Chart-Based Decoding

Kenneth Heafield
University of Edinburgh

6 September, 2012

Most slides courtesy of Philipp Koehn

Overview of Syntactic Decoding

Overview of Syntactic Decoding

Syntactic Decoding

Inspired by monolingual syntactic chart parsing:
During decoding of the source sentence, a chart with translations for the $O\left(n^{2}\right)$ spans has to be filled

Syntax Decoding

German input sentence with tree

Syntax Decoding

Purely lexical rule: filling a span with a translation (a constituent)

Syntax Decoding

Purely lexical rule: filling a span with a translation (a constituent)

Syntax Decoding

Purely lexical rule: filling a span with a translation (a constituent)

Syntax Decoding

Complex rule: matching underlying constituent spans, and covering words

Syntax Decoding

Complex rule with reordering

Syntax Decoding

Bottom-Up Decoding

- For each span, a stack of (partial) translations is maintained
- Bottom-up: a higher stack is filled, once underlying stacks are complete

Chart Organization

- Chart consists of cells that cover contiguous spans over the input sentence
- Each cell contains a set of hypotheses
- Hypothesis $=$ translation of span with target-side constituent

Dynamic Programming

Applying rule creates new hypothesis

Dynamic Programming

Another hypothesis

Both hypotheses are indistiguishable in future search \rightarrow can be recombined

Recombinable States

Recombinable?

Recombinable States

Recombinable?

Yes, if max. 2-gram language model is used

Recombinability

Hypotheses have to match in

- span of input words covered
- output constituent label
- first $n-1$ output words not properly scored, since they lack context
- last $n-1$ output words
still affect scoring of subsequently added words, just like in phrase-based decoding
(n is the order of the n-gram language model)

Language Model Contexts

When merging hypotheses, internal language model contexts are absorbed

Stack Pruning

- Number of hypotheses in each chart cell explodes
\Rightarrow need to discard bad hypotheses e.g., keep 100 best only
- Different stacks for different output constituent labels?
- Cost estimates
- translation model cost known
- language model cost for internal words known
\rightarrow estimates for initial words
- outside cost estimate? (how useful will be a NP covering input words 3-5 later on?)

Naive Algorithm: Blow-ups

- Many subspan sequences
for all sequences s of hypotheses and words in span [start,end]
- Many rules

$$
\text { for all rules } r
$$

- Checking if a rule applies not trivial rule r applies to chart sequence s
\Rightarrow Unworkable

Solution

- Prefix tree data structure for rules
- Dotted rules
- Cube pruning

Storing Rules

- First concern: do they apply to span?
\rightarrow have to match available hypotheses and input words
- Example rule

$$
\mathrm{NP} \rightarrow \mathrm{X}_{1} \text { des } \mathrm{X}_{2} \mid \mathrm{NP}_{1} \text { of the } \mathrm{NN}_{2}
$$

- Check for applicability
- is there an initial sub-span that with a hypothesis with constituent label NP?
- is it followed by a sub-span over the word des?
- is it followed by a final sub-span with a hypothesis with label NN?
- Sequence of relevant information
$\mathrm{NP} \bullet$ des $\bullet \mathrm{NN} \bullet \mathrm{NP}_{1}$ of the NN_{2}

Rule Applicability Check

Trying to cover a span of six words with given rule

$$
\mathrm{NP} \bullet \text { des } \bullet \mathrm{NN} \rightarrow \mathrm{NP}: \mathrm{NP} \text { of the NN }
$$

das
Haus
des Architekten Frank
Gehry

Rule Applicability Check

First: check for hypotheses with output constituent label NP

$$
\mathrm{NP} \bullet \text { des • NN } \rightarrow \mathrm{NP}: \mathrm{NP} \text { of the NN }
$$

das Haus des Architekten Frank Gehry

Rule Applicability Check

Found NP hypothesis in cell, matched first symbol of rule

$$
\mathrm{NP} \bullet \text { des } \bullet \mathrm{NN} \rightarrow \mathrm{NP}: \mathrm{NP} \text { of the NN }
$$

das Haus des Architekten Frank Gehry

Rule Applicability Check

Matched word des, matched second symbol of rule

$$
\mathrm{NP} \bullet \text { des } \bullet \mathrm{NN} \rightarrow \mathrm{NP}: \mathrm{NP} \text { of the NN }
$$

das Haus des Architekten Frank Gehry

Rule Applicability Check

Found a nN hypothesis in cell, matched last symbol of rule
$N P \bullet d e s \bullet N N \rightarrow N P: N P$ of the NN

das Haus

Architekten Frank Gehry

Rule Applicability Check

Matched entire rule \rightarrow apply to create a NP hypothesis
$N P \bullet$ des $\bullet N N \rightarrow N P: N P$ of the NN

Rule Applicability Check

Look up output words to create new hypothesis (note: there may be many matching underlying NP and NN hypotheses)

$N P \bullet$ des •NN $\rightarrow \mathrm{NP}: \mathrm{NP}$ of the NN

Checking Rules vs. Finding Rules

- What we showed:
- given a rule
- check if and how it can be applied
- But there are too many rules (millions) to check them all
- Instead:
- given the underlying chart cells and input words
- find which rules apply

Prefix Tree for Rules

Highlighted Rules

$$
\begin{gathered}
\mathrm{NP} \rightarrow \mathrm{NP}_{1} \mathrm{DET}_{2} \mathrm{NN}_{3} \mid \mathrm{NP}_{1} \mathrm{IN}_{2} \mathrm{NN}_{3} \\
\mathrm{NP} \rightarrow \mathrm{NP}_{1} \mid \\
\mathrm{NP} \rightarrow \mathrm{NP}_{1} \\
\mathrm{NP} \rightarrow \mathrm{NP}_{1} \text { des } \mathrm{NN}_{2} \mid \\
\mathrm{NP} P_{1} \text { of the } \mathrm{NN}_{2} \\
\mathrm{NP} \rightarrow \mathrm{NES}_{2} \mathrm{NN}_{2}\left|\mathrm{NP}_{2} \mathrm{NP}_{1} \mathrm{NN}_{2}\right| \\
\mathrm{NET}
\end{gathered}
$$

Dotted Rules: Key Insight

- If we can apply a rule like

$$
\mathrm{p} \rightarrow \mathrm{ABC} \mid \mathrm{x}
$$

to a span

- Then we could have applied a rule like

$$
\mathrm{q} \rightarrow \mathrm{AB} \mid \mathrm{y}
$$

to a sub-span with the same starting word
\Rightarrow We can re-use rule lookup by storing A B • (dotted rule)

Finding Applicable Rules in Prefix Tree

Covering the First Cell

Looking up Rules in the Prefix Tree

Taking Note of the Dotted Rule

Checking if Dotted Rule has Translations

Applying the Translation Rules

Looking up Constituent Label in Prefix Tree

Frank
Gehry

Add to Span's List of Dotted Rules

Gehry

Moving on to the Next Cell

Looking up Rules in the Prefix Tree

Frank
Gehry

Taking Note of the Dotted Rule

Frank
Gehry

Checking if Dotted Rule has Translations

Frank
Gehry

Applying the Translation Rules

Looking up Constituent Label in Prefix Tree

Add to Span's List of Dotted Rules

More of the Same

Moving on to the Next Cell

Covering a Longer Span

Cannot consume multiple words at once All rules are extensions of existing dotted rules Here: only extensions of span over das possible

Extensions of Span over das

Looking up Rules in the Prefix Tree

Taking Note of the Dotted Rule

Checking if Dotted Rules have Translations

Applying the Translation Rules

Looking up Constituent Label in Prefix Tree

Add to Span's List of Dotted Rules

Even Larger Spans

Extend lists of dotted rules with cell constituent labels
span's dotted rule list (with same start) plus neighboring
span's constituent labels of hypotheses (with same end)

Reflections

- Complexity $O\left(r n^{3}\right)$ with sentence length n and size of dotted rule list r
- may introduce maximum size for spans that do not start at beginning
- may limit size of dotted rule list (very arbitrary)
- Does the list of dotted rules explode?
- Yes, if there are many rules with neighboring target-side non-terminals
- such rules apply in many places
- rules with words are much more restricted

Difficult Rules

- Some rules may apply in too many ways
- Neighboring input non-terminals

$$
\mathrm{VP} \rightarrow \text { gibt } \mathrm{X}_{1} \mathrm{X}_{2} \mid \text { gives } \mathrm{NP}_{2} \text { to } \mathrm{NP}_{1}
$$

- non-terminals may match many different pairs of spans
- especially a problem for hierarchical models (no constituent label restrictions)
- may be okay for syntax-models
- Three neighboring input non-terminals $\mathrm{VP} \rightarrow \operatorname{trifft} \mathrm{X}_{1} \mathrm{X}_{2} \mathrm{X}_{3}$ heute \mid meets NP_{1} today $\mathrm{PP}_{2} \mathrm{PP}_{3}$
- will get out of hand even for syntax models

Where are we now?

- We know which rules apply
- We know where they apply (each non-terminal tied to a span)
- But there are still many choices
- many possible translations
- each non-terminal may match multiple hypotheses
\rightarrow number choices exponential with number of non-terminals

Rules with One Non-Terminal

Found applicable rules PP \rightarrow des $\mathrm{X} \mid \ldots$ NP \ldots

- Non-terminal will be filled any of h underlying matching hypotheses
- Choice of t lexical translations
\Rightarrow Complexity $O(h t)$
(note: we may not group rules by target constituent label, so a rule NP \rightarrow des $\mathrm{x} \mid$ the NP would also be considered here as well)

Rules with Two Non-Terminals

Found applicable rule NP $\rightarrow \mathrm{X}_{1}$ des $\mathrm{X}_{2} \mid \mathrm{NP}_{1} \ldots \mathrm{NP}_{2}$

- Two non-terminal will be filled any of h underlying matching hypotheses each
- Choice of t lexical translations
\Rightarrow Complexity $O\left(h^{2} t\right)$ - a three-dimensional "cube" of choices
(note: rules may also reorder differently)

Filling a Constituent

Beam Search

	man	-3.6	the man	-4.3	some men	-6.3
seen -3.8	seen man -8.8	seen the man	-7.6	seen some men	-9.5	
saw -4.0	saw man -8.3	saw the man	-6.9	saw some men	-8.5	
view -4.0	view man -8.5	view the man -8.9	view some men -10.8			

Cube Pruning [Chiang, 2007]

man -3.6 the man -4.3 some men -6.3
seen -3.8 Queue
saw -4.0
view -4.0

Queue

Hypothesis
\rightarrow seen man
$-3.8-3.6=-7.4$

Cube Pruning [Chiang, 2007]

```
man -3.6 the man -4.3 some men -6.3
seen -3.8 seen man -8.8 Queue
saw -4.0 Queue
view -4.0
```


Queue

Cube Pruning [Chiang, 2007]

	man	-3.6	the man -4.3	some men	-6.3
seen -3.8	seen man -8.8	Queue			
saw -4.0	saw man	-8.3	Queue		
view -4.0	Queue				

Queue

Hypothesis	Sum
\rightarrow view man	$-4.0-3.6=-7.6$
seen the man	$-3.8-4.3=-8.1$
saw the man	$-4.0-4.3=-8.3$

Cube Pruning versus Beam Search

Same Bottom-up with fixed-size beams
Different Beam filling algorithm

Queue of Cubes

- Several groups of rules will apply to a given span
- Each of them will have a cube
- We can create a queue of cubes
\Rightarrow Always pop off the most promising hypothesis, regardless of cube
- May have separate queues for different target constituent labels

Bottom-Up Chart Decoding Algorithm

1: for all spans (bottom up) do
2: extend dotted rules
3: for all dotted rules do
4: \quad find group of applicable rules
5: create a cube for it
6: create first hypothesis in cube
7: \quad place cube in queue
8: end for
9: for specified number of pops do
10: pop off best hypothesis of any cube in queue
11: add it to the chart cell
12: create its neighbors
13: end for
14: extend dotted rules over constituent labels
15: end for

Two-Stage Decoding

- First stage: decoding without a language model (-LM decoding)
- may be done exhaustively
- eliminate dead ends
- optionably prune out low scoring hypotheses
- Second stage: add language model
- limited to packed chart obtained in first stage
- Note: essentially, we do two-stage decoding for each span at a time

Coarse-to-Fine

- Decode with increasingly complex model
- Examples
- reduced language model [Zhang and Gildea, 2008]
- reduced set of non-terminals [DeNero et al., 2009]
- language model on clustered word classes [Petrov et al., 2008]

Outside Cost Estimation

- Which spans should be more emphasized in search?
- Initial decoding stage can provide outside cost estimates

- Use min/max language model costs to obtain admissible heuristic (or at least something that will guide search better)

Open Questions

- Where does the best translation fall out the beam?
- Are particular types of rules too quickly discarded?
- Are there systemic problems with cube pruning?

Summary

- Synchronous context free grammars
- Extracting rules from a syntactically parsed parallel corpus
- Bottom-up decoding
- Chart organization: dynamic programming, stacks, pruning
- Prefix tree for rules
- Dotted rules
- Cube pruning

