our models are based on Gaussian Pro-
cesses (GPs) (Rasmussen and Williams, 2006),
a non-parametric kernelised probabilistic frame-
work. We propose to combine multiple datasets
to improve our QE models by applying GPs in
a multi-task setting. Our hypothesis is that us-
ing sensible multi-task learning settings gives im-
provements over simply pooling all datasets to-
gether.

Task 1.1 focuses on predicting post-editing ef-
fort for four language pairs: English-Spanish
(en-es), Spanish-English (es-en), English-German

(en-de), and German-English (de-en). Each con-
tains a different number of source sentences and
their human translations, as well as 2-3 versions
of machine translations: by a statistical (SMT)
system, a rule-based system (RBMT) system and,
for en-es/de only, a hybrid system. Source sen-
tences were extracted from tests sets of WMT13
and WMT12, and the translations were produced
by top MT systems of each type and a human
translator. Labels range from 1 to 3, with 1 in-
dicating a perfect translation and 3, a low quality
translation.

The purpose of task 1.2 is to predict HTER
scores (Human Translation Error Rate) (Snover
et al., 2006) using a dataset composed of 896
English-Spanish sentences translated by a MT sys-
tem and post-edited by a professional translator.
Finally, task 1.3 aims at predicting post-editing
time, using a subset of 650 sentences from the
Task 1.2 dataset.

For each task, participants can submit two types
of results: scoring and ranking. For scoring, eval-
uation is made in terms of Mean Absolute Error
(MAE) and Root Mean Square Error (RMSE). For
ranking, DeltaAvg and Spearman’s rank correla-
tion were used as evaluation metrics.

2 Model

Gaussian Processes are a Bayesian non-parametric
machine learning framework considered the state-
of-the-art for regression. They assume the pres-
ence of a latent function f : RF → R, which maps
a vector x from feature space F to a scalar value.
Formally, this function is drawn from a GP prior:

f(x) ∼ GP(0, k(x,x′)),

which is parameterised by a mean function (here,
0) and a covariance kernel function k(x,x′). Each
response value is then generated from the function
evaluated at the corresponding input, yi = f(xi)+
η, where η ∼ N (0, σ2

n) is added white-noise.
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Prediction is formulated as a Bayesian inference
under the posterior:

p(y∗|x∗,D) =
∫

f
p(y∗|x∗, f)p(f |D),

where x∗ is a test input, y∗ is the test response
value andD is the training set. The predictive pos-
terior can be solved analitically, resulting in:

y∗ ∼ N (kT
∗ (K + σ2

nI)−1y,

k(x∗, x∗)− kT
∗ (K + σ2

nI)−1k∗),

where k∗ = [k(x∗,x1)k(x∗,x2) . . . k(x∗,xn)]T

is the vector of kernel evaluations between the
training set and the test input and K is the kernel
matrix over the training inputs (the Gram matrix).

The kernel function encodes the covariance
(similarity) between each input pair. While a vari-
ety of kernel functions are available, here we fol-
lowed previous work in QE using GP (Cohn and
Specia, 2013; Shah et al., 2013) and employed
a squared exponential (SE) kernel with automatic
relevance determination (ARD):

k(x,x′) = σ2
f exp

(
−1

2

F∑
i=1

xi − x′i
li

)
,

where F is the number of features, σ2
f is the co-

variance magnitude and li > 0 are the feature
lengthscales.

The resulting model hyperparameters (SE vari-
ance σ2

f , noise variance σ2
n and SE lengthscales li)

were learned from data by maximising the model
likelihood. All our models were trained using the
GPy1 toolkit, an open source implementation of
GPs written in Python.

2.1 Multi-task learning
The GP regression framework can be extended to
multiple outputs by assuming f(x) to be a vec-
tor valued function. These models are commonly
referred as coregionalization models in the GP lit-
erature (Álvarez et al., 2012). Here we refer to
them as multi-task kernels, to emphasize our ap-
plication.

In this work, we employ a separable multi-task
kernel, similar to the one used by Bonilla et al.
(2008) and Cohn and Specia (2013). Consider-
ing a set of D tasks, we define the corresponding
multi-task kernel as:

k((x, d), (x′, d′)) = kdata(x,x′)×Bd,d′ , (1)
1http://sheffieldml.github.io/GPy/

where kdata is a kernel on the input points, d and
d′ are task or metadata information for each input
and B ∈ RD×D is the multi-task matrix, which
encodes task covariances. For task 1.1, we con-
sider each language pair as a different task, while
for tasks 1.2 and 1.3 we use additional datasets
for the same language pair (en-es), treating each
dataset as a different task.

To perform the learning procedure the multi-
task matrix should be parameterised in a sensible
way. We follow the parameterisations proposed
by Cohn and Specia (2013), which we briefly de-
scribe here:

Independent: B = I. In this setting each task is
modelled independently. This is not strictly
equivalent to independent model training be-
cause the tasks share the same data kernel
(and the same hyperparameters);

Pooled: B = 1. Here the task identity is ignored.
This is equivalent to pooling all datasets in a
single task model;

Combined: B = 1 + αI. This setting lever-
ages between independent and pooled mod-
els. Here, α > 0 is treated as an hyperparam-
eter;

Combined+: B = 1 + diag(α). Same as “com-
bined”, but allowing one different α value per
task.

2.2 Sparse Gaussian Processes
The performance bottleneck for GP models is the
Gram matrix inversion, which is O(n3) for stan-
dard GPs, with n being the number of training in-
stances. For multi-task settings this can be a po-
tential issue because these models replicate the in-
stances for each task and the resulting Gram ma-
trix has dimensionality nd × nd, where d is the
number of tasks.

Sparse GPs tackle this problem by approximat-
ing the Gram matrix using only a subset of m in-
ducing inputs. Without loss of generalisation, con-
sider these m points as the first instances in the
training data. We can then expand the Gram ma-
trix in the following way:

K =
[

Kmm Km(n−m)

K(n−m)m K(n−m)(n−m)

]
.

Following the notation in (Rasmussen and
Williams, 2006), we refer Km(n−m) as Kmn and
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its transpose as Knm. The block structure of K
forms the basis of the so-called Nyström approxi-
mation:

K̃ = KnmK−1
mmKmn, (2)

which results in the following predictive posterior:

y∗ ∼ N (kT
m∗G̃

−1Kmny, (3)

k(x∗,x∗)− kT
m∗K

−1
mmkm∗+

σ2
nk

T
m∗G̃

−1km∗),

where G̃ = σ2
nKmm + KmnKnm and km∗ is the

vector of kernel evaluations between test input x∗
and the m inducing inputs. The resulting training
complexity is O(m2n).

The remaining question is how to choose the in-
ducing inputs. We follow the approach of Snelson
and Ghahramani (2006), which note that these in-
ducing inputs do not need to be a subset of the
training data. Their method considers each in-
put as a hyperparameter, which is then optimised
jointly with the kernel hyperparameters.

2.3 Features
For all tasks we used the QuEst framework (Spe-
cia et al., 2013) to extract a set of 80 black-box
features as in Shah et al. (2013), for which we had
all the necessary resources available. Examples of
the features extracted include:

• N-gram-based features:

– Number of tokens in source and target
segments;

– Language model (LM) probability of
source and target segments;

– Percentage of source 1–3-grams ob-
served in different frequency quartiles of
a large corpus of the source language;

– Average number of translations per
source word in the segment as given by
IBM 1 model from a large parallel cor-
pus of the language, with probabilities
thresholded in different ways.

• POS-based features:

– Ratio of percentage of nouns/verbs/etc
in the source and target segments;

– Ratio of punctuation symbols in source
and target segments;

– Percentage of direct object personal or
possessive pronouns incorrectly trans-
lated.

For the full set of features we refer readers to
QuEst website.2

To perform feature selection, we followed the
approach used in Shah et al. (2013) and ranked
the features according to their learned lengthscales
(from the lowest to the highest). The lengthscale
of a feature can be interpreted as the relevance of
such feature for the model. Therefore, the out-
come of a GP model using an ARD kernel can be
viewed as a list of features ranked by relevance,
and this information can be used for feature selec-
tion by discarding the lowest ranked (least useful)
ones.

3 Preliminary Experiments

Our submissions are based on multi-task settings.
For task 1.1, we consider each language pair as a
different task, training one model for all pairs. For
tasks 1.2 and 1.3, we used additional datasets and
encoded each one as a different task (totalling 3
tasks):

WMT13: these are the datasets provided in last
year’s QE shared task (Bojar et al., 2013).
We combined training and test sets, totalling
2, 754 sentences for HTER prediction and
1, 003 sentences for post-editing time predic-
tion, both for English-Spanish.

EAMT11: this dataset is provided by Specia
(2011) and is composed of 1, 000 English-
Spanish sentences annotated in terms of
HTER and post-editing time.

For each task we prepared two submissions: one
trained on a standard GP with the full 80 features
set and another one trained on a sparse GP with
a subset of 40 features. The features were chosen
by training a smaller model on a subset of 400 in-
stances and following the procedure explained in
Section 2.3 for feature selection, with a pre-define
cutoff point on the number of features (40), based
on previous experiments. The sparse models were
trained using 400 inducing inputs.

To select an appropriate multi-task setting for
our submissions we performed preliminary exper-
iments using a 90%/10% split on the correspond-
ing training set for each task. The resulting MAE
scores are shown in Tables 1 and 2, for standard
and sparse GPs, respectively. The boldface fig-
ures correspond to the settings we choose for the

2http://www.quest.dcs.shef.ac.uk/
quest_files/features_blackbox
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Task 1.1 Task 1.2 Task 1.3
en-es es-en en-de de-en en-es en-es

Independent 0.4905 0.5325 0.5962 0.5452 0.2047 0.4486
Pooled 0.4957 0.5171 0.6012 0.5612 0.2036 0.8599
Combined 0.4939 0.5162 0.6007 0.5550 0.2321 0.7489
Combined+ 0.4932 0.5182 0.5990 0.5514 0.2296 0.4472

Table 1: MAE results for preliminary experiments on standard GPs. Post-editing time scores for task 1.3
are shown on log time per word.

Task 1.1 Task 1.2 Task 1.3
en-es es-en en-de de-en en-es en-es

Independent 0.5036 0.5274 0.6002 0.5532 0.3432 0.3906
Pooled 0.4890 0.5131 0.5927 0.5532 0.1597 0.6410
Combined 0.4872 0.5183 0.5871 0.5451 0.2871 0.6449
Combined+ 0.4935 0.5255 0.5864 0.5458 0.1659 0.4040

Table 2: MAE results for preliminary experiments on sparse GPs. Post-editing time scores for task 1.3
are shown on log time per word.

official submissions, after re-training on the corre-
sponding full training sets.

To check the speed-ups obtained from using
sparse GPs, we measured wall clock times for
training and prediction in Task 1.1 using the “In-
dependent” multi-task setting. Table 3 shows the
resulting times and the corresponding speed-ups
when comparing to the standard GP. For compar-
ison, we also trained a model using 200 inducing
inputs, although we did not use the results of this
model in our submissions.

Time (secs) Speed-up
Standard GP 12122 –
Sparse GP (m=400) 3376 3.59x
Sparse GP (m=200) 978 12.39x

Table 3: Wall clock times and speed-ups for GPs
training and prediction: full versus sparse GPs.

4 Official Results and Discussion

Table 4 shows the results for Task 1.1. Us-
ing standard GPs we obtained improved results
over the baseline for English-Spanish and English-
German only, with particularly substantial im-
provements for English-Spanish, which also hap-
pens for sparse GPs. This may be related to the
larger size of this dataset when compared to the
others. Our results here are mostly inconclusive
though and we plan to investigate this setting more
in depth in the future. Specifically, due to the

coarse behaviour of the labels, ordinal regression
GP models (like the one proposed in (Chu et al.,
2005)) could be useful for this task.

Results for Task 1.2 are shown in Table 5. The
standard GP model performed unusually poorly
when compared to the baseline or the sparse GP
model. To investigate this, we inspected the re-
sulting model hyperparameters. We found out that
the noise σ2

n was optimised to a very low value,
close to zero, which characterises overfitting. The
same behaviour was not observed with the sparse
model, even though it had a much higher number
of hyperparameters to optimise, and was therefore
more prone to overfitting. We plan to investigate
this issue further but a possible cause could be bad
starting values for the hyperparameters.

Table 6 shows results for Task 1.3. In this task,
the standard GP model outperformed the base-
line, with the sparse GP model following very
closely. These figures represent significant im-
provements compared to our submission to the
same task in last year’s shared task (Beck et al.,
2013), where we were not able to beat the baseline.
The main differences between last year’s and this
year’s models are the use of additional datasets
and a higher number of features (25 vs. 40). The
competitive results for the sparse GP models are
very promising because they show we can com-
bine multiple datasets to improve post-editing time
prediction while employing a sparse model to cope
with speed issues.
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en-es es-en en-de de-en
∆ ρ ∆ ρ ∆ ρ ∆ ρ

Standard GP 0.21 -0.33 0.11 -0.15 0.26 -0.36 0.24 -0.27
Sparse GP 0.17 0.27 0.12 -0.17 0.23 -0.33 0.14 -0.17
Baseline 0.14 -0.22 0.12 -0.21 0.23 -0.34 0.21 -0.25

en-es es-en en-de de-en
MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Standard GP 0.49 0.63 0.62 0.77 0.63 0.74 0.65 0.77
Sparse GP 0.54 0.69 0.54 0.69 0.64 0.75 0.66 0.79
Baseline 0.52 0.66 0.57 0.68 0.64 0.76 0.65 0.78

Table 4: Official results for task 1.1. The top table shows results for the ranking subtask (∆: DeltaAvg;
ρ: Spearman’s correlation). The bottom table shows results for the scoring subtask.

Ranking Scoring
∆ ρ MAE RMSE

Standard GP 0.72 0.09 18.15 23.41
Sparse GP 7.69 0.43 15.04 18.38
Baseline 5.08 0.31 15.23 19.48

Table 5: Official results for task 1.2.

Ranking Scoring
∆ ρ MAE RMSE

Standard GP 16.08 0.64 17.13 27.33
Sparse GP 16.33 0.63 17.42 27.35
Baseline 14.71 0.57 21.49 34.28

Table 6: Official results for task 1.3.

5 Conclusions

We proposed a new setting for training QE mod-
els based on Multi-task Gaussian Processes. Our
settings combined different datasets in a sensible
way, by considering each dataset as a different
task and learning task covariances. We also pro-
posed to speed-up training and prediction times
by employing sparse GPs, which becomes crucial
in multi-task settings. The results obtained are
specially promising in the post-editing time task,
where we obtained the same results as with stan-
dard GPs and improved over our models from the
last evaluation campaign.

In the future, we plan to employ our multi-task
models in large-scale settings, like datasets an-
notated through crowdsourcing platforms. These
datasets are usually labelled by dozens of annota-
tors and multi-task GPs have proved an interest-
ing framework for learning the annotation noise
(Cohn and Specia, 2013). However, multiple tasks

can easily make training and prediction times pro-
hibitive, and thus another direction if work is to
use recent advances in sparse GPs, like the one
proposed by Hensman et al. (2013). We believe
that the combination of these approaches could
further improve the state-of-the-art performance in
these tasks.
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