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Abstract
Hierarchical phrase-based (Hiero) models have richer expressiveness than phrase-based

models and have shown promising translation quality gains for many language pairs whose
syntactic divergences, such as reordering, could be better captured. However, their expres-
siveness comes at a high computational cost in decoding, which is induced by huge dynamic
programs associated with language model integrated decoding, where the search space is lex-
ically exploded and exact search often becomes intractable. Cube pruning and growing are
two approximate search algorithms to make decoding much more efficient. In this article, we
describe an extension to the Hiero decoder of the Moses toolkit by providing cube growing as
an alternative to cube pruning, with an additional parameter similar to Jane’s cube growing
implementation that is not present in the original one. We also report experimental results on
a full-scale NIST MT08 Chinese-English translation task.

1. Introduction

Cube pruning for machine translation (MT) decoding performs lazy computation
along multi-hyperedges in parallel. However, it still computes a full k-best list for each
node in the hypergraph. Based on this observation, Huang and Chiang (2007) further
propose a lazy variant of cube pruning, known as cube growing, derived from k-best
parsing in Huang and Chiang (2005), which turns the k-best selection problem into
a depth-first, top-down recursive k-best generation procedure, and only generates as
many hypotheses as needed at each hypergraph node to obtain the kth best hypothesis
of the root node.

In Hiero decoding, cube growing is a two-pass procedure. In the first pass transla-
tion model only monotonic (-LM) decoding, a translation hypergraph is generated.
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Figure 1. A toy derivation in a hypergraph. The hyperedge associated with the SCFG
rule X→ X1X2 is shaded.

This pass could be treated as an initial bottom-up rule look-up only phrase, even
though more housekeeping work is carried out in this first pass as preparation for
the second-pass top-down main cube growing procedure. The main cube growing is
then applied to the resulting hypergraph to generate the k-best hypotheses of the goal
node (the k-best translations of a given complete sentence) in a top-down manner.

The original cube growing algorithm by Huang and Chiang (2007) is applied to a
tree-to-string translation model, and the authors have left its extension to the Hiero
model as part of their future work. We adapted the cube growing algorithm to the
Hiero model and implemented it as an alternative search algorithm in addition to
cube pruning in Moses (Koehn et al., 2007). Moreover, inspired by the cube growing
implementation by Vilar et al. (2010)1, we have introduced an additional parameter
not present in the original cube growing algorithm to boost its search and translation
quality.

2. Cube Growing for Hiero Decoding

We first provide an overview of the main structure of the cube growing algorithm,
then follow this up with an example concentrating on a critical detail of it. We depict
one possible derivation of the goal node of a hypergraph in Figure 1. Suppose we are
interested in finding the first-best hypothesis of S (for the sake of discussion, we ignore
the immediate right child of S, and concentrate only on the immediate left child node
X). First, the main cube growing procedure is called on the S node, it will then request
the first-best hypothesis of the X node. However, this required first-best hypothesis
has not been generated yet, and the X node will call the main cube growing procedure
on itself, which causes two further recursive calls of the main cube growing procedure
on the two leaf nodes X1 and X2 (assuming it is the first time we visit these two leaf
nodes, the first-best hypotheses of them are unknown either). Using a subprocedure
of cube growing, the two leaf nodes will return the recursive calls to node X with their
respective first-best hypothesis (assume for now the two leaf-nodes used a black-box
subprocedure to return their first-best hypotheses to X). Upon receiving the first-best
hypotheses of both X1 and X2, node X will use the same black-box subprocedure to

1To the best of our knowledge, Jane was the only open-source decoder which implements cube growing.
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Figure 2. Language model costs for all hypotheses associated with a hyperedge, lower
costs are better.

determine if the candidate first-best hypothesis generated from the given two first-
best hypotheses of X1and X2 is good enough to be passed up to node S. If not, more
recursive calls would be made to both of its child nodes until it is confident to pass
a hypothesis as its first-best hypothesis to S. Similarly, node S would use the same
black-box subprocedure to determine its first-best hypothesis.

We now turn to the critical subprocedure and concentrating on cube growing along
one hyperedge. In short, cube growing uses an estimated minimal language model
cost, termed the language model intersection cost heuristic to determine whether a
hypothesis is good enough to be enumerated into the final k-best list of a hyper-
edge. To define the language model intersection cost heuristic, assume for the mo-
ment that all language model intersection costs for a hyperedge are known, as de-
picted in each cell of Figure 2, and the language model heuristic for this hyperedge
is just min{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7} = 0.1. In general, with LM (he) denoting the
language model cost of a hypothesis h from the hyperedge e, the language model
intersection cost heuristic for this hyperedge is

τ = min
he∈H

LM (he) ,

where H is the set of all possible hypotheses of this hyperedge. We note that this
language model heuristic is a lower bound on language model intersection costs along
this hyperedge, and we could estimate the total cost of any hypothesis he generated
from this hyperedge as β = λ (he) + τ, where λ (he) is the total cost disregarding
the language model cost. Also, β is always an underestimate if τ is the true minimal
language model intersection cost along the hyperedge e. Furthermore, we denote the
true total cost of a hypothesis he as α = λ (he) + LM(he).

Return to our example and focus on cube growing along the hyperedge X→ X1X2

as illustrated in Figure 3, assuming we know in advance that τ = 0.1 for this hyper-
edge. In Figure 3(a) (top cube) the first recursive calls for X1 and X2 have returned,
yielding a total cost of 1.0 for both of the first-best hypotheses of X1 and X2. A can-
didate first-best item of X is then generated, as shown in the top cube of Figure 3(a),
its α cost is 1.0 + 1.0 + 0.7 = 2.7, with 0.7 as the language model cost. This item is
first put into a priority queue (PriorityQueue), and then is immediately popped out
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Figure 3. Example illustrating cube growing along one hyperedge. The two axes of all
the “cubes” correspond to hypotheses for X1 and X2 respectively. On the top row,

black numbers indicate α costs of hypotheses in the PriorityQueue, and grey numbers
indicate hypotheses in the PriorityQueue-temp. For each cube on the top row, the
corresponding cube on the bottom row represents another priority queue which

contains the same hypotheses as the cube above it, but with β costs as the priorities.

of the queue as it is the only item in the queue and pushed into a buffer priority
queue (PriorityQueue-temp) for further comparison with more items (as we are not
certain this item is the true first-best item of X due to non-monotonicity). More re-
cursive calls cause more candidate items being generated at the node X and the top
cube of Figure 3(b) shows two more candidate items with α costs 2.2+ 0.2 = 2.4 and
4.0 + 0.4 = 4.4 and these two items are again put into the PriorityQueue. Moreover,
as we are given that τ = 0.1 for this hyperedge, we have the estimated total costs (the
β costs) for these two items as 2.2 + 0.1 = 2.3 and 4.0 + 0.1 = 4.1. For each cube on
the top row, we record β costs of hypotheses in the PriorityQueue into a correspond-
ing monotonic grid on the bottom row of Figure 3 (in a practical implementation, we
could implement this monotonic grid as another priority queue).

Now PriorityQueue-temp contains a single item he (1) with an α cost of 2.7 de-
picted in grey (top cube of Figure 3(b)) and PriorityQueue contains two items with
α(he (2,1)) = 2.4, α(he (1,2)) = 4.4, depicted in black (top cube of Figure 3(b)) and
β(he (2,1)) = 2.3, β(he (1,2)) = 4.1 (bottom cube of Figure 3(b)). As in Huang and
Chiang (2007), we define

bound = min
he∈PriorityQueue

β (he) ,

136



W. Xu, P. Koehn Cube Growing for Moses (133–142)

and in this example, bound = min{β(he (2,1)), β(he (1,2))} = min {2.3, 4.1} = 2.3

with β costs as recorded in the bottom cube of Figure 3(b). Because α (he (1)) >

bound, i.e., 2.7 > 2.3, assuming lower cost is better, the candidate first-best item can-
not be popped out of PriorityQueue-temp as the first-best hypothesis of this hyperedge
(because bound tells us the α costs of any future items along this hyperedge could
be anything greater than 2.3, hence he (1) with an α cost of 2.7 may not be the true
first-best, assuming lower cost is better). As such, we continue popping the minimalα
cost hypothesis he (2,1) from the PriorityQueue and put it into the PriorityQueue-temp,
as shown in the top cube of Figure 3(c). More recursive calls give us the neighbours
of this popped out hypothesis, with α costs 4.5+ 1.0 = 5.5 and 3.2+ 1.0 = 4.2 respec-
tively. These two new neighbours are put into the PriorityQueue and their β costs are
recorded as in the bottom cube of Figure 3(c). Now there are three items in the Priori-
tyQueue (indicated by the three black numbers in the top cube of Figure 3(c)). Taking
the minimalβ costs of the three items (as depicted in the bottom cube of Figure 3(c)) in
the PriorityQueue, we get bound = min{4.6, 3.3, 4.1} = 3.3. This time, α costs of both
of the items in the PriorityQueue-temp are less than bound, and therefore could be enu-
merated into the final k-best lists, with he (2,1) as the first-best hypothesis with α cost
2.4 and he (1) as the second-best hypothesis with α cost 2.7. This procedure continues
along this hyperedge and eventually generates all the k-best hypotheses required and
in this case, the generated k-best items would be the true k-best hypotheses because
0.1 is a true lower bound of the β costs (equivalently, underestimate of α costs) along
this hyperedge.

3. Language Model Cost Heuristic

In the previous section, we have explained the overall structure and described the
details of the cube growing algorithm along a single hyperedge. The main recipe for
cube growing along one hyperedge is to use the lower bound of the language model
costs of all the hypotheses from that hyperedge to guide the search (i.e., we use the
lower bound to determine if a hypothesis could be popped out of PriorityQueue-temp
and enumerated to the final k-best list). For a single hyperedge, if the bound is a true
lower bound, then there will be no search errors and an exact k-best list would be
obtained for that hyperedge. Analogous to cube pruning, the version of cube grow-
ing used in MT decoding is a multi-hyperedge version, and thus we need to establish
whether the lower bound is still valid if we apply the above procedure to the multi-
hyperedge case where the PriorityQueue contains hypotheses from multiple hyper-
edges of one consequent node in a hypergraph. Fortunately, the validity of this lower
bound across multiple hyperedges of a given consequent node is formally obtained
and a complete proof is given by Huang and Chiang (2007). For completeness, we
show the pseudocode of cube growing for Hiero decoding in Algorithm 1.
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Algorithm 1 Cube Growing for Hiero Decoding, adapted from the algorithm
in Huang and Chiang (2007)

1: procedure DCSTD(X, k)
2: if PriorityQueue uninitialised then
3: PriorityQueue (X)← ∅
4: LazyCreateCube (PriorityQueue, 1, e) foreach e ∈ BS (X)
5: PriorityQueue-temp← ∅
6: while

∣∣Htop-k
∣∣ < k and |PriorityQueue-temp (X)|+

∣∣Htop-k
∣∣ < j do

7: if |PriorityQueue| > 0 then
8: he (u)← PriorityQueue.pop-min≼
9: PriorityQueue-temp.push (he (u))

10: LazyCreateNeighbours (PriorityQueue,he (u))
11: bound← min {β (he) | he ∈ PriorityQueue}

12: GenerateHypothesis
(
PriorityQueue-temp,Htop-k, bound

)
13: GenerateHypothesis

(
PriorityQueue-temp,Htop-k,+∞)

14: procedure LazyCreateNeighbours(PriorityQueue,he (u))
15: LazyCreateCube (PriorityQueue,u+bi, e) foreach i in 1 . . . |e|

16: procedure LazyCreateCube(PriorityQueue,u, e)
17: e is X← X1 . . . X|e|

18: for← 1 . . . |e| do
19: DecodeSpanTopDown (Xi,ui)
20: if

∣∣Htop-k (Xi)
∣∣ < ui then

21: return
22: PriorityQueue.push (he (u))

23: procedure GenerateHypothesis(PriorityQueue-temp,Htop-k, bound)
24: while |PriorityQueue-temp| > 0 and min (PriorityQueue-temp) < bound do
25: Htop-k.push (PriorityQueue-temp.pop-min)
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4. Estimating Language Model Cost Lower Bounds

As we have briefly described before, a first initial pass of -LM decoding is needed
for the main cube growing procedure. It is in the first pass that we generate the trans-
lation hypergraph and try to estimate the language model lower bounds for each hy-
peredge. In a practical implementation, it is computationally too expensive to com-
pute the true lower bound of language model intersection costs for each hyperedge,
and following Huang and Chiang (2007), we adopt a less computationally demanding
approach in our implementation.

In the -LM pass of decoding a sentence, we first generate the -LM top-k best transla-
tions for the complete input sentence, these k-best translations correspond to k com-
plete derivations in the translation hypergraph and they may share some identical
hyperedges. By following backpointers of these top-k -LM derivations, we can calcu-
late language model intersection costs for all the hyperedges involved in those -LM
k-best derivations using -LM hypotheses. For a hyperedge shared among multiple
derivations, the minimal intersection cost is then taken as the language model lower
bound estimate for that hyperedge, and for a hyperedge not shared by more than one
derivation, its only intersection cost will be used as the language model lower bound
estimate. Moreover, a hyperedge may be found not represented in the first pass at all,
in that case we then take the language model cost of the first-best hypothesis at that
hyperedge as the lower bound estimate. More detailed study on the miss rate of this
procedure can be found in Vilar and Ney (2009).

While this procedure is not guaranteed to cover all hyperedges that would be used
in the top-down main cube growing procedure, it is expected that the resulting esti-
mates from these top-k -LM derivations would be sufficient to guide the search.

5. Cube Growing Practicalities

In the original cube growing algorithm, a parameter analogous to popLimit in cube
pruning is used to control its computational cost (the variable j as shown on line 6 of
Algorithm 1). This parameter is an upper bound on the number of hypotheses allowed
in PriorityQueue-temp. Inspired by the cube growing implementation in Jane (Vilar
et al., 2010), we introduce an additional parameter which is used as a lower bound
on the hypothesis count in PriorityQueue-temp. However, our specific implementation
of the lower bound parameter is different. In our implementation, the lower bound
must be surpassed each time we start to add hypotheses into PriorityQueue-temp, while
in Jane it is only used as an one-off lower bound to accumulate hypotheses when it
is the first time hypotheses are being added into a PriorityQueue-temp. In our initial
experiments, we have found that by using this lower bound parameter, it consistently
improves the search and translation quality of our cube growing implementation in
Moses, and thus it is used by default in our experiment.
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6. Experiment

We evaluated our implementation with a full-scale NIST MT08 Chinese-English
test set, which consists of 1,357 Chinese sentences. The Hiero model is trained with
part of the GALE 2008 data, which has about 50M words for each language. A sen-
tence length limit of 80 words and a symbol limit of 5 are applied. A 5-gram language
model interpolated from three separate language models trained on the English side
of the parallel corpus is used.

To compare with the cube pruning baseline, we decoded the test set with 21 combi-
nations of lower and upper bounds (cf., Section 5) for the PriorityQueue-temp size, with
each combination having equal lower and upper bounds. The first 19 bounds range
from 10 to 100 in steps of 5, the last two bounds are 150 and 250, respectively. First
pass -LM k-best size for cube growing is set to 200 in all experiments. BLEU and model
scores against average hypothesis count plots are shown in Figure 4, with Figure 4(c)
showing an enlarged part of the model cost plot. In a nutshell, cube growing main-
tains much more consistent runtime requirements than the cube pruning baseline
and achieves more significant speedups when the popLimit values of cube pruning
are relatively high, while maintaining similar levels of translation and search quality.

When competing with cube pruning at low popLimit values, cube growing has
no clear advantage of speed. This is due to the fact that cube growing always re-
quires a first bottom-up pass to generate -LMhypotheses and compute language model
lower bound estimates. This first pass already dominates the overall runtime for cube
growing with low PriorityQueue-temp size bounds and would have compromised the
speedups gained in the top-down cube growing pass.

7. Conclusion

We described our implementation of the cube growing decoding algorithm orig-
inally proposed for a tree-to-string translation model (Huang and Chiang, 2007) as
an alternative search algorithm for Hiero decoding in Moses and inspired by Jane
(Vilar et al., 2010), a new parameter is also introduced into the original algorithm.
Our experiment shows that cube growing provides a competitive alternative to cube
pruning in terms of decoding speed, while maintaining the same level of translation
and search quality. As future work, we would like to extend cube growing to support
more syntax-based models in Moses.
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(a) BLEU score vs. average hypothesis count.
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erage hypothesis count.
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Figure 4. Translation and search quality comparisons of cube pruning and cube
growing.
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