
Transferring Markup Tags in Statistical Machine Translation: A 

Two-Stream Approach 

Eric Joanis, Darlene Stewart, Samuel Larkin and Roland Kuhn 

National Research Council Canada 

1200 Montreal Road, Ottawa ON, Canada, K1A 0R6 

First.Last@nrc-cnrc.gc.ca 

 

Abstract 

Translation agencies are introducing sta-

tistical machine translation (SMT) into 

the work flow of human translators. Typ-

ically, SMT produces a first-draft transla-

tion, which is then post-edited by a per-

son. SMT has met much resistance from 

translators, partly because of professional 

conservatism, but partly because the 

SMT community has often neglected 

some practical aspects of translation. Our 

paper discusses one of these: transferring 

formatting tags such as bold or italic 

from the source to the target document 

with a low error rate, thus freeing the 

post-editor from having to reformat 

SMT-generated text. In our “two-stream” 

approach, tags are stripped from the input 

to the decoder, then reinserted into the 

resulting target-language text. Tag trans-

fer has been tackled by other SMT teams, 

but only a few have published descrip-

tions of their work. This paper contrib-

utes to understanding tag transfer by ex-

plaining our approach in detail.  

1 Introduction 

Increasingly, translation agencies are incorporat-

ing machine translation (MT) in the work flow of 

their translators, to make them more productive. 

The usual scenario is a variant of post-editing, in 

which an initial translation generated by MT is 

manually corrected by a human translator (who is 

now called a “post-editor” instead). Green et al. 

(2013) show that SMT followed by post-editing 

can improve translator productivity, and even 

translation quality. Some interesting questions 

arise. For instance, how should MT interact with 

other productivity tools used by translators, such 

as terminology databases and translation memo-

ries? Koehn and Senellart (2010) and Du et al. 

(2010) discuss these issues.  

Many translators resist using MT. Green et al. 

(2013) write bluntly: “Translators often show 

intense dislike for working with MT output.” 

This is confirmed by our own experience. Why 

does this particular productivity tool, unlike oth-

ers mentioned above, attract so much hostility? 

Perhaps it is because of status anxiety: a transla-

tor who becomes a post-editor may perceive 

him/herself as having been proletarianized, going 

from being the machine’s master to its slave.  

However, there are also practical objections to 

putting out-of-the-box MT into the translation 

workflow. This paper looks at one of these, the 

need to transfer markup tags from the source to 

the target document. Tags are omnipresent in 

real-life documents: they appear in almost every 

file format (e.g., Word, HTML, Excel, Power-

Point, PDF) and are used to encode everything 

that is not plain text (fonts, footnotes, table cells, 

hyperlinks, etc.). In the translation memories of 

our clients, 10–40% of segments have at least 

one tag. In sentences having tags, the average 

number of tags was about 3 per sentence. 

In this paper, we will only discuss tag transfer 

for language pairs with similar orthographies, 

especially European languages (e.g., it’s not clear 

what the equivalent of “italic” would be in Chi-

nese text). We will only discuss tag transfer for 

statistical MT (SMT) systems: rule-based MT 

systems became translators’ tools decades ago, 

and their designers worked out then how to han-

dle this problem. We are unfamiliar with their 

solutions (finding out details about commercial 

rule-based systems tends to be difficult). By con-

trast, SMT researchers often give themselves the 

luxury of pretending that only pure text matters 

(but see “Related Work”). Unfortunately, this is 

not the world in which professional translators 

Sharon O’Brien, Michel Simard and Lucia Specia (eds.)
Proceedings of MT Summit XIV Workshop on Post-editing Technology and Practice, Nice, September 2, 2013, p. 73–81.
c©2013 Her Majesty the Queen in Right of Canada. This article is licensed under a Creative Commons 3.0 licence, no

derivative works, attribution, CC-BY-ND.



live. For them, post-editing SMT output without 

the formatting information found in the source 

may represent a serious loss of productivity.  

There are two possible approaches to the prob-

lem. One might consider formatting to be an in-

trinsic part of the source text, carrying important 

information that should help determine the 

choice of words and word order in the translation. 

In that case, tags should be part of the infor-

mation available to the SMT decoder. This is the 

“one-stream” approach. By contrast, in the pure 

“two-stream” approach we adopted, all text fed 

to the decoder has been stripped of formatting 

information; once a target-language translation 

has been produced, the tags are reinserted into it. 

Section 3 below discusses how previous work by 

other authors fits into this classification. An orig-

inal aspect of our implementation is that the tag 

re-insertion module has information not only 

about phrase pair alignments, but also about 

word alignments within each phrase pair. 

There are tradeoffs between the one- and two-

stream approaches. The two-stream approach 

pools information in the SMT system’s training 

data more efficiently: e.g., the word sequences 

“he never wins”, “he never wins”, and “he never 

wins” will look exactly the same in the training 

data, instead of differing because of the tags 

around the central word. (Data pooling could be 

achieved in the one-stream approach too, but at 

the cost of complicating decoding). An ad-

vantage and a disadvantage of the two-stream 

approach is that it permits the decoder to break 

apart words found together inside a paired tag: 

the decoder has more freedom to choose a good 

translation, but that may make deciding where to 

put the tag in the target text more difficult. 

In the two-stream approach, the decoder may 

initially translate “Hang up the phone!” into 

German as “Lege das Telefon auf!” Depending 

on how the tag reinsertion rules are written, the 

final translation might be “Lege das Telefon 

auf!”, “Lege das Telefon auf!”, or even “Lege 

das Telefon auf!” In the one-stream approach, 

we can easily tell the decoder not to break up a 

contiguously-tagged word sequence. The decoder 

would probably produce “Lege auf das Tele-

fon!”, which exactly reproduces the formatting of 

the original, but has unidiomatic word order. 

This paper gives a detailed description of our 

implementation of the pure two-stream approach, 

to clarify the issues and to help other people who 

might wish to implement it. We do not carry out 

an experimental comparison between the one-

stream and two-stream approaches, though this 

would certainly be a worthwhile next step.  

2  Background 

2.1 Tags and Translator Productivity  

Consider translating this sentence into French: 

Acknowledgement section should go as a last 

section immediately before the references. 

An old-fashioned translator without access to 

a translation memory might “translate by re-

placement”: put French text into a copy of the 

source, progressively deleting English words. 

This transfers the format, because word pro-

cessing programs typically transfer formatting to 

adjacent characters. The translator might begin 

by typing the French word “Remerciements” 

next to its English equivalent, “Acknowledge-

ment”, so the text may briefly look like this: 

AcknowledgementRemerciements section 

should go as a last section immediately before 

the references. 

Next, the translator will delete “Acknowledge-

ment” and proceed to type other French words in 

place. Virtually no productivity is lost by coping 

with the bold font of “Acknowledgement” (nor, 

later on, with the italics of “before the refer-

ences”).  

Often, users of translation memories get for-

mat transfer for free: if words they keep in the 

target sentence retrieved from the memory are 

formatted, perhaps that formatting is still appro-

priate. This is not guaranteed to happen, but can 

occur in cases where translations are regularly 

updated (e.g., with Web pages).  

If the translator uses a translation provided by 

vanilla SMT, neither of these tag transfer 

shortcuts is possible. For example, suppose the 

source sentence above yields the following trans-

lation (taken from vanilla Google Translate):  

Section de reconnaissance doit aller une der-
nière section immédiatement avant les réfé-
rences. 

Here, not only must the post-editor fix up the 

text of the translation, but he/she may also need 

to change the typeface for the whole French sen-

tence, put part of it into bold, and put another 

part into italic. Each manipulation represents a 

further loss of productivity. 

74



In the example just given, we would like the 

tag transfer module to modify the output into 

something like this (before post-editing): 

Section de reconnaissance doit aller une der-

nière section immédiatement avant les réfé-

rences. 

2.2 Markup Formats and Wrappers  

In SMT applications for translation agencies, 

both the source sentence and the training data for 

the SMT system are typically in markup formats 

used by translation memories. Two common 

open-standard formats for these are Translation 

Memory eXchange (TMX) (LISA, 2005) and 

XML Localization Interchange File Format 

(XLIFF) (OASIS, 2008), XML standards for 

storing and transferring translation memory con-

tents, and documents to be or already translated, 

between applications. 

A translation work package is a unit of work a 

manager would give a translator—typically, all 

sentences that need translating in a document 

from the client, but sometimes part of a docu-

ment or several documents—and the matching 

sentences in the other language (where availa-

ble). XLIFF was designed to transfer a document 

with its translations (localized versions), while 

TMX was designed to transfer whole translation 

memory contents (which could be thousands of 

documents from hundreds of translators). 

Though both formats can be used to store a trans-

lation work package, XLIFF is better suited for 

that purpose because it was designed with that 

end in mind. It is establishing itself as the stand-

ard for translation work packages, both in propri-

etary software (e.g., the SDL Trados suite) and in 

open source translation memory software (e.g., 

the Okapi Framework). 

In principle, the markup format is irrelevant to 

the work described in this paper. We used files 

exported by SDL Trados, the dominant commer-

cial provider of translation memories. When Tra-

dos exports TMX and XLIFF files (or files in any 

one of over 70 formats), it hides the markup de-

tails in a wrapper layer (SDL International, 

2011). Since TMX tags are still complex, we re-

wrap them in another simplifying layer. From 

our system’s perspective, there are two types of 

tags: isolated tags and paired tags—it has no no-

tion of italic, bold, typeface, etc. Isolated tags 

occur when the underlying document has a point 

tag, or when it has a tag pair that starts in one 

sentence and ends in another: in that case we see 

an isolated tag in each sentence. 

In practice, though our system handles TMX 

and XLIFF files in the same way, the formatting 

of a given sentence is often more economical in 

XLIFF than in TMX. For instance, in our XLIFF 

files, tags that are common to a sequence of 

words tend to be factored out more than in TMX 

files.
1
 Thus, our system often generates better 

output from XLIFF than from TMX, even though 

both are in wrapped formats, because it gets con-

fused by the TMX’s verbosity. 

Below is a real example of TMX and XLIFF 

tags for the same text. The id numbers after the 

“=” point to the formatting details (e.g., bold, 

italic, etc.): 

Original text: National CH4 and N2O emissions. 

TMX: <op id="6"/><op id="7"/>National CH 

<cl id="7"/><cl id="6"/><op id="8"/>4 

<cl id="8"/><op id="9"/> <op id="10"/>and 

N<cl id="10"/><cl id="9"/><op id="11"/>2 

<cl id="11"/><op id="12"/>O emissions. 

<cl id="12"/> 

NOTE: <op…> and <cl…> stand for our wrap-

pers around the actual “open” (<bpt>…</bpt>) 

and “close” (<ept>…</ept>) tags in the TMX. 

XLIFF: National CH<g id="3173">4</g> and 

N<g id="3174">2</g>O emissions. 

NOTE: Here <g id=…> and </g> are the “open” 

and “close” tags in the XLIFF file. 

3 Related Work  

Koehn and Senellart (2010) discuss the integra-

tion of SMT into translation memories. They also 

discuss XML markup, but not because they are 

interested in tag transfer from source to target. 

Instead, they use XML to mark untranslated parts 

of a source sentence, after most of it has been 

matched in the translation memory; the marked-

up portions are passed to SMT. 

Du et al. (2010) focus on the central topic of 

the current paper: how to handle markup in an 

SMT system whose output will be post-edited. 

They compare the performance of Moses (Koehn 

et al., 2007) using three different tag transfer 

                                                 
1
 The differences observed between our TMX and XLIFF 

files may be explained by the version of the software used 

to create them: SDL Trados 2007 for TMX files, SDL Tra-

dos Studio 2011 for XLIFF. However, our aim is to handle 

any TMX or XLIFF file submitted to our software. 

75



methods on Symantec French and English data in 

TMX format: “Complete Tokenisation”, “Partial 

Tokenisation”, and “Markup Transformation”.  

These methods lie along a spectrum between 

the one-stream and two-stream approaches. 

“Complete Tokenisation” is a pure one-stream 

method that treats tags as normal input, tokeniz-

ing them just like regular text. This leads to 

much longer sentences and diminishes the ability 

of the phrase table and the language model (LM) 

to learn useful patterns: the phrase table may 

have more noise in it because of bad word 

alignments, and the LM will be based on much 

sparser statistics. Worst of all, tags may be reor-

dered during SMT, leading to syntactically incor-

rect TMX in the output, so a tidying post-

processing stage is needed.  

“Partial Tokenisation” has the same data flow 

as “Complete Tokenisation”, but handles tags 

specially. It deals with data sparsity by grouping 

frequent tag sequences into a single token, and 

also by grouping tags and tag sequences into cat-

egories, each assigned a single symbol. Thus, 

sentences are about 50% shorter than in “Com-

plete Tokenisation”. This method can handle tags 

not seen in the training data.  

“Markup Transformation” might be called a 

“1.7-stream” approach. As in the pure two-

stream approach, markup is stripped from the 

input prior to SMT and then reinserted in the re-

sulting translation. However, the decoder is not 

given complete freedom to reorder words: when 

markup is stripped from a region of input text, 

that region is marked as a Moses “zone”. During 

SMT, words may be reordered within the zone, 

and the zone can be moved around, but there 

may be no movement of words between the in-

side and the outside of the zone. Thus, no tricky 

cases can arise where word reordering causes 

words to cross tag region boundaries (see Sec-

tion 4.2 below); however, the translation quality 

may suffer.  

The authors found that human evaluators do 

not have a strong preference for any one of these 

methods. Automatic metrics (NIST, BLEU, TER, 

and MTR), however, overwhelmingly prefer the 

two “Tokenisation” methods. There is some evi-

dence that the “zone” restriction reduces the 

quality of the output.  

Tezcan and Vandeghinste (2011) apply the 

one-stream approach to TMX data for English-

to-French and English-to-Spanish data, also us-

ing Moses. They look at four methods. One of 

these methods is a pure one-stream implementa-

tion roughly equivalent to “Complete Tokenisa-

tion” in Du et al. (2010). The other three methods 

can be seen as variants of “Partial Tokenisation” 

as described in Du et al. (2010), differing in the 

degree of generalization of tags and in the mech-

anisms for placing tags in the target text. The 

experiments in this paper seem to show a slight 

advantage for “Role-Based Markup Normaliza-

tion”, in which tags are grouped into categories 

based on their roles, with each category given its 

own token. This improves the quality of the out-

put compared to that from complete tokenization 

to an extent equivalent to the training data being 

increased by 50–100%.  

Zhechev and van Genabith (2010) describe a 

system that matches chunks of the input sentence 

with chunks found in a translation memory 

where possible, then uses SMT decoding to fill in 

the unmatched pieces. Although tag transfer is 

not the main subject of the paper, the system de-

scribed does transfer tags from the source to the 

target. As in the “Partial Tokenization” method 

above, tags are replaced by a simplified represen-

tation. Reading between the lines, one infers that 

the tag transfer approach here is probably “one-

stream” with the simplified tags left in the train-

ing data, not stripped out prior to decoding.  

The work closest in spirit to our own approach 

is described in Hudík and Ruopp (2011), as part 

of a description of the ongoing Moses for Locali-

zation (M4Loc) project undertaken by the open-

source Moses community. The overall pipeline 

described by Hudík and Ruopp (2011) is identi-

cal to ours, but some important details differ. For 

instance, the authors use only phrase alignment 

information to transfer tags, but not word align-

ment information, inserting tags only at phrase 

boundaries in the target text, which can easily 

result in misplaced tags. In our system, we use 

the word alignment from the phrase table to cor-

rectly place tags within segments (in addition to 

phrase pair information). We handle both TMX 

and XLIFF formats, while they handle only 

XLIFF (a defensible decision, as XLIFF is re-

placing TMX). The software described in Hudík 

and Ruopp (2011) has been released (M4Loc, 

2012), but has undergone some subsequent 

changes.  

Finally, our work generalizes software mecha-

nisms implemented by our colleague George 

Foster for transferring simple markup in Canadi-

an parliamentary data, such as the political affili-

76



ations of people speaking in a debate, from one 

language to another (Foster et al., 2010). 

4 Our Approach  

4.1 Data Flow  

We implemented two-stream tag transfer in 

our in-house system, a phrase-based SMT system 

resembling Moses (and which is licensed to 

translation agencies). As in Moses, the most fre-

quent word alignment is stored with each phrase 

pair. Figure 1 illustrates the data flow: 

 XML file: This is the input file in XML 

format (either TMX or XLIFF). 

 Extract: From XML files, extract the list 

of input sentences to translate, including 

their formatting tags. For XLIFF, tags are 

kept as is: <g id="i"> words… </g> for 

paired tags, <x id="i"/> for isolated tags. 

TMX tags are more complicated, so they 

are wrapped in <open_wrap id="i">, 

<close_wrap id="i"> or <tag_wrap> tags 

that are designed to be parsed by simple 

regular expressions. 

 Tokenization: We use our standard to-

kenizer, customized to be aware of XLIFF 

and wrapped TMX tags. We tokenize the 

actual text, not tags, but the tags inform 

some choices. E.g., the tokenizer normally 

splits tokens at tag boundaries, but if a to-

ken contains an open/close tag pair, we 

keep it together, so 31
st
, CO2, etc., are kept 

as single tokens, despite the superscript 

and subscript tags they contain. 

 Q.tags.tok file: This file contains to-

kenized text with the tags still embedded. 

 Strip tags: By stripping out the tags, we 

get standard tokenized text of the kind our 

decoder normally works with. 

 Decoder pipeline: This is our normal 

SMT pipeline: lowercase, apply rules 

(e.g., date and number parsing), decode, 

truecase. 

 P.tok file: This is the decoder pipeline’s 

main output – tokenized truecased text. 

 P.trace file: The decoder trace includes 

phrase segmentation and alignment from 

the decoding process, and word align-

ments associated with each phrase pair. 

 Tag transfer: This is the core module for 

this paper. It uses segmentation and word-

alignment information from P.trace to in-

sert the tags from Q.tags.tok correctly in 

P.tok. 

 Detok: Detokenization is done using our 

standard detokenizer, again customized to 

be aware of tags. 

 Insert: The translated detokenized sen-

tences including their formatting tags are 

re-inserted into the original XML. 

 XML.out file: This is the final TMX or 

XLIFF output file containing the source 

and translated text, including tags. 

4.2 Tag transfer rules  

The success of two-stream approaches depends 

on the tag transfer rules. These rules know 

about the phrase pair alignments used by the de-

coder to generate P.tok and the word alignments 

within each phrase pair.  

Let “source tag region” (STR) refer to a con-

tiguous sequence of source words that is en-

closed by matched “open” and “close” tags, let 

“target covering phrases” (TCP) be the target-

language phrases used to decode the source tag 

region, and let the “source phrase region” (SPR) 

be the words in the source covered by the source-

language phrases corresponding to the TCP. The 

nature of decoding ensures that the SPR is a con-

tiguous word sequence, but it may extend beyond 

STR, whereas TCP need not be contiguous. 

The core transfer rules for paired tags are: 

Figure 1. Two-Stream Data Flow. 

77



1. If the boundaries of the STR and the SPR co-

incide exactly, and the TCP are contiguous in 

the output target-language sentence, then the 

tag pair surrounding the STR is copied into the 

output so it surrounds the TCP. This rule is 

shown in Figure 2, cases 1 and 2. In case 2, 

note that phrase reordering during translation 

does not affect application of the rule. 

2. If the boundaries of the SPR extend beyond 

the STR, even if the TCP are contiguous in the 

output target-language sentence, there may be 

target words from the TCP that are word-

aligned with source words outside the STR. 

This is shown in Figure 2, case 3: “aime” 

comes from the phrase pair (“loves wine ,”, 

“aime le vin ,”) whose source side is partly in-

side, partly outside the STR; “aime” is a word 

aligned with a word inside the SPR (“loves”) 

but outside the STR. This is where word-

alignment information helps us. Here, we copy 

the tag pair surrounding the STR into the out-

put so that it surrounds every target word that 

is word-aligned with a word in the STR. So 

“aime” is not bold even though it is in a 

phrase that is partially bold.  

3. If the TCP are not contiguous in the output, 

we copy the tag pair from the STR into the 

output in such a way that all target phrases in 

the TCP are surrounded by the tag pair, thus 

extending the tag to apply to intervening 

phrases too. (We may also apply rule 2 if the 

SPR extends beyond the STR, to decide which 

target words to include in the phrases at the 

boundaries of the TCP). Figure 3, case 4 

shows this along with two alternative rules 

that could have been applied. 

4. Sometimes, two or more disjoint STRs may 

generate overlapping TCPs, as in Figure 3, 

case 5. Here, STR1 applies Lucida Handwrit-

ing typeface to words in its scope, STR2 ap-

plies bold Times New Roman typeface, and 

the TCPs overlap. The above rules will yield 

tags that cross over in the output. This is sel-

dom desirable, but there is no good rule to fix 

it automatically. TMX format allows its <bpt> 

and <ept> tag pairs to cross over, so we leave 

this situation as is in TMX files, letting the 

translator fix it by hand. However, XLIFF 

does not permit cross-over of its <g>/</g> tag 

pairs, so we must remove the cross-overs from 

the output. We arbitrarily chose to move the 

first close tag past the second close tag, creat-

ing a nested but legal structure for post-

edition.  

The rules for transferring isolated tags are: 

1. If an isolated tag is a point tag in the docu-

ment, it is considered to be attached to the 

next source word, and is placed before the 

target word aligned to that source word. 

2. If an isolated tag is the close or open tag of a 

tag pair that starts or ends outside the current 

segment in the underlying document, then it 

is treated using rules 1 to 3 above, as if it was 

paired with an open tag at the beginning of 

the segment, or a close tag at the end of the 

segment, respectively.  

In addition to these core rules, some care is 

taken to preserve the source order when multiple 

tags end up between the same two target-

language words. Note that both cases in Figure 3 

might have been handled better by a one-stream 

system, which could have kept target words orig-

Figure 2. Some Special Cases. Figure 3. More Complex Cases. 

78



inating from the same STR together. However, 

this might have made the translation itself worse.  

5 Mini-Evaluation 

We manually evaluated the accuracy of tag 

placement in the output of our system on one 

document. This is a “mini-evaluation” because it 

involved only one document, and it did not look 

at post-editing effort, just tag placement. The 

goal was to understand what’s going on, rather 

than to draw statistically defensible conclusions.  

We trained our in-house phrase-based SMT 

system on 384K English-French sentence pairs 

collected during Nov. 2007 – Feb. 2008 from the 

Environment Canada (EC) web site of Environ-

ment Canada (www.ec.gc.ca), with 5.1M English 

and 6.1M French words in total. The EC website 

constitutes a nice parallel corpus because it has 

varied types of formatted content published in 

French and English simultaneously. Our system 

obtains BLEU scores in the low fifties on ran-

domly sampled dev and test sets of 1500 sen-

tences (trained/tested on text stripped of tags; one 

reference for dev and test).  

We tested tag transfer on a more recent EC 

document, cutting/pasting the HTML text into 

MS Word. The TMX test file was created by ex-

tracting segments from the document with SDL 

Trados 2007. It had 367 segments, most with 

multiple sentences. There were 298 open/close 

tag pairs and 161 isolated tags for a total of 757 

tags, with on average 2.1 tags per segment (tag 

pairs count as two tags). 56% of segments had no 

tags, 22% had one tag, while the remaining 22% 

had two or more; 6% had ten or more. The seg-

ment with the most tags had 24. 

The XLIFF test file was created by extracting 

the segments from the document with SDL Tra-

dos Studio 2011. It had 1026 segments, most 

containing a single sentence. There were 194 

open/close tag pairs and only 2 isolated tags for a 

total of 390 tags, with an average of 0.38 tag per 

segment. 91% of the segments had no tags, 3% 

had two tags (one tag pair), 6% had more; only 

0.6% of segments had more than ten. The highest 

tag count for a segment was 14. 

The TMX and XLIFF statistics are not strictly 

comparable because the XLIFF data are seg-

mented into sentences, unlike the TMX data. 

However, there are fewer tags in the XLIFF, 

which makes tag transfer easier. In particular, the 

near absence of isolated tags in XLIFF shows 

that it abstracts more formatting information out 

of the segments. 

We gave each tag in each segment produced  

by our system one of the following annotations 

(we evaluated only tag placement, not translation 

quality): Good (tag is well placed); Reasonable 

(tag needs to be moved, but is next to text that 

also needs to be moved, so these can be moved 

together); Wrong (tag is wrongly placed); No 

chance (the decoder’s output is so bad there is no 

correct place for the tag). We added Spacing 

error if space before or after the tag should be 

deleted or inserted. 

 TMX XLIFF 
Total no. of tags 757 390 

Good 704 (93%) 351 (90%) 

Reasonable 23 (3%) 8 (2%) 

Wrong 27 (4%) 30 (8%) 

“No chance” 3 (.4%) 1 (.3%) 

Spacing error 165 (22%) 59 (15%) 

Table 1. Mini-evaluation results by tags. 

Table 1 shows tag-by-tag results. Most tags 

are placed correctly, reducing post-editing effort 

compared to a system with no tag transfer. A 

number of reasonable or wrong tags still need to 

be moved, though most of the remaining post-

editing will fix spacing before or after tags. Scor-

ing of spacing errors was strict: e.g., a space 

moved from before a tag to after it was counted 

as two errors (1 deletion + 1 insertion). Some of 

these spacing issues might not matter in practice.  

 TMX XLIFF 
Segments with at 

least one tag 

161 88 

All tags good, no 

spacing errors 

88 (55%) 33 (38%) 

All tags good 143 (89%) 66 (75%) 

All tags good or rea-

sonable 

144 (89%) 67 (76%) 

At least one tag 

wrong or no chance 

17 (11%) 21 (24%) 

At least one spacing 

error 

70 (43%) 41 (47%) 

Table 2. Evaluation results by segments. 

Table 2 shows our results by whole segments. 

Many segments have all tags placed correctly 

(89% / 75%) and a lower but still large propor-

tion have completely correct spacing around tags  

(55% / 38%), and thus require no post-editing. 

We also tried two methods for obtaining the 

word alignment within phrase pairs. The first, 

79



“heuristic word alignment”, uses heuristics de-

veloped by Foster et al. (2010) to recover a pos-

sible word alignment for a translation, given only 

its phrase pairs; the heuristics employ cognate 

information combined with a bias towards linear 

alignment. The second, “original word align-

ment” applies the original word alignment used 

to create the phrase table and stored in it. The 

two methods produce almost the same output; the 

number of differences is too small to draw any 

firm conclusions. Although a software bug af-

fected some of our results, it is clear that the two 

methods perform at about the same level. This 

may be because the word alignment is not often 

required to place tags correctly, or perhaps be-

cause the heuristics of Foster et al. (2010) are 

well suited to the task at hand. 

6 Discussion  

We thought of, but did not try, some intriguing 

alternative rules for tricky tag transfer situations. 

In future, we’d like to try: 

 Biasing the system to favour the original 

tag order whenever possible. Our current 

rules only require an “open” tag to precede 

the matching “close” tag, and require the 

XML in the target to be valid. 

 An extreme version of this: a hard rule that 

considers contiguous sequences of tags as 

if they were just one tag. The transla-

tors/post-editors we observed working in 

SDL Trados TagEditor seemed to do this, 

and shortcuts in the interface support it. 

 Better rules for handling spacing. During 

the mini-evaluation, we noticed that the 

detokenizer often left unwanted spaces 

around tag sequences. This may be due to 

a design error: the tag transfer module 

makes spacing decisions based on to-

kenized input. Then the detokenizer re-

moves unnecessary spaces, but without 

knowledge of the source text. The system 

could use raw input, before tokenization, 

to decide what spaces need to be kept.  

The major limitation of our paper is the lack of 

an experimental comparison between our method 

and alternative ones on a real post-editing task. A 

thorough study would compare a variety of one-

stream and two-stream methods from the litera-

ture. It could employ human evaluation as in Du 

et al. (2010), or follow the more extensive proto-

col of Green et al. (2013), using eye, cursor and 

mouse tracking to measure the impact of differ-

ent methods on post-editing. With respect to au-

tomatic metrics, evaluation of one-stream meth-

ods should involve at least two scores, one com-

paring tag-free output with tag-free references 

and one comparing tagged output with tagged 

references, to distinguish the impact of the meth-

ods on translation quality and their impact on 

formatting. Pure two-stream methods only affect 

formatting, so only the second score is necessary.  

Another limitation is that we studied a lan-

guage pair with similar word order (English-

French). Language pairs with more reordering 

(e.g., German-English) make it harder for the 

pure two-stream approach to make sensible tag 

transfer decisions. Language pairs with different 

writing systems (e.g., Arabic-English or Chinese-

English) pose deeper questions: e.g., what are the 

semantics of bold or italic in languages not writ-

ten in the Roman alphabet? One might even wish 

to explore whether capitalization has semantic 

equivalents in other writing systems.  

This paper describes implementation of a pure 

two-stream approach for transferring tags from 

source to target text in an SMT system. “Two-

stream” means that tags are stripped from source 

text before the decoder sees them, and trans-

ferred along a separate route, as opposed to the 

“one-stream” approach where the decoder han-

dles the tags. Our approach gives the decoder 

more freedom, but requires complex tag reinser-

tion rules. Experimental studies of both ap-

proaches in a realistic post-editing situation will 

be required to decide which approach is better.  

Acknowledgement 

We would like to thank CLS Lexi-tech Ltd. for creat-

ing our test TMX and XLIFF files. We would also 

like to thank the reviewers for their constructive sug-

gestions for improving this paper.  

References 

Du, Jinhua, Johann Roturier and Andy Way. 2010. 

TMX Markup: A Challenge When Adapting SMT 

to the Localisation Environment. EAMT 2010, 

Saint-Raphaël, France, 253-260.  

Foster, George, Pierre Isabelle and Roland Kuhn. 

2010. Translating Structured Documents. Associa-

tion for Machine Translation in the Americas 

(AMTA 2010), Denver, Colorado, USA. 

Green, Spence, Jeffrey Heer, and Christopher Man-

ning. 2013. The Efficacy of Human Post-Editing 

80



for Language Translation. CHI '13, Proceedings of 

the SIGCHI Conference on Human Factors in 

Computing Systems. 

Hudík, Tomáš and Achim Ruopp. 2011. The Integra-

tion of Moses into Localization Industry. Proceed-

ings of EAMT 2011, Leuven, Belgium. 

Koehn, Philipp and Jean Senellart. 2010. Conver-

gence of Translation Memory and Statistical Ma-

chine Translation. AMTA Workshop on MT Re-

search and the Translation Industry, Denver, Colo-

rado, USA.  

Koehn, Philipp, Hieu Hoang, et al. 2007. Moses: 

Open Source Toolkit for Statistical Machine Trans-

lation. Proceedings of the ACL 2007 Demo and 

Poster Sessions, Prague, Czech Republic. 

Localization Industry Standards Association (LISA). 

2005. TMX 1.4b Specification. Accessed May 17, 

2013. http://www.gala-global.org/oscarStandards 

/tmx/tmx14b.html 

M4Loc. 2012. m4loc – Moses for Localization. Ac-

cessed May 14, 2013. https://code.google.com 

/p/m4loc/ 

OASIS. 2008. XLIFF Version 1.2 Specification. Ac-

cessed May 17, 2013. http://docs.oasis-open.org 

/xliff/v1.2/os/xliff-core.html 

SDL International. 2011. SDL Trados Studio 2011 

Languages and Filters (guide). http:// 

www.translationzone.com/en/landing/premium-

downloads/sdl-trados-studio-2011-languages-and-

filters.asp 

Tezcan, Arda and Vincent Vandeghinste. 2011. SMT-

CAT integration in a Technical Domain: Handling 

XML Markup Using Pre & Post-processing Meth-

ods. Proceedings of EAMT 2011, Leuven, Bel-

gium.  

Zhechev, Ventsislav and Josef van Genabith. 2010. 

Seeding Statistical Machine Translation with 

Translation Memory Output through Tree-Based 

Structural Alignment. 4th Workshop on Syntax and 

Structure in Statistical Translation (SSST-4), Bei-

jing, China.  

 

81



82


