Computer Aided Translation

Philipp Koehn

7 September 2012

Why Machine Translation?

Assimilation - reader initiates translation, wants to know content

- user is tolerant of inferior quality
- focus of majority of research (GALE program, etc.)

Communication - participants don't speak same language, rely on translation

- users can ask questions, when something is unclear
- chat room translations, hand-held devices
- often combined with speech recognition, IWSLT campaignl

Dissemination - publisher wants to make content available in other languages

- high demands for quality
- currently almost exclusively done by human translators

Why Machine Translation?

Assimilation - reader initiates translation, wants to know content

- user is tolerant of inferior quality
- focus of majority of research (GALE program, etc.)

Communication - participants don't speak same language, rely on translation

- users can ask questions, when something is unclear
- chat room translations, hand-held devices
- often combined with speech recognition, IWSLT campaign

Dissemination - publisher wants to make content available in other languages

- high demands for quality
- currently almost exclusively done by human translators

Goal: Helping Human Translators

If you can't beat them, join them.I

- How can machine translation help human translators?
- First question: What do translators do?

Overview

- Human Translation
- Assistance to Human Translators
- User Study
- Assistance to Monolingual Translators
- Integration of Translation Memory and MT

Setup

- 10 students at the University of Edinburgh
- half native French speakers
- half native English speakers with advanced French
- Each student translated
- news stories
- French-English
- about 40 sentences
- easy task: familiar content, no specialized terminology
- Keystroke log

Keystroke Log

Input: Au premier semestre, l'avionneur a livr 97 avions.
Output: The manufacturer has delivered 97 planes during the first half.

black: keystroke, purple: deletion, grey: cursor move height: length of sentence

Analysis

- We can observe
- slow typing
- fast typing
- pauses
- Pauses
- beginning pause: reading the input sentence
- final pause: reviewing the translation
- short pauses ($2-6$ seconds): hesitation
- medium pauses (6-60 seconds): problem solving
- big pauses (>60 seconds): serious problem

Time Spent on Activities

		Pauses					
User	total	initial	final	short	medium	big	keystroke
L1a	3.3 s	0.1 s	0.1 s	0.2 s	1.0 s	0.1 s	1.8 s
L1b	7.7 s	1.3 s	0.1 s	0.3 s	1.8 s	1.9 s	2.3 s
L1c	3.9 s	0.2 s	0.2 s	0.3 s	0.7 s	-	2.5 s
L1d	2.8 s	0.2 s	0.0 s	0.2 s	0.4 s	0.1 s	1.8 s
L1e	5.2 s	0.3 s	0.0 s	0.3 s	1.9 s	0.5 s	2.2 s
L2a	5.7 s	0.5 s	0.1 s	0.3 s	1.8 s	0.7 s	2.2 s
L2b	3.2 s	0.1 s	0.1 s	0.2 s	0.4 s	0.1 s	2.2 s
L2c	5.8 s	0.3 s	0.2 s	0.5 s	1.5 s	0.3 s	3.1 s
L2d	3.4 s	0.7 s	0.1 s	0.3 s	0.6 s	-	1.8 s
L2e	2.8 s	0.3 s	0.2 s	0.2 s	0.3 s	0.1 s	1.9 s

$\mathrm{L} 1=$ native French, $\mathrm{L} 2=$ native English average time per input word

Time Spent on Activities

		not much time	Pauses				
User	total	initial	final	short	medium	big	keystroke
L1a	3.3 s	0.1 s	0.1 s	0.2 s	1.0 s	0.1 s	1.8 s
L1b	7.7 s	1.3 s	0.1 s	0.3 s	1.8 s	1.9 s	2.3 s
L1c	3.9 s	0.2 s	0.2 s	0.3 s	0.7 s	-	2.5 s
L1d	2.8 s	0.2 s	0.0 s	0.2 s	0.4 s	0.1 s	1.8 s
L1e	5.2 s	0.3 s	0.0 s	0.3 s	1.9 s	0.5 s	2.2 s
L2a	5.7 s	0.5 s	0.1 s	0.3 s	1.8 s	0.7 s	2.2 s
L2b	3.2 s	0.1 s	0.1 s	0.2 s	0.4 s	0.1 s	2.2 s
L2c	5.8 s	0.3 s	0.2 s	0.5 s	1.5 s	0.3 s	3.1 s
L2d	3.4 s	0.7 s	0.1 s	0.3 s	0.6 s	-	1.8 s
L2e	2.8 s	0.3 s	0.2 s	0.2 s	0.3 s	0.1 s	1.9 s

$\mathrm{L} 1=$ native French, $\mathrm{L} 2=$ native English average time per input word

Time Spent on Activities

User	total	not much time		Pauses		big	similar keystroke
		initial	final	short	medium		
L1a	3.3s	0.1s	0.1s	0.2s	1.0s	0.1s	1.8 s
L1b	7.7s	1.3s	0.1s	0.3s	1.8 s	1.9s	2.3 s
L1c	3.9s	0.2s	0.2 s	0.3s	0.7 s	-	2.5 s
L1d	2.8 s	0.2 s	0.0s	0.2s	0.4 s	0.1 s	1.8 s
L1e	5.2s	0.3s	0.0s	0.3s	1.9 s	0.5s	2.2s
L2a	5.7s	0.5s	0.1s	0.3s	1.8 s	0.7 s	2.2 s
L2b	3.2s	0.1s	0.1s	0.2s	0.4 s	0.1s	2.2 s
L2c	5.8s	0.3s	0.2 s	0.5s	1.5s	0.3 s	3.1s
L2d	3.4s	0.7s	0.1s	0.3s	0.6s	-	1.8 s
L2e	2.8s	0.3s	0.2 s	0.2 s	0.3 s	0.1s	1.9 s

$\mathrm{L} 1=$ native French, $\mathrm{L} 2=$ native English average time per input word

Time Spent on Activities

		not much time	Pauses	differences		similar	
User	total	initial	final	short	medium	big	keystroke
L1a	3.3 s	0.1 s	0.1 s	0.2 s	1.0 s	0.1 s	1.8 s
L1b	7.7 s	1.3 s	0.1 s	0.3 s	1.8 s	1.9 s	2.3 s
L1c	3.9 s	0.2 s	0.2 s	0.3 s	0.7 s	-	2.5 s
L1d	2.8 s	0.2 s	0.0 s	0.2 s	0.4 s	0.1 s	1.8 s
L1e	5.2 s	0.3 s	0.0 s	0.3 s	1.9 s	0.5 s	2.2 s
L2a	5.7 s	0.5 s	0.1 s	0.3 s	1.8 s	0.7 s	2.2 s
L2b	3.2 s	0.1 s	0.1 s	0.2 s	0.4 s	0.1 s	2.2 s
L2c	5.8 s	0.3 s	0.2 s	0.5 s	1.5 s	0.3 s	3.1 s
L2d	3.4 s	0.7 s	0.1 s	0.3 s	0.6 s	-	1.8 s
L2e	2.8 s	0.3 s	0.2 s	0.2 s	0.3 s	0.1 s	1.9 s

$\mathrm{L} 1=$ native French, $\mathrm{L} 2=$ native English average time per input word

Pauses Reconsidered

- Our classification of pauses is arbitrary (2-6sec, 6-60sec, $>60 \mathrm{sec}$)
- Extreme view: all you see is pauses
- keystrokes take no observable time
- all you see is pauses between action pointsll
- Visualizing range of pauses:
time t spent in pauses $p \in P$ up to a certain length l

$$
\operatorname{sum}(t)=\frac{1}{Z} \sum_{p \in P, l(p) \leq t} l(p)
$$

Results

Overview

- Human Translation
- Assistance to Human Translators
- User Study
- Assistance to Monolingual Translators
- Integration of Translation Memory and MT

Our Types of Assistance

- Sentence completion
- tool suggests how to complete the translation
- one phrase at a timel
- Translation options
- most likely translations for each word and phrase
- ordered and color-highlighted by probabilityl
- Postediting machine translation
- start with machine translation output
- user edits, tool shows changes

Technical Notes

- Online at http://www.caitra.org/
- User uploads source text, translates one sentence at a time
- Implementation
- AJAX Web 2.0 using Ruby on Rails, mySQL
- Back end: Moses machine translation system

Predicting Sentence Completion

- Tool makes a suggestion how to continue (in red)】
- User can accept it (by pressing TAB), or type in her own translationl
- Same idea as TransType, with minor modifications
- show only short text chunks, not full sentence completion
- show only one suggestion, not alternatives

How does it work?

- Uses search graph of SMT decodingl
- Matches partial user translation against search graph, by optimizing

1. minimal string edit distance between path in graph and user translation
2. best full path probability, including best completion to endl

- Technical notes
- search graph is pre-computed and stored in database
- matching is done server-side, typically takes less than 1 second
- completion path is returned to client (web brower)

Translation Options

Paul	Newman	le magnifique
Paul	Newman	the wonderful
Mr	Newman,	the magnificent
Mr Paul	Newman here	the wonderful
as Paul	Committee	beautiful
another	Newman, who speaks	magnificent
with Paul		the splendid
, Paul		the excellent
of Paul		the beautiful
work of Paul		It
the words of Paul		great

- For each word and phrases: suggested translations
- Ranked (and color-highlighted) by probability
- User may click on suggestion \rightarrow appended to text box

Translation Options - How does it work?

- Uses phrase translation table of SMT systemI
- Translation score: future cost estimate
- conditional probabilities $\phi(\bar{e} \mid \bar{f}), \phi(\bar{f} \mid \bar{e})$
- lexical probabilities $\operatorname{lex}(\bar{e} \mid \bar{f}), \operatorname{lex}(\bar{f} \mid \bar{e})$
- word count feature
- language model estimatel
- Ranking of shorter vs. longer phrases by including outside future cost estimate

Translation Tool translate - Mozilla Firefox
$\square \square x$
File Edit View History Bookmarks Tools HelpStatusWiki \square Mail MgMailEdUNews

Translation Tool pkoehn logout

Sentence 2 of $\mathbf{2} \mathbf{c}_{[1]|[2]|[4]|[6]|[8]|[11]|[13]|[16]|[19]}$
[1] Spitzen von Hamburger CDU und Griinen öffnen Weg zu Koalitionsventandlungen
[2] Dis erste schwarz-griine Biindnis auf Landesebene riickt näher: Die Spitzen von CDU und Griinen in Hamburg halten ihre Differenzen fiir uiberwindbar. [3] In einer Sondierungsande beschlossen sie, in den Parteigremien iiber den Start von Koalitionsverhandlungen zu beraten.
[4] Hamburg - Sechs Stunden sprachen sie miteinander. [5] Dann verkiindeten CDU-Chef Michael Freytag und Griinen-Chefin Anja Hajduk, dis Trennende zwischen den Parteien sei iiberbriickbar.
[1] Leaders of the Hamburger CDU and Greens open path to coalition negotiations.
[5] Then the CDU-leader Michael Freytag and Green party leader Anja Hajduk the division between the parties is bridgable.
$\leq \leq[2]$ Das erste schwarz-grüne Bündnis auf Landesebene rückt näher: Die Spitzen von CDU und Grünen in Hamburg halten ihre Differenzen für überwindbar. >

enter the first

das	erste	schwarz	@-@	grüne	Bündnis		Landesebene	rückt	n äher	:	die	Spitzen
	the first	black ©-® green			alliance		in favour of	is approaching		:		he leaders
the	first	black ©-®		green	the alliance	in favour		approaches		that the people at the top		
	for the first	black		Green	Alliance	on	national	we are coming to			at the top	
this		in black and white	--(1) green		cooperation	in		Belaus approaches			the top	
		NATO			we			closer		the	this	

Postediting Machine Translation

```
L'inoubliable interprète de "Butch Cassidy et le Kid" est mort des suites d'un cancer, à l'âge de 83 ans, dans sa maison du Connecticut. >> The unforgettable interpretef actor of " Butch Cassidy and the Sundance Kid " died as a result of cancer \({ }_{-1}\) at the age of 83 years \(_{\boldsymbol{j}}\) in his house in Connecticut. (9 edits)
```

```
The unforgettable actor of "Butch Cassidy and the Sundance
Kid" died as a result of cancer at the age of 83 in his house in
Connecticut.
```

- Textbox is initially filled with machine translation
- User edits translation
- String edit distance to machine translation is shown (blue background)

Overview

- Human Translation
- Assistance to Human Translators
- User Study
- Assistance to Monolingual Translators
- Integration of Translation Memory and MT

Evaluation

- Recall setup
- 10 students, half native French, half native English
- each student translated French-English news stories
- about 40 sentences for each condition of assistance
- Five different conditions
- unassisted
- prediction (sentence completion)
- options
- predictions and options
- post-editing

Quality

- We want faster translators, but not worse
- Assessment of translation quality
- show translations to bilingual judges, with source
- judgment: fully correct? yes/no

Indicate whether each user's input represents a fully fluent and meaning-equivalent translation of the source. The source is shown with context, the actual sentence is bold.I

- Average score: 50% correct - lower than expected
- judges seemed to be too harsh
- when given several translations, tendency to judge half as bad

Example of Quality Judgments

Src. Sans se démonter, il s'est montré concis et précis.
MT Without dismantle, it has been concise and accurate.1/3 Without fail, he has been concise and accurate.(Prediction+Options, L2a)
4/0 Without getting flustered, he showed himself to be concise and precise. (Unassisted, L2b)
4/0 Without falling apart, he has shown himself to be concise and accurate. (Postedit, L2c)
1/3 Unswayable, he has shown himself to be concise and to the point. (Options, L2d)
0/4 Without showing off, he showed himself to be concise and precise. (Prediction, L2e)
1/3 Without dismantling himself, he presented himself consistent and precise.
(Prediction+Options, L1a)
2/2 He showed himself concise and precise.(Unassisted, L1b)
3/1 Nothing daunted, he has been concise and accurate.
3/1 Without losing face, he remained focused and specific.3/1 Without becoming flustered, he showed himself concise and precise.(Postedit, L1c)
(Options, L1d)(Prediction, L1e)

Faster and Better

Assistance	Speed	Quality
Unassisted	$4.4 \mathrm{~s} /$ word	47% correct
Postedit	$2.7 \mathrm{~s} \mathrm{(-1.7s)}$	$55 \%(+8 \%)$
Options	$3.7 \mathrm{~s}(-0.7 \mathrm{~s})$	$51 \%(+4 \%)$
Prediction	$3.2 \mathrm{~s}(-1.2 \mathrm{~s})$	$54 \%(+7 \%)$
Prediction+Options	$3.3 \mathrm{~s}(-1.1 \mathrm{~s})$	$53 \%(+6 \%)$

Faster and Better, Mostly

User	Unassisted	Postedit		Options		Prediction		Prediction+Options	
L1a	$3.3 \mathrm{sec} /$ word 23\% correct	$\begin{gathered} \hline 1.2 \mathrm{~s} \\ 39 \% \end{gathered}$	$\begin{aligned} & \hline-2.2 \mathrm{~s} \\ & +16 \%) \end{aligned}$	$\begin{gathered} \hline 2.3 \mathrm{~s} \\ 45 \% \end{gathered}$	$\begin{aligned} & \hline-1.0 \mathrm{~s} \\ & +22 \% \end{aligned}$	$\begin{gathered} \hline 1.1 \mathrm{~s} \\ 30 \% \end{gathered}$	$\begin{aligned} & \hline-2.2 \mathrm{~s} \\ & +7 \%) \end{aligned}$	$\begin{gathered} \hline 2.4 \mathrm{~s} \\ 44 \% \end{gathered}$	$\begin{aligned} & \hline-0.9 \mathrm{~s} \\ & +21 \% \end{aligned}$
L1b	7.7sec/word 35\% correct	$\begin{gathered} \hline 4.5 \mathrm{~s} \\ 48 \% \end{gathered}$	$\begin{aligned} & \hline-3.2 \mathrm{~s}) \\ & +13 \% \end{aligned}$	$\begin{gathered} \hline 4.5 \mathrm{~s} \\ 55 \% \end{gathered}$	$\begin{aligned} & \hline-3.3 \mathrm{~s} \\ & +20 \% \end{aligned}$	$\begin{gathered} \hline 2.7 \mathrm{~s} \\ 61 \% \end{gathered}$	$\begin{aligned} & \hline-5.1 \mathrm{~s} \\ & +26 \% \end{aligned}$	$\begin{gathered} \hline 4.8 \mathrm{~s} \\ 41 \% \end{gathered}$	$\begin{aligned} & \hline-3.0 \mathrm{~s} \\ & +6 \% \end{aligned}$
L1c	3.9sec/word 50\% correct	$\begin{gathered} \hline 1.9 \mathrm{~s} \\ 61 \% \end{gathered}$	$\begin{aligned} & \hline-2.0 \mathrm{~s} \\ & +11 \% \end{aligned}$	$\begin{gathered} \hline 3.8 \mathrm{~s} \\ 54 \% \end{gathered}$	$\begin{aligned} & \hline-0.1 \mathrm{~s} \\ & +4 \% \end{aligned}$	$\begin{gathered} \hline 3.1 \mathrm{~s} \\ 64 \% \end{gathered}$	$\begin{aligned} & \hline-0.8 \mathrm{~s} \\ & +14 \% \end{aligned}$	$\begin{gathered} \hline 2.5 \mathrm{~s} \\ 61 \% \end{gathered}$	$\begin{aligned} & \hline-1.4 \mathrm{~s} \\ & +11 \% \end{aligned}$
L1d	$2.8 \mathrm{sec} /$ word 38\% correct	$\begin{gathered} 2.0 \mathrm{~s} \\ 46 \% \end{gathered}$	$\begin{aligned} & -0.7 \mathrm{~s} \\ & +8 \% \end{aligned}$	$\begin{gathered} 2.9 \mathrm{~s} \\ 59 \% \end{gathered}$	$\begin{aligned} & (+0.1 \mathrm{~s}) \\ & (+21 \%) \end{aligned}$	$\begin{aligned} & 2.4 \mathrm{~s} \\ & 37 \% \end{aligned}$	$\begin{aligned} & \hline(-0.4 \mathrm{~s}) \\ & (-1 \%) \end{aligned}$	$\begin{array}{r} 1.8 \mathrm{~s} \\ 45 \% \end{array}$	$\begin{aligned} & -1.0 \mathrm{~s} \\ & +7 \% \end{aligned}$
L1e	$5.2 \mathrm{sec} /$ word 58\% correct	$\begin{gathered} \hline 3.9 \mathrm{~s} \\ 64 \% \end{gathered}$	$\begin{aligned} & \hline-1.3 \mathrm{~s} \\ & +6 \% \end{aligned}$	$\begin{aligned} & \hline 4.9 \mathrm{~s} \\ & 56 \% \end{aligned}$	$\begin{aligned} & \hline(-0.2 \mathrm{~s}) \\ & (-2 \%) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 3.5 \mathrm{~s} \\ 62 \% \end{gathered}$	$\begin{aligned} & -1.7 \mathrm{~s} \\ & +4 \% \end{aligned}$	$\begin{aligned} & 4.6 \mathrm{~s} \\ & 56 \% \end{aligned}$	$\begin{aligned} & (-0.5 s) \\ & (-2 \%) \\ & \hline \end{aligned}$
L2a	5.7sec/word 16\% correct	$\begin{gathered} \hline 1.8 \mathrm{~s} \\ 50 \% \end{gathered}$	$\begin{aligned} & -3.9 \mathrm{~s} \\ & +34 \% \end{aligned}$	$\begin{gathered} \hline 2.5 \mathrm{~s} \\ 34 \% \end{gathered}$	$\begin{aligned} & \hline-3.2 \mathrm{~s} \\ & +18 \% \end{aligned}$	$\begin{gathered} \hline 2.7 \mathrm{~s} \\ 40 \% \end{gathered}$	$\begin{aligned} & \hline-3.0 \mathrm{~s} \\ & +24 \% \end{aligned}$	$\begin{gathered} \hline 2.8 \mathrm{~s} \\ 50 \% \end{gathered}$	$\begin{aligned} & \hline-2.9 \mathrm{~s} \\ & +34 \% \end{aligned}$
L2b	$3.2 \mathrm{sec} /$ word 64\% correct	$\begin{aligned} & \hline 2.8 \mathrm{~s} \\ & 56 \% \end{aligned}$	$\begin{aligned} & (-0.4 \mathrm{~s}) \\ & (-8 \%) \\ & \hline \end{aligned}$	$\begin{aligned} & 3.5 \mathrm{~s} \\ & 60 \% \end{aligned}$	$\begin{aligned} & \hline+0.3 s \\ & -4 \% \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 6.0 \mathrm{~s} \\ & 61 \% \end{aligned}$	$\begin{aligned} & \hline+2.8 s \\ & -3 \% \end{aligned}$	$\begin{aligned} & 4.6 s \\ & 57 \% \end{aligned}$	$\begin{aligned} & \hline+1.4 s \\ & -7 \% \\ & \hline \end{aligned}$
L2c	$5.8 \mathrm{sec} /$ word 52\% correct	$\begin{gathered} 2.9 \mathrm{~s} \\ 53 \% \end{gathered}$	$\begin{aligned} & -3.0 \mathrm{~s} \\ & +1 \% \end{aligned}$	$\begin{aligned} & \hline 4.6 \mathrm{~s} \\ & 37 \% \end{aligned}$	$\begin{aligned} & \hline(-1.2 \mathrm{~s}) \\ & (-15 \%) \end{aligned}$	$\begin{gathered} \hline 4.1 \mathrm{~s} \\ 59 \% \end{gathered}$	$\begin{aligned} & \hline-1.7 \mathrm{~s} \\ & +7 \% \end{aligned}$	$\begin{gathered} \hline 2.7 \mathrm{~s} \\ 53 \% \end{gathered}$	$\begin{aligned} & -3.1 \mathrm{~s} \\ & +1 \% \end{aligned}$
L2d	$3.4 \mathrm{sec} /$ word 49\% correct	$\begin{aligned} & \hline 3.1 \mathrm{~s} \\ & 49 \% \end{aligned}$	$\begin{aligned} & \hline(-0.3 \mathrm{~s}) \\ & (+0 \%) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 4.3 \mathrm{~s} \\ & 51 \% \end{aligned}$	$\begin{aligned} & (+0.9 \mathrm{~s}) \\ & (+2 \%) \end{aligned}$	$\begin{aligned} & \hline 3.8 \mathrm{~s} \\ & 53 \% \end{aligned}$	$\begin{aligned} & \hline(+0.4 \mathrm{~s}) \\ & (+4 \%) \end{aligned}$	$\begin{aligned} & \hline 3.7 \mathrm{~s} \\ & 58 \% \\ & \hline \end{aligned}$	$\begin{aligned} & \hline(+0.3 \mathrm{~s}) \\ & (+9 \%) \\ & \hline \end{aligned}$
L2e	2.8sec/word 68\% correct	$\begin{gathered} \hline 2.6 \mathrm{~s} \\ 79 \% \end{gathered}$	$\begin{aligned} & \hline-0.2 \mathrm{~s} \\ & +11 \% \end{aligned}$	$\begin{aligned} & 3.5 s \\ & 59 \% \end{aligned}$	$\begin{aligned} & \hline+0.7 s \\ & -9 \% \end{aligned}$	$\begin{aligned} & \hline 2.8 \mathrm{~s} \\ & 64 \% \end{aligned}$	$\begin{aligned} & (-0.0 \mathrm{~s}) \\ & (-4 \%) \\ & \hline \end{aligned}$	$\begin{aligned} & 3.0 \mathrm{~s} \\ & 66 \% \end{aligned}$	$\begin{aligned} & +0.2 s \\ & -2 \% \end{aligned}$
avg.	4.4sec/word 47\% correct	$\begin{gathered} \hline 2.7 \mathrm{~s} \\ 55 \% \end{gathered}$	$\begin{aligned} & \hline-1.7 \mathrm{~s} \\ & +8 \% \end{aligned}$	$\begin{gathered} \hline 3.7 \mathrm{~s} \\ 51 \% \end{gathered}$	$\begin{aligned} & \hline-0.7 \mathrm{~s} \\ & +4 \% \end{aligned}$	$\begin{array}{r} \hline 3.2 \mathrm{~s} \\ 54 \% \end{array}$	$\begin{aligned} & -1.2 \mathrm{~s} \\ & +7 \% \end{aligned}$	$\begin{gathered} \hline 3.3 \mathrm{~s} \\ 53 \% \end{gathered}$	$\begin{aligned} & \hline-1.1 \mathrm{~s} \\ & +6 \% \end{aligned}$

Slow Users 1: Faster and Better

- Unassisted
- more than 5 seconds per input word
- very bad ($35 \%, 16 \%$)
- With assistance
- much faster and better
- reaching roughly average performance

Slow Users 2: Only Faster

Fast Users

- Unassisted
- fast: 3-4 seconds per input word
- L1a is very bad (23%), L1c is average (50%)
- With assistance
- faster and better
- L1a closer to average (30-45\%), L1c becomes very good (54-61\%)

Refuseniks

- Use the assistance sparingly or not at all, and see generally no gains
- The two best translators are in this group
- Postediting
- mixed on quality (2 better, 1 worse, 1 same), but all faster
- best translator (L2e, 68\%) becomes much better (record 79\%)

Further Analysis

- How does the assistance change translator behaviour?
- How do translators utilize assistance?
- How is the translation produced?

Keystroke Log

black: keystroke, purple: deletion, grey: cursor move red: sentence completion accept
orange: click on translation option

Analysis: Segment into periods of activity: typing, tabbing, clicking, pauses one second before and after a keystroke is part of typing interval

Activities: Native French User L1b

User: L1b	total	init-p	end-p	short-p	mid-p	big-p	key	click	tab
Unassisted	7.7 s	1.3 s	0.1 s	0.3 s	1.8 s	1.9 s	2.3 s	-	-
Postedit	4.5 s	1.5 s	0.4 s	0.1 s	1.0 s	0.4 s	1.1 s	-	-
Options	4.5 s	0.6 s	0.1 s	0.4 s	0.9 s	0.7 s	1.5 s	0.4 s	-
Prediction	2.7 s	0.3 s	0.3 s	0.2 s	0.7 s	0.1 s	0.6 s	-	0.4 s
Prediction+Options	4.8 s	0.6 s	0.4 s	0.4 s	1.3 s	0.5 s	0.9 s	0.5 s	0.2 s

Activities: Native French User L1b

User: L1b	total	init-p	end-p	short-p	mid-p	big-p	key	click	tab
Unassisted	7.7 s	1.3 s	0.1 s	0.3 s	1.8 s	1.9 s	2.3 s	-	-
Postedit	4.5 s	1.5 s	0.4 s	0.1 s	1.0 s	0.4 s	1.1 s	-	-
Options	4.5 s	0.6 s	0.1 s	0.4 s	0.9 s	0.7 s	1.5 s	0.4 s	-
Prediction	2.7 s	0.3 s	0.3 s	0.2 s	0.7 s	0.1 s	0.6 s	-	0.4 s
Prediction+Options	4.8 s	0.6 s	0.4 s	0.4 s	1.3 s	0.5 s	0.9 s	0.5 s	0.2 s

Slighly less time spent on typing

Activities: Native French User L1b

User: L1b	total	init-p	end-p	short-p	mid-p	big-p	key	click	tab
Unassisted	7.7 s	1.3 s	0.1 s	0.3 s	1.8 s	1.9 s	2.3 s	-	-
Postedit	4.5 s	1.5 s	0.4 s	0.1 s	1.0 s	0.4 s	1.1 s	-	-
Options	4.5 s	0.6 s	0.1 s	0.4 s	0.9 s	0.7 s	1.5 s	0.4 s	-
Prediction	2.7 s	0.3 s	0.3 s	0.2 s	0.7 s	0.1 s	0.6 s	-	0.4 s
Prediction+Options	4.8 s	0.6 s	0.4 s	0.4 s	1.3 s	0.5 s	0.9 s	0.5 s	0.2 s

Less
pausing

Slighly less time spent on typing

Activities: Native French User L1b

User: L1b	total	init-p	end-p	short-p	mid-p	big-p	key	click	tab
Unassisted	7.7 s	1.3 s	0.1 s	0.3 s	1.8 s	1.9 s	2.3 s	-	-
Postedit	4.5 s	1.5 s	0.4 s	0.1 s	1.0 s	0.4 s	1.1 s	-	-
Options	4.5 s	0.6 s	0.1 s	0.4 s	0.9 s	0.7 s	1.5 s	0.4 s	-
Prediction	2.7 s	0.3 s	0.3 s	0.2 s	0.7 s	0.1 s	0.6 s	-	0.4 s
Prediction+Options	4.8 s	0.6 s	0.4 s	0.4 s	1.3 s	0.5 s	0.9 s	0.5 s	0.2 s

Less
pausing

Slighly less time spent on typing

Activities: Native English User L2e

User: L2e	total	init-p	end-p	short-p	mid-p	big-p	key	click	tab
Unassisted	2.8 s	0.3 s	0.2 s	0.2 s	0.3 s	0.1 s	1.9 s	-	-
Postedit	2.6 s	0.4 s	0.3 s	0.2 s	1.0 s	0.1 s	0.7 s	-	-
Options	3.5 s	0.1 s	0.3 s	0.4 s	0.6 s	0.2 s	1.7 s	0.1 s	-
Prediction	2.8 s	0.1 s	0.3 s	0.3 s	0.3 s	-	1.4 s	-	0.3 s
Prediction+Options	3.0 s	0.1 s	0.3 s	0.2 s	0.5 s	-	1.9 s	-	-

Activities: Native English User L2e

User: L2e	total	init-p	end-p	short-p	mid-p	big-p	key	click	tab
Unassisted	2.8 s	0.3 s	0.2 s	0.2 s	0.3 s	0.1 s	1.9 s	-	-
Postedit	2.6 s	0.4 s	0.3 s	0.2 s	1.0 s	0.1 s	0.7 s	-	-
Options	3.5 s	0.1 s	0.3 s	0.4 s	0.6 s	0.2 s	1.7 s	0.1 s	-
Prediction	2.8 s	0.1 s	0.3 s	0.3 s	0.3 s	-	1.4 s	-	0.3 s
Prediction+Options	3.0 s	0.1 s	0.3 s	0.2 s	0.5 s	-	1.9 s	-	-

Little time
spent on assistance

Activities: Native English User L2e

User: L2e	total	init-p	end-p	short-p	mid-p	big-p	key	click	tab
Unassisted	2.8 s	0.3 s	0.2 s	0.2 s	0.3 s	0.1 s	1.9 s	-	-
Postedit	2.6 s	0.4 s	0.3 s	0.2 s	1.0 s	0.1 s	0.7 s	-	-
Options	3.5 s	0.1 s	0.3 s	0.4 s	0.6 s	0.2 s	1.7 s	0.1 s	-
Prediction	2.8 s	0.1 s	0.3 s	0.3 s	0.3 s	-	1.4 s	-	0.3 s
Prediction+Options	3.0 s	0.1 s	0.3 s	0.2 s	0.5 s	-	1.9 s	-	-

Does not use both assistances,
little overall change

Little time
spent on assistance

Activities: Native English User L2e

User: L2e	total	init-p	end-p	short-p	mid-p	big-p	key	click	tab
Unassisted	2.8 s	0.3 s	0.2 s	0.2 s	0.3 s	0.1 s	1.9 s	-	-
Postedit	2.6 s	0.4 s	0.3 s	0.2 s	1.0 s	0.1 s	0.7 s	-	-
Options	3.5 s	0.1 s	0.3 s	0.4 s	0.6 s	0.2 s	1.7 s	0.1 s	-
Prediction	2.8 s	0.1 s	0.3 s	0.3 s	0.3 s	-	1.4 s	-	0.3 s
Prediction+Options	3.0 s	0.1 s	0.3 s	0.2 s	0.5 s	-	1.9 s	-	-

Does not use both assistances,
little overall change

Postediting:
less typing (-1.2s)
more medium pauses $(+0.7 \mathrm{~s})$

Little time spent on assistance

Origin of Characters: Native French L1b

User: L1b	key	click	tab	mt
Postedit	18%	-	-	81%
Options	59%	40%	-	-
Prediction	14%	-	85%	-
Prediction+Options	21%	44%	33%	-

Origin of Characters: Native French L1b

User: L1b	key	click	tab	mt
Postedit	18%	-	-	81%
Options	59%	40%	-	-
Prediction	14%	-	85%	-
Prediction+Options	21%	44%	33%	-

Translation comes to large degree from assistance

Origin of Characters: Native English L2e

User: L2e	key	click	tab	mt
Postedit	20%	-	-	79%
Options	77%	22%	-	-
Prediction	61%	-	38%	-
Prediction+Options	100%	-	-	-

Origin of Characters: Native English L2e ${ }^{46}$

User: L2e	key	click	tab	mt
Postedit	20%	-	-	79%
Options	77%	22%	-	-
Prediction	61%	-	38%	-
Prediction+Options	100%	-	-	-

Although hardly any time spent on assistance, fair amount of characters produced by it

Pauses: French-Native User L1b

Pauses: English-Native User L2e

Learning Curve

users become better over time with assistance

User Feedback

- Q: In which of the five conditions did you think you were most accurate?
- predictions+options: 5 users
- options: 2 users
- prediction: 1 user
- postediting: 1 userl
- Q: Rank the different types of assistance on a scale from 1 to 5 , where1 indicates not at all and 5 indicates very helpful.
- prediction+options: 4.6
- prediction: 3.9
- options: 3.7
- postediting: 2.9|

User Feedback

- Q: In which of the five conditions did you think you were most accurate?
- predictions+options: 5 users
- options: 2 users
- prediction: 1 user
- postediting: 1 user
- Q: Rank the different types of assistance on a scale from 1 to 5 , where 1 indicates not at all and 5 indicates very helpful.
- prediction+options: 4.6
- prediction: 3.9
- options: 3.7
- postediting: 2.9
- Note: does not match empirical results

Summary

- Assistance made translators faster
- average speed improvement from $4.4 \mathrm{~s} /$ word to $2.7-3.7 \mathrm{~s} /$ word
- reduction of big pauses
- reduction of typing effort in post-editing
- Assistance made translators better
- average judgment increased from 47% to $51-55 \%$ with help
- even good translators get better with posteditingl
- Some good translators ignored the assistancell
- Fastest and (barely) best with postediting, but did not like it

Outlook: More analysis

- What do translators think about when they are pausing?
- What are the hard problems?
- unknown words
- words without direct translation
- syntactic re-arrangement
- What do translators change in post-editing?
\Rightarrow We will investigate this in a new EU project

Related Work: Tools used by Translators ${ }^{54}$

- Translators often use standard text editors and additional tools
- Bilingual dictionary
- Spell checker, grammar checker
- Monolingual concordancer
- Terminology database
- Web search to establish and verify meaning of terms

Bilingual Concordancer

$\begin{gathered} \hline \text { Examples } \\ +\square \end{gathered}$	Windkraft (noun, feminine) (also: Windenergie)	(1) wind power (noun)	\checkmark
	Zum Vergleich: Windkraft schafft fast sieben Mal mehr. G German: www.goethe.de/wis/umw/thm/ntr/de92305.htm	By way of comparison, wind power generates almost seven times as much. E English: www.goethe.de/wis/umw/thm/ntr/en92305.htm	
	Einführung von Windcube, einer neuen Generation von Wind Lidar für Windkraft. G German: www.husumwindenergy.com/index.php?L....howUid]=1177	Introducing Windcube, a new generation of wind Lidar for wind power. E. English: www.husumwindenergy.com/index.php?L....howUid]=1177	
	Windkraft ist eine etablierte, wettbewerbsfähige Technologie mit hoher Zuverlässigkeit G German: www.powergeneration.siemens.de/abou...nsservices/	Wind power is an established, competitive technology with high reliability G English: www.powergeneration.siemens.com/abo...nsservices/	
Examples + -	Windkraft (noun, feminine) (also: Windenergie)	* wind energy (noun)	\checkmark
	Je mehr aber klimapolitische Sonntagsreden von der Politik auch in Taten umgesetzt werden, desto hōher steigt dieser Preis und desto wettbewerbsfähiger werden saubere Energien wie die Windkraft. $G \rightarrow$ German: emagazine.credit-suisse.com/app /art... 4382 (=DE	But as the focus of the climate change issue shifts increasingly from policy to action, this price will increase and cleaner energy sources like wind will become more competitive. \leftrightarrow English: emagazine.credit-suisse.com/app /art... 4382 (=en	
	Nur wenige befürchten hingegen, dass dies auch bei erneuerbaren Energieträgern wie Biomasse oder Windkraft der Fall sein wird. \leftrightarrow German: www.eu2006.gv.at/de /News/Press_Rele... 1 proell.html	However, only a few fear that this will also be the case with renewable energy sources such as biomass or wind energy. \rightleftarrows English: www.eu2006.gv.at/en /News/Press_Rele...1 proell.html	

show translations in context (www.linguee.com)

Overview

- Human Translation
- Assistance to Human Translators
- User Study
- Assistance to Monolingual Translators
- Integration of Translation Memory and MT

Enabling Monolingual Translators

- Monolingual translator
- wants to understand a foreign document
- has no knowledge of foreign language
- uses a machine translation system
- Questions
- Is current MT output sufficient for understanding?
- What else could be provided by a MT system?

Good Enough

- An MT system might produce this:

The girl entered into room.I

- We know what is meant:

The girl entered the room.I

- We understood.

Process

- MT system translates foreign storyll
- Person A edits it
- goal: fluent translation that represents the meaning (as it was understood)
- without access to reference translationl
- Person B checks if edited sentences are correct
- with access to reference translation

Example

- MT system translates foreign sentence

The girl goes the room.I

- Person A edits it

The girl goes into the room.I

- Reference

The girl enters the room.I

- Person B checks edited sentence: CORRECT

Real Example

- MT system output:

The study also found that one of the genes in the improvement in people with prostate cancer risk, it also reduces the risk of suffering from diabetes.

- What does this mean?
- Monolingual translator:

The research also found that one of the genes increased people's risk of prostate cancer, but at the same time lowered people's risk of diabetes.I

- Document context helps

Experiment

- Language pairs
- Arabic-English
- Chinese-English
- Machine translation systems
- Edinburgh's 2009 GALE systems
- Moses system with all available parallel datal
- Stories taken from NIST 2008 test sets

Stories

Story	Headline	Sent.	Words
1: chi	White House Pushes for Nuclear Inspectors to Be Sent as Soon as Possible to Monitor North Korea's Closure of Its Nuclear Reactors	6	207
2: chi	Torrential Rains Hit Western India, 43 People Dead	10	204
3: chi	Research Shows a Link between Arrhythmia and Two Forms of Genetic Variation	7	247
4: chi	Veteran US Goalkeeper Keller May Retire after America's Cup	10	367
5: ara	Britain: Arrests in Several Cities and Explosion of Suspicious Car	7	224
6: ara	Ban Ki-Moon Withdraws His Report on the Sahara after Controversy Surrounding Its Content	8	310
7: ara	Pakistani Opposition Leaders Call on Musharraf to Resign.	11	312
8: ara	Al-Maliki: Iraqi Forces Are Capable of Taking Over the Security Dossier Any Time They Want	8	255

Experiment

- Monolingual translators
- 10 students/staff at the University of Edinburgh
- none knew Arabic or Chinese
- have access to full stories at a time, may correct prior sentencesl
- Bilingual translators
- 3 of the 4 reference translations in NIST test set
- Remaining reference translation as truth

Results: Arabic

Results: Arabic

compared to bilingual translators

Results: Arabic

Results: Arabic and Chinese

Results per Story

Results per Story

one story: monolinguals as good as bilinguals

Offering more assistance

- Progress in computer aided translationl
- Interactive machine translation (TransType)
- show prediction of sentence completion
- recompute when user types own translation
- Alternative translations [Koehn and Haddow, 2009]
- display translation options from translation model
- ranked by translation score

Translation Options

up to 10 translations for each word / phrase

Translation Options

-	إل]	或估		5	اليوا95
withdrawal of	combat troops		Us		iraq
	the fighting forces the us			from iraq	
	fighting forces		Us		n irac
withdrawal of troops		fighter	the	Us	
ithdrawal of	combat forces			of	i
e withdrawal	forces	the fighter		from	
: withdrawal of	troops			ir	
vithdrawal of				of the	
withdrawal				from	irag ir
le withdrawal			the am	erican	

Results with Options

no big difference - once significantly better

Error Analysis
 (a) Critical Judges

- Reference

Torrential Rains Hit Western India, 43 People Dead

- Bilingual translator

Heavy Rains Plague Western India Leaving 43 Dead

Error Analysis

(b) Mistakes by the professional translators

- Reference

Over just two days on the 29th and 30th, rainfall in Mumbai reached 243 mm .

- Bilingual translator

The rainfall in Mumbai had reached 243 cm over the two days of the 29th and 30th alone.

Error Analysis

(b2) Domain knowledge vs. language skills

- Bilingual translator

With Munchen-Gladbach falling to the German Bundesliga 2, ...

- Monolingual translator

The Mönchengladbach team fell into the second German league, ...

Error Analysis
 (c) Bad English by monolingual translators

- Monolingual translator

The western region of india heavy rain killed 43 people.

Error Analysis (d) Mistranslated / untranslated name

- Reference

Johndroe said that the two leaders ...

- Machine translation

Strong zhuo, pointing out that the two presidents ...

- Monolingual translator

Qiang Zhuo pointed out that the two presidents ...

Error Analysis
 (e) Wrong relationship between entities

- Machine translation

The colombian team for the match, and it is very likely that the united states and kai in the americas cup final performance.

- Monolingual translator 6

The Colombian team and the United States are very likely to end up in the Americas Cup as the final performance.

- Monolingual translator 8

The next match against Colombia is likely to be the United States' and Keller's final performance in the current Copa America.

Error Analysis
 (f) Badly muddled machine translation

- Reference

In the current America's cup, he has, just as before, been given an important job to do by head coach Bradley, but he clearly cannot win the match singlehanded. The US team, made up of "young guards,"...

- Machine translation

He is still being head coach bradley appointed to important, it's even a fist ", four young guards at the beginning of the ", the united states is...

Conclusions

- Main findings
- monolingual translators may be as good as bilinguals
- widely different performance by translator / storyl
- named entity translation critically importantl
- Various human factors important
- domain knowledgel
- language skillsl
- effort

Overview

- Human Translation
- Assistance to Human Translators
- User Study
- Assistance to Monolingual Translators
- Integration of Translation Memory and MT

Progress in Translation Automation

- Translation Memory (TM)
- translators store past translation in database
- when translating new text, consult database for similar segments
- fuzzy match score defines similarity
widely used by translation agencies
- Statistical Machine Translation (SMT)
- collect large quantities of translated text
- extract automatically probabilistic translation rules
- when translating new text, find most probable translation given rules
wide use of free web-based services
not yet used by many translation agencies
used by human translator
restricted domain (e.g. product manual)
very repetitive content
corpus size:
1 million words
commercial developers (e.g., SDL Trados)
used by
target language information seeker
open domain translation (e.g. news)
huge diversity (esp. web)
corpus size:
100-1000 million words
academic/commercial research
(e.g., Google)

Our Goal

Better TM

using SMT methods

Main Idea

- Input

The second paragraph of Article 21 is deleted .

- Fuzzy match in translation memory

The second paragraph of Article 5 is deleted.
\Rightarrow Part of the translation from TM fuzzy match
Part of the translation with SMT

The second paragraph of Article
21 is deleted .

Related Work

- Work inspired by EBMT
[Smith and Clark, 2009]
[Zhechev and van Genabith, 2010]
- uses syntactic information in alignment
- lower performance than reported here
- Encode fuzzy match as rule with gaps
[Biçici and Dymetman, 2008]
- similar to our second method
- impressive improvements, but weak baseline SMT

Two Solutions

- XML frames
- Very large hierarchical rules

Example

- Input sentence:

The second paragraph of Article 21 is deleted .

Example

- Input sentence:

The second paragraph of Article 21 is deleted .

- Fuzzy match in translation memory:

The second paragraph of Article 5 is deleted .
\qquad
À l'article 5 , le texte du deuxiéme alinéa est supprimé .

Example

- Input sentence:

The second paragraph of Article 21 is deleted.

- Fuzzy match in translation memory:

The second paragraph of Article 5 is deleted.
\qquad
À l'article 5, le texte du deuxiéme alinéa est supprimé .

- Detect mismatch (string edit distance)

Example

- Input sentence:

The second paragraph of Article 21 is deleted .

- Fuzzy match in translation memory:

The second paragraph of Article 5 is deleted.
$=$
À l' article 5 , le texte du deuxiéme alinéa est supprimé .

- Detect mismatch (string edit distance)
- Align mismatch (using word alignment from GIZA ++)

Example

- Input sentence:

The second paragraph of Article 21 is deleted.

- Fuzzy match in translation memory:

The second paragraph of Article 5 is deleted.
$=$
À l' article 5 , le texte du deuxiéme alinéa est supprimé .

Output word(s) taken from the target TM

Example

- Input sentence:

$$
\text { The second paragraph of Article } 21 \text { is deleted . }
$$

- Fuzzy match in translation memory:

The second paragraph of Article 5 is deleted.
$=$
À l' article 5 , le texte du deuxiéme alinéa est supprimé .

Output word(s) taken from the target TM
Input word(s) that still need to be translated by SMT

Example

- Input sentence:

The second paragraph of Article 21 is deleted .

- Fuzzy match in translation memory:

The second paragraph of Article 5 is deleted.
À l'article 5 , le texte du deuxiéme alinéa est supprimé .

- XML frame (input to Moses)

$$
\text { <xml translation=" À l' article "/> } 21
$$

<xml translation=", le texte du deuxiéme alinéa est supprimé . "/>

Example

- Input sentence:

$$
\text { The second paragraph of Article } 21 \text { is deleted. }
$$

- Fuzzy match in translation memory:

$$
\text { The second paragraph of Article } 5 \text { is deleted. }
$$

$=$
À l' article 5 , le texte du deuxiéme alinéa est supprimé .

- More compact formalism for the purposes of this presentation:
$<$ À l'article $>21<$, le texte du deuxiéme alinéa est supprimé . >

Steps

- Fuzzy matching
- based on string edit distance on words

$$
\text { FMS }=1-\frac{\text { edit-distance }(\text { source }, \text { tm-source })}{\max (\mid \text { source }|,| \text { tm-source } \mid)}
$$

- string edit distance on letters as tie breaker
- details see [Koehn and Senellart, AMTA 2010]
- Word alignment of TM source and targetl|
- Construction of XML frame
= linking mismatch(input, TM source) to TM targetll

Construction of XML Frame

- Basic principles
- start with fully specified XML frame
- all mismatched source words have to be translated by SMT
- all TM target words aligned to mismatched TM source words are removed
- if the alignment to the TM target words fails \rightarrow go to the previous TM source word and follow its alignment
- See paper for algorithm

Example

Source
String Edit
TM Source
Word Alignment
TM Target

XML Frame

The second paragraph of Article 21 is deleted .

<À l' article> 21 <, le texte du deuxième alinéa est supprimé .>

Special Case: Insertion

Source
String Edit
TM Source
Word Alignment
TM Target
XML Frame <les> big <poissons>

Special Case: Deletion

Special Case: Unaligned Mismatch

the big fish

<les> green <poissons>

Special Case: Disconnected Alignments

Experiments

- Baseline 1: Unmodified TM matches
- Baseline 2: SMT system trained on TM data
- Our XML frame method

Corpora: Size

Acquis		
	Corpus	Test
segments	$1,165,867$	4,107
English words	$24,069,452$	129,261
French words	$25,533,259$	135,224

Product

	Corpus	Test
segments	83,461	2,000
English words	$1,038,762$	24,643
French words	$1,110,284$	26,248

Corpora: Fuzzy Matches

Acquis

	Sentences	Words	W/S
100%	1395	14,559	10.4
$90-99 \%$	433	12,775	29.5
$80-89 \%$	154	5,347	34.7
$70-79 \%$	250	6,767	27.1

Product

	Sentences	Words	W/S
$95-99 \%$	230	3,006	13.1
$90-94 \%$	225	2,968	13.2
$85-89 \%$	177	2,000	11.3
$80-84 \%$	185	1,950	10.5
$75-79 \%$	152	1,350	8.9
$70-74 \%$	98	987	10.1

Results: Acquis

Results: Product

Recap

- TM provides fuzzy matches
- SMT translates mismatched wordsl
- TM match encoded in XML framell
... but is that not just a very large translation rule?

Background: Hierarchical Phrase Rules ${ }^{11}$

- Given: sentence pair with monotone 1-to-1 alignment

$$
\text { the big fish }=\text { les gros poissons }
$$

- Phrase translation rules

$$
\begin{aligned}
& \text { (the ; les) } \\
& \text { (the big ; les gros) } \\
& \text { (the big fish ; les gros poissons) } \\
& \text { (big ; gros) }
\end{aligned}
$$

(big fish ; gros poissons)
(fish ; poissons)

- Hierarchical phrase-based rule are constructed by subtraction
- large rule: (the big fish ; les gros poissons)
- small rule: (big ; gros) (contained in large rule)【
\rightarrow hierarchical rule: (the x fish ; les X poissons)

XML Frame as Very Large Rule

- XML frame
$<$ À l' article> $21<$, le texte du deuxiéme alinéa est supprimé .> for input

$$
\text { The second paragraph of Article } 21 \text { is deleted . }
$$

- Very large rule
(The second paragraph of Article X is deleted .
; À l' article X , le texte du deuxiéme alinéa est supprimé .)

Very Large Rules in SMT

- Rule size limited in SMT
- maximum number of words, e.g. 5
- maximum number of non-terminals (x), e.g. 2
- ... but only due to storage limitations for large rule rule tables
- Rules may be generated on the fly [Lopez, 2007]

Advantage over XML Method

- Choices

1. multiple fuzzy matches in TM with same score
2. same TM source with multiple translations
3. multiple SMT translations

- Decisions in XML frame method

1. randomly chosen
2. most frequent
3. highest model score

- Decisions for very large rules

1. all
2. all
3. integrated scoring of VLR rules and basic translation rules

Result: Acquis

Future Work: User Studies

- Significant increases in BLEU
- To do: validation in user studies
- Additional benefit: possible to highlight mismatch in translation
- input

The second paragraph of Article 21 is deleted .

- suggested translation

À l' article 21 , le texte du deuxiéme alinéa est supprimé .

Thank You

questions?

