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Abstract

We describe a metric for estimating the
quality of Statistical Machine Translation
(SMT) output based on syntactic features
extracted using Combinatory Categorial
Grammar (CCG). CCG has been demon-
strated to be better suited to deal with SMT
texts than context free phrase structure
grammar formalisms. We use CCG fea-
tures to estimate the grammaticality of the
translations by dividing them into maximal
grammatical chunks extracted from their
CCG parse chart. We compare the per-
formance of our CCG features with strong
baseline and linguistic feature sets on
French–English and Arabic–English data
sets annotated with various quality scores.
The results show that our CCG features
outperform the baseline and linguistic fea-
tures in most of the experiments. Further-
more, we demonstrate that our CCG fea-
tures complement other types of features:
combining CCG features with the baseline
and other linguistic features furthers their
performance.

1 Introduction

Quality Estimation (QE) for Machine Translation
(MT) refers to the automatic prediction of transla-
tion quality without relying on reference transla-
tions. The availability of MT-translated data man-
ually annotated with quality scores provides the
ability to build machine learning systems which try
to predict translation quality based on features ex-
tracted from the source sentence and/or its target

aszzaca

translation and sometimes from internal translation
information output by the MT system.

With the improvement of the quality of MT sys-
tems and their increasing use in real-world appli-
cations, MT QE has become increasingly more im-
portant. QE has been demonstrated to help in mak-
ing the integration of MT systems in the trans-
lation pipeline more efficient. For example, us-
ing QE to filter out low-quality translations from
the post-editing process has been shown to help in
reducing post-editing time as low-quality transla-
tions might take more time to post-edit than to be
translated from scratch (Specia, 2011). Further-
more, QE helps to enhance MT user experience by
informing the user of the predicted quality of the
translation produced by the MT system. Moreover,
QE has been more and more used to enhance the
quality of MT systems by integrating QE scores in
n-best reranking and combining the translation of
different MT systems.

QE features estimate the quality of the transla-
tion by capturing the aspects which evaluate trans-
lation quality, namely fluency and adequacy, in
addition to predicting the difficulty of the trans-
lation. Adequacy refers to the extent to which
the meaning of the source sentence is preserved
by the translation, whereas fluency measures how
grammatical the translation is. QE features based
on language models have been usually used to
evaluate the fluency of the translation. However,
with the limited capacity of language model ap-
proaches to evaluating the grammaticality of the
translation, approaches which use linguistic QE
features extracted through syntactically and se-
mantically analysing the translation output have
emerged. Linguistic features extracted based on
POS tagging, PCFG and dependency parsing the
translation output have been integrated in QE mod-
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els. One of the main challenges facing these
approaches is that linguistic tools are trained on
grammatical sentences only. Thus, using them to
parse ungrammatical output can lead to inaccurate
analyses. In this paper, we focus on predicting
the fluency of the translation using linguistic fea-
tures extracted based on Combinatory Categorial
grammar (CCG). Thanks to CCG’s flexible deriva-
tions and its rich syntactic categories, we were
able to extract grammaticality QE features based
on recognising grammatical chunks and examin-
ing sequences of CCG categories in the translation
output. We also tackle the problem of parsing un-
grammatical output by restricting the coverage of
the CCG parser.

The rest of this paper is organised as follows.
Section 2 reviews related work. Section 3 provides
an introduction to CCG. Section 4 describes our
approach. Section 5 presents our experiments. Fi-
nally, Section 6 concludes and provides avenues
for future work.

2 Related Work

The first QE models were proposed by Blatz et
al. (2004). They use data labeled with automatic
MT metrics to learn QE models based on fea-
tures extracted from the input and output sen-
tences. Specia et al. (2009) add to the features
proposed by Blatz et al. (2004) a set of features
divided into “black-box” features i.e. MT system
independent features and “glass-box” features i.e.
features which use internal information from the
MT system. They use training data annotated by
both NIST and human annotation.

Using grammaticality features in QE has
been demonstrated to improve their performance.
Xiong et al. (2010) build a QE metric based on
a Maximum Entropy classifier in which they inte-
grate linguistic and lexical features to predict the
correctness of each word in the translation out-
put. Linguistic features are based on Link Gram-
mar, which parses a sentence by pairing its words.
They hypothesise that words which the parser fails
to link to other words are likely to be grammat-
ically incorrect. They demonstrate that linguistic
features help to improve performance over lexical
features and further improvement is gained when
these two types are combined.

Avramidis et al. (2011) propose PCFG parsing-
based QE features which represent the following
information extracted from PCFG parse trees of

the source and target sentences:

• Best parse tree log likelihood.
• Number of n-best trees.
• Confidence for the best parse tree.
• Average confidence of all trees.

Avramidis et al. (2011) demonstrate that these
parsing-based features are able to achieve better
correlation than non-linguistic-based features.

Specia et al. (2011) propose a set of QE fea-
tures to predict the adequacy of translation. The
features include the following syntactic features
extracted from source and target dependency and
constituency parse trees:

• Proportion of dependency relations with
aligned constituents between source and tar-
get sentences.
• The same previous feature but with the order

of constituents ignored.
• The same as the first feature but with Giza

threshold equals to 0.1.
• Absolute difference between the depth of the

syntactic tree for the source and the depth of
the syntactic tree for the target.

Rubino et al. (2012) extract a set of syntax-
based QE features originally developed to judge
the grammaticality of sentences. Some syntac-
tic features compare POS n-gram frequencies be-
tween the output sentence and a reference cor-
pus. The features also include parsing features
extracted from parse trees built using precision
grammar, which is originally developed to detect
grammatical errors. Other parsing-based features
rely on information produced by parsers trained
on well-formed and malformed sentences which
result from introducing grammatical errors in the
treebank on which the parser is trained.

Felice and Specia (2012) compare the perfor-
mance of a set of linguistic features extracted from
source and target sentences constituency and de-
pendency trees with the baseline system of the
WMT 2012 evaluation campaign (Callison-Burch
et al., 2012). Some of these features compare syn-
tactic structures between source and target sen-
tences whereas other features focus on detecting
common grammatical errors committed by SMT
systems. They show that the linguistic features
alone were not able to outperform the baseline sys-
tem. However, they show that following a proper
selection procedure for linguistic features helps to
boost their performance over the baseline system.
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3 Combinatory Categorial Grammar

CCG (Steedman, 2000) is a grammar formalism
which consists of a lexicon that pairs words with
lexical categories (supertags, cf. Bangalore and
Joshi (1999)) and a set of combinatory rules which
specify how the categories are combined. A su-
pertag is a rich syntactic description that specifies
the local syntactic context of the word at the lexi-
cal level in the form of a set of arguments. CCG
builds a parse tree for a sentence by combining
CCG categories using a set of binary combinatory
rules. Most of the CCG grammar is contained in
the lexicon, which is why CCG has simpler rules
compared to CFG productions.

CCG categories are divided into atomic and
complex categories. Examples of atomic cat-
egories are S (sentence), N (noun), NP (noun
phrase), etc. Complex categories such as S\NP
and (S\NP)/NP are functions which specify the
type and directionality of their arguments and re-
sults. For example, the supertag assigned to the
verb read in the sentence he reads is S\NP, which
means that the verb read needs a NP playing the
role of the subject to its left to constitute a full sen-
tence S. The same verb read is assigned a differ-
ent supertag (S\NP)/NP in the sentence he reads a
book. The supertag (S\NP)/NP denotes a transitive
verb which needs a NP to its left playing the role
of the subject and a NP to its right playing the role
of the object in order to constitute a full sentence
S.

4 Our Approach

4.1 Motivation

CCG has many unique qualities which made it an
attractive grammar formalism to be incorporated
into SMT systems (Hassan et al., 2007; Hassan et
al., 2009; Almaghout et al., 2010; Almaghout et
al., 2012) . These qualities can also be exploited
in building a CCG-based QE metric which evalu-
ates the grammaticality of the translation output.
First, CCG allows for flexible structures thanks
to its combinatory rules. Thus, it is possible to
assign a CCG category to phrases which do not
represent standard syntactic constituents. This is
an important feature for SMT systems as SMT
phrases are statistically extracted, and do not nec-
essarily correspond to syntactic constituents. This
same feature can also be used to detect grammat-
ical chunks in the translation output, which helps

to estimate its grammaticality. Second, CCG su-
pertags present rich syntactic information at the
lexical level about the dependents and local con-
text of each word in the sentence. Therefore, CCG
supertags reflect important information about the
syntactic structure of the sentence without the need
to build a full parse tree. This provides the ability
to extract grammaticality features based on exam-
ining sequences of CCG supertags of the words of
the translation output as in the work of Hassan et
al. (2007). This can also be incorporated as a fea-
ture in a QE metric.

4.2 CCG-based QE

State-of-the-art SMT systems use the phrase,
which is a continuous string of words, as the basic
translation unit. Thus, each translation output by
these systems consists of a set of non-overlapping
phrases learnt from the word-aligned training cor-
pus. The phrases themselves are grammatical as
they are extracted from a grammatical text. How-
ever, joining these phrases by the SMT system
does not necessarily produce a grammatical trans-
lation, especially that most SMT systems do not
use linguistic knowledge in the translation process.
Therefore, grammaticality measures can be built
based on the number of grammatical chunks de-
tected in the translation output. The simplest type
of these measures is to count the number of phrases
which constitute the translation output. We can
further refine this grammaticality measure to be
more accurate by trying to recognise grammatical
chunks beyond phrase boundaries. CCG’s flexi-
ble structures, which provide the ability to recog-
nise nonstandard constituents, are valuable to per-
form such task. Thus, parsing the translation out-
put with CCG and then extracting the grammati-
cal constituents in the translation output from the
parsing chart might help to predict the quality of
the translation output. Nevertheless, simply run-
ning the CCG parser on the translation output to
extract grammatical chunks is not good enough for
a number of reasons. First, the parser is trained on
grammatical sentences only. Therefore, using it to
parse ungrammatical sentences would yield inac-
curate supertags and parse trees. Furthermore, due
to the high flexibility of CCG derivations and in-
accurate supertags assigned to the words of an un-
grammatical translation, the CCG parser will suc-
ceed to build full CCG parse trees for many un-
grammatical sentences, which hinders the ability
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Translation: it is precisely the entry of virtual operators on the mobile market that has led to a considerable reduction in prices
, which were subsequently react to the traditional operators .
—————————————————————————————————————————
Maximal Phrases: it is precisely ||| the entry ||| of virtual ||| operators on ||| the mobile ||| market that ||| has led to a |||
considerable reduction in ||| prices , which ||| were subsequently ||| react ||| to the traditional ||| operators .
—————————————————————————————————————————
Supertagged Translation: it|NP is|(S[dcl]\NP)/NP precisely|(S\NP)\(S\NP) ||| the|NP[nb]/N entry|N ||| of|(NP\NP)/NP
virtual|N/N ||| operators|N on|(NP\NP)/NP ||| the|NP[nb]/N mobile|N/N ||| market|N that|(NP\NP)/(S[dcl]\NP) |||
has|(S[dcl]\NP)/(S[pt]\NP) led|(S[pt]\NP)/PP to|PP/NP a|NP[nb]/N ||| considerable|N/N reduction|N in|(NP\NP)/NP
||| prices|N ,|,|, which|(NP\NP)/(S[dcl]\NP) ||| were|(S[dcl]\NP)/(S[pss]\NP) subsequently|(S\NP)\(S\NP) |||
react|(S[b]\NP)/PP ||| to|PP/NP the|NP[nb]/N traditional|N/N ||| operators|N .|.
—————————————————————————————————————————
Maximal CCG Constituents: it is precisely the entry of virtual operators on the mobile market that has led to a consider-
able reduction in prices ,|NP ||| which|(NP\NP)/(S[dcl]\NP) ||| were subsequently|(S[dcl]\NP)/(S[pss]\NP) ||| react to the
traditional operators .|S[b]\NP
—————————————————————————————————————————
Features:

#Phrases #Constituent % Supertag Mismatches %Category Mismatches
13 4 23% 33%

Figure 1: An example for CCG-based QE features extracted from a translation output.

to evaluate the grammaticality of these sentences.

To solve these problems, we try to limit the
coverage of the CCG parser by restricting the su-
pertags assigned to the words of the translation
output to the ones co-occurred with their con-
taining phrases in the training data. This is per-
formed according to the following steps. First, the
target side of the training corpus is supertagged
with a CCG supertagger. Then, a phrase ta-
ble is extracted from the source corpus and the
CCG-supertagged target corpus according to word
alignments learnt from plain source-target cor-
pus. This CCG-augmented phrase table speci-
fies for each source-target phrase pair (f, e) the
sequence of supertags s assigned to the words
of the target phrase e along with probability of
the supertagged phrase given the source phrase
p(s, e|f). Afterwards, the translation output is di-
vided into non-overlapping maximal phrases (min-
imum number of non-overlapping phrases) ac-
cording to the phrase-table. Finally, each phrase
is assigned the highest-probability supertag se-
quence S = max p(s, e|f) according to the CCG-
augmented phrase table. After supertagging the
translation output, the CCG parser is used to build
a parsing chart for the translation output.

We extract the following features which pre-
dict the quality of the translation output. The
first feature is the minimum number of CCG con-
stituents which span the translation output K =
min n where n is the the length of the highest-
probability sequence of non-overlapping CCG cat-
egories c1, c2, ...., cn which span the translation
output according to the CCG parsing chart. If the

parser succeeds in building a full parse tree for
the translation output, then K = 1. We hypoth-
esise that these constituents approximate the max-
imal grammatical chunks in the translation output.
Thus, the smaller the value of this feature is, the
more grammatical the translation output might be.
Figure 1 shows the maximal CCG constituents ex-
tracted from a translation output along with some
CCG-based QE feature values for the same ex-
ample. We can see that the output is composed
of 13 phrases according to the phrase table. The
CCG parser is able to detect 4 maximal CCG con-
stituents in the output.

As a CCG supertag explicitly specifies the type
and directionality of the arguments it expects,
we can use this information to detect grammat-
ical flaws by checking the agreement of each
supertag argument(s) with its adjacent supertags
in the translation output. Therefore our sec-
ond QE feature measures the percentage of argu-
ment mismatches M in subsequent supertags in
the translation output out of the total number of
all subsequent supertags in the translation output:
P = M

L−1 where L is the length of the sentence.
This feature was originally proposed by Hassan et
al. (2007) to be integrated in the PB-SMT model
during the decoding process. For example, in Fig-
ure 1, the supertag (S[dcl]\NP)/NP of the word is
has a matching left argument with the supertag NP
of the word it.

Our third QE feature is the percentage of ar-
gument mismatches in the maximal CCG con-
stituents c1, c2, ...., cK retrieved from the pars-
ing chart out of the total number of subsequent
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CCG constituents. This feature is similar to the
previous feature with the difference is that the pre-
vious feature examines the supertag sequence at
the word level whereas this feature examines the
CCG category sequence at the constituent level. In
Figure 1, the CCG category (NP\NP)/(S[dcl]\NP)
of the second phrase has a matching left argu-
ment NP with the CCG category NP of the first
phrase, which indicates that the combination of
these two phrases is likely to be grammatical. By
contrast, the categories of the phrases were sub-
sequently and react to the traditional operators
do not agree as the CCG category of the former
expects a verb in the passive form to its right
(S[pss]\NP), whereas the category of the latter is
a bare infinitival verb phrase (S[b]\NP). This indi-
cates that there might be a grammatical flaw when
combining these two phrases with each other.

Our fourth QE feature is the 5-gram supertag
language model log probability of the supertag se-
quence of the translation output. The language
model is built from the supertagged target training
corpus. The integration of this feature in the PB-
SMT model was examined by Hassan et al. (2007).
We also include 5-gram supertag language model
perplexity of the supertag sequence of the transla-
tion output as the fifth feature in our system. In ad-
dition to the previous CCG-based features, we add
a feature for the number of maximal phrases in the
translation output. This sums up to 6 features we
used in our experiments.

5 Experiments

5.1 Data
The data we used in our experiments is French–
English and Arabic–English data. The French–
English data is news data from the WMT 2010
evaluation campaign (Callison-Burch et al., 2010).
The data consists of 2525 French sentences and
their translation produced by the Moses Phrase-
Based Decoder.1 The data is annotated with three
types of human annotation: post-editing effort,
Human Translation Edit Rate (HTER) (Snover et
al., 2006) and post-editing time. The Arabic–
English data is also news data from the DARPA
GALE project. The data consists of 2585 Ara-
bic sentences and their translation produced by a
state-of-the-art Phrase-Based SMT system and an-
notated with adequacy scores. We created five
random splits for each data set, each of which
1http://www.statmt.org/moses/

takes 90% of the sentences for training and 10%
of the sentences for testing. We used the Berke-
ley Parser2 to extract the PCFG features. For CCG
supertagging and parsing, we used the parser and
supertagger from the C&C tools.3

5.2 Baseline Systems

We compared the performance of our CCG-based
QE features on the French–English data with two
baseline systems:
• A QE system which uses a set of 80 shal-

low and system-independent features ex-
tracted from source sentences and their trans-
lation (Specia and Farzindar, 2010).
• A QE system which uses a subset of 17 fea-

tures from the 80 features used by the previ-
ous baseline system. These 17 features were
used to build the baseline system in the qual-
ity estimation task in the WMT 2012 evalua-
tion campaign (Callison-Burch et al., 2012).

For the French–English data, we also compare
the performance of our CCG-based QE features
with PCFG parsing-based features proposed by
Avramidis et al. (2011) (cf. Section 2) applied on
the source and target sentences in addition to the
target sentence alone to maintain a fair comparison
with our CCG-based features, which are extracted
from the target sentence only.

For the Arabic–English data, we compare the
performance of our CCG-based QE features with
two baseline systems:
• A QE system which uses 122 system-

independent fluency, adequacy and complex-
ity features (Specia et al., 2011).
• A QE system which uses the same 17 features

used as baseline QE system in WMT12.
We also compare the performance of our CCG-

based QE features on the Arabic–English data
with 4 linguistic features proposed by Specia et
al. (2011) (cf. Section 2), which are a subset of
the 122 baseline features.

We use epsilon-Support Vector Regression algo-
rithm with radial basis kernel from the scikit-learn
tool (Pedregosa et al., 2011) to learn our models.

5.3 Experimental Results

We measured the performance of the different sys-
tems using Root Mean Squared Error (RMSE) for
each annotation type on each of the five random

2http://code.google.com/p/berkeleyparser/
3http://svn.ask.it.usyd.edu.au/trac/candc
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System RMSE
Effort HTER Time

base17 0.6809 ± 0.0640 0.1693 ± 0.0306 0.6997 ± 0.0439
base80 0.7154 ± 0.0785 0.1815± 0.0279 0.7185 ± 0.0710
ccg 0.6750 ±0.0630 0.1716 ±0.0307 0.6937 ± 0.0444
ccg+base80 0.7182 ± 0.0646 0.1828 ± 0.0260 0.7122 ± 0.0685
ccg+base17 0.6734 ± 0.0628 0.1700 ± 0.0260 0.6905 ± 0.0433

Source and Target PCFG Features
pcfg 0.6800 ± 0.0606 0.1741 ± 0.0317 0.7147 ± 0.0393
pcfg+base80 0.7194 ± 0.0812 0.1790± 0.0309 0.7198 ± 0.0685
pcfg+base17 0.6740 ± 0.0622 0.1732 ± 0.0302 0.6950 ± 0.0470
pcfg+ccg 0.6775 ± 0.0591 0.1720 ± 0.0304 0.6825 ± 0.0437
pcfg+ccg+base80 0.7219 ± 0.0718 0.1796 ±0.0263 0.7168 ± 0.0610
pcfg+ccg+base17 0.6738 ± 0.0614 0.1728 ± 0.0238 0.6859 ± 0.0450

Target PCFG Features
pcfg 0.6828 ± 0.0549 0.1745 ± 0.0320 0.7125 ± 0.0383
pcfg+base80 0.7177 ± 0.0767 0.1820 ± 0.0280 0.7186 ± 0.0690
pcfg+base17 0.6785 ± 0.0622 0.1707± 0.0299 0.6976 ± 0.0430
pcfg+ccg 0.6797 ± 0.0606 0.1719 ± 0.0305 0.6934 ± 0.0436
pcfg+ccg+base80 0.7200 ± 0.0636 0.1824 ± 0.0276 0.7155 ± 0.0663
pcfg+ccg+base17 0.6742 ± 0.0615 0.1709 ±0.0239 0.6894 ±0.0411

Table 1: Average RMSE for each of the baseline, CCG-based and PCFG parsing-based QE systems on
the five en-fr random test sets for effort, HTER and post-editing time scores. Boldface figures indicate
feature sets that are not different from each other at a statistically significant level, but are significantly
better than all others within a given type of score (paired t-test with p <0.05).

test sets we extracted from the data. We then cal-
culated the average RMSE for all the five test sets.
We also examined the performance of the com-
bination of different types of features. The re-
sults for the baseline, CCG-based and linguistic
QE features in addition to their combination on the
French–English and Arabic–English data are illus-
trated in Tables 1 and 2 .

From Table 1, we can see that CCG features
alone are able to outperform both the 17 and 80
baseline features for all annotation types, except
for the HTER score, where the 17 baseline fea-
tures achieve the best performance. Combining
CCG features with the 17 baseline features helps
to achieve significant improvement over each fea-
ture type individually, except for the HTER score.
CCG features combined with the 17 baseline fea-
tures achieve the best performance for the effort
score. By contrast, combining CCG features with
the 80 baseline features does not in general help
to improve the performance. Comparing the per-
formance of CCG features with PCFG features
for all the scores, Table 1 shows that CCG fea-
tures outperform both source and target and tar-
get only PCFG features. Combining CCG features
with PCFG features achieves further improvement
over the PCFG features but not over CCG fea-
tures, except for the time score, where combining
CCG features with PCFG source and target fea-

tures achieves the best performance among all the
systems. Furthermore, combining PCFG features
with CCG features and the 17 baseline features
does not demonstrate to achieve improvement over
CCG features combined with the 17 baseline fea-
tures except for the time score.

In general, the experimental results on the
French–English data show that although CCG fea-
tures are only 6 target-side features, they are pow-
erful enough to boost the performance of the
17 baseline features, as combining CCG features
with the 17 baseline features helps to significantly
improve the performance over individual feature
types. As CCG features are target-side features
only, adding the 17 baseline features, which com-
bine source and target-side features, help to grasp
more aspects of translation quality with more fo-
cus on translation fluency due to the addition of
CCG features. Finally, CCG features achieve bet-
ter performance than PCFG parsing features ap-
plied both on the target side only and on target
and source sides. We believe this is due to the
fact that CCG features are more effective in pre-
dicting translation fluency than PCFG features as
CCG features such as the minimum number of
grammatical chunks in translation output directly
capture grammatical flaws in the sentence and thus
are more accurate in expressing translation fluency
than PCFG parser statistics. Furthermore, as the
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System RMSE
base17 0.7738 ± 0.0089
base122 0.7908 ± 0.0156
dependency 0.7969 ± 0.0125
dependency+base17 0.7683 ± 0.0088
ccg 0.7845 ± 0.0120
ccg+base17 0.7581 ± 0.0235
ccg+base122 0.7800 ± 0.0043
ccg+dependency 0.7750 ± 0.0123
ccg+dependency+base17 0.7637 ± 0.0076

Table 2: Average RMSE for each of the baseline,
CCG-based and dependency-based QE systems on
the five ar-en random test sets annotated with ade-
quacy score. Boldface figures indicate feature sets
that are not different from each other at a statisti-
cally significant level, but are significantly better
than all others (paired t-test with p <0.05).

CCG and PCFG parsers are trained on grammat-
ical data only, our adaptation of the CCG pars-
ing approach we used to deal with ungrammati-
cal output seems to help in acquiring more accu-
rate features. Although adding PCFG features to
CCG features does not help to achieve better per-
formance than CCG features alone for the HTER
and effort scores, combining CCG features with
PCFG features helps to achieve a remarkable per-
formance for the time score. Taking into consider-
ation the paired t-test for the top system against
all other systems, we can see from Table 1 that
for the effort score, combining the 17 baseline fea-
tures with both the PCFG and CCG features helps
to achieve the top performance . For the HTER
score, the 17 baseline features alone achieve sig-
nificant improvement compared with all other sys-
tems. Whereas for the time score, we can see
that combining CCG features with PCFG features
helps to boost their performance to the same level
of the systems which combine PCFG features with
the 17 baseline features.

For Arabic–English data set, Table 2 shows that
CCG features outperform the 122 baseline features
but they are not able to outperform the 17 base-
line features. However, combining CCG features
with the 17 baseline features achieves the best per-
formance among all the systems. Moreover, the
system which combines the CCG features with the
17 baseline features and the system which com-
bines the CCG features with the 17 baseline fea-
tures and dependency features significantly outper-

forms all other systems. This demonstrates again
that CCG features complement the 17 baseline fea-
tures very well and help to significantly boost their
performance. Furthermore, combining CCG fea-
tures with the 122 baseline features helps to im-
prove the performance over each feature type. Ta-
ble 2 also shows that CCG features achieve bet-
ter performance than dependency features. This
also might be due to the lack of dependency pars-
ing adaptation to deal with ungrammatical output,
which affects parsing accuracy. The table also
shows that combining CCG features with depen-
dency features helps to improve the performance
over each feature type. This also demonstrates that
dependency features, which examine the preser-
vation of grammatical relations during translation,
complement our CCG features, which focus on
translation fluency.

6 Conclusion and Future Work

In this paper, we presented a QE metric based
on linguistic features extracted using CCG. These
features try to predict the fluency of the transla-
tion by extracting maximal grammatical chunks
from the translation output and examining agree-
ment of CCG category labels at the lexical and
constituent levels. We also tackled the problem
of parsing ungrammatical output by restricting the
CCG supertags assigned to the words of the trans-
lation prior to CCG parsing to the ones occurred
in the training data. We conducted experiments
which compared the performance of our CCG fea-
tures with strong baseline systems which use sys-
tem independent features and with a set of lin-
guistic features. Our experiments demonstrated
that our CCG features achieved better performance
than the baseline systems and the linguistic fea-
tures in most of the experiments. Furthermore, our
experimental results showed that combining CCG
features with the baseline features and with other
linguistic features helped to improve their perfor-
mance, which indicates that CCG features help to
predict important aspects of translation quality not
treated by other feature types.

In future work, we plan to integrate more CCG
features in our CCG-based QE metric such as fea-
tures extracted from the internal information out-
put by the CCG parser and supertagger. Further-
more, we plan to use our CCG analysis of the
translation output to spot the parts of the trans-
lation that needs to be post-edited. Furthermore,
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the richness of CCG categories can be employed
to identify the types of errors committed in the
translation such as a missing verb or noun in ad-
dition to automatically correct them. We also plan
to integrate CCG features in n-best reranking dur-
ing SMT decoding and ranking translations output
by different SMT systems.
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