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2Fundamental Equation of ASR

Goal: find the words w∗ in a speech signal x such that:

w∗ = argmax
w

Pr(x | w) Pr(w) (1)

Problems:

• language modeling (LM): estimating Pr(w)

• acoustic modeling (AM): estimating Pr(x | w)

• search problem: computing (1)

AM sums over hidden state sequences s a Markov process of (x, s) from w

Pr(x | w) =
∑

s

Pr(x, s | w)

Hidden Markov Model: hidden states ”link” speech frames to words.
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3Fundamental Equation of SMT

Goal: find the English string e translating the foreign text f such that:

e∗ = argmax
e

Pr(f | e) Pr(e) (2)

Problems:

• language modeling (LM): estimating Pr(e)

• translation modeling (TM): estimating Pr(f | e)

• search problem: computing (2)

TM sums over hidden alignments a a stochastic process generating (f ,a) from e.

Pr(f | e) =
∑
a

Pr(f ,a | e)

Alignment Models: hidden alignments ”link” foreign words with English words.
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4ASR and MT Architectures
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• Parallel data are samples of observations (x,w) and (f , e)

• AM and TM can be machine-learned without observing s and a.
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5Linear phrase-based SMT

• Translation hypotheses are ranked by:

e∗ = argmax
e,a

∑
i

λihi(e, f ,a)

• Phrases are finite strings (cf. n-grams)

• Hidden variable a embeds:
– segmentation of f and e into phrases
– alignment of phrases of f with phrases of e

• Feature functions hk() include:
– Translation Model: appropriateness of phrase-pairs
– Distortion Model: word re-ordering
– Language Model: fluency of target string
– Length Model: number of target words

• Role of the LM is exactly the same as for the noisy channel approach:
– to score translations incrementally generated by the search algorithm!
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6N-gram Language Model

Given a text w = w1 . . . , wt, . . . , w|w| we can compute its probability by:

Pr(w) = Pr(w1)
|w|∏
t=2

Pr(wt | ht) (3)

where ht = w1, . . . , wt−1 indicates the history of word wt.

• Pr(wt | ht) becomes difficult to estimate as the history ht grows .

• hence, we take the n-gram approximation ht ≈ wt−n+1 . . . wt−1

e.g. Full history: Pr(Parliament | I declare resumed the session of the European)

3− gram : Pr(Parliament | the European)

The choice of n determines the complexity of the LM (# of parameters):

• bad: no magic recipe about the optimal order n for a given task

• good: language models can be evaluated quite cheaply
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7Language Model Evaluation

• Extrinsic: impact on task (e.g. BLEU score for MT)

• Intrinsic: capability of predicting words

The perplexity (PP) measure is defined as: 1

PP = 2LP where LP = − 1
|w|

log2 p(w) (4)

• w is a sufficiently long test sample and p(w) is the LM probability.

Properties:

• 0 ≤ PP ≤ |V | (size of the vocabulary V )

• predictions are as good as guessing among PP equally likely options

Good news: there is typical strong correlation between PP and BLEU scores!

1[Exercise 1. Find PP of 1-gram LM on the sequence T H T H T H T T H T T H for p(T)=0.3, p(H)=0.7 and
p(H)=0.3, p(T)=0.7. Comment the results.]
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8Train-set vs. test-set perplexity

For an n-gram LM, the LP quantity can be computed as follows:

LP = − 1
|w|

|w|∑
t=1

log2 p(wt | ht).

PP is a function of a LM and a text:

• the lower the PP the better the LM

• test-set PP evaluates LM generalization capability

• PP strongly penalizes zero probabilities

• train-set PP measures how good the LM explains training data

Note: train-set PP is strictly related to the train-set likelihood.

M. Federico SLM MT Marathon, Edinburgh, 2012



9N-gram Probabilities

Estimating n-gram probabilities is not trivial due to:

• model complexity: e.g. 10,000 words correspond to 1 trillion 3-grams!

• data sparseness: e.g. most 3-grams are rare events even in huge corpora.

Relative frequency estimate: MLE of any discrete conditional distribution is:

f(w | x y) =
c(w | x y)∑
w c(w | x y)

=
c(x y w)
c(x y)

where n-gram counts c(·) are taken over the training corpus.

Problem: relative frequencies in general overfit the training data

• if the test sample contains a ”new” n-gram PP → +∞
• this is largely the most frequent case for n ≥ 3

We need frequency smoothing!
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10Frequency Smoothing

Issue: f(w | x y) > 0 only if c(x y w) > 0

Idea: for each observed w take off some fraction of probability from f(w | x y)
and redistribute the total to all words never observed after x y.

• the discounted frequency f∗(w | x y) satisfies:

0 ≤ f∗(w | x y) ≤ f(w | x y) ∀x, y, w ∈ V

• the total discount is called zero-frequency probability λ(x y):2

λ(x y) = 1.0 −
∑
w∈V

f∗(w | x y)

How to redistribute the total discount?

2Notice: by convention λ(x y) = 1 if f(w | x y) = 0 for all w, i.e. c(x y) = 0.
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11Discounting Example
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12Frequency Smoothing

Insight: redistribute λ(x y) according to the lower-order smoothed frequency.

Two major hierarchical schemes to compute the smoothed frequency p(w | x y):

• Back-off, i.e. select the best available n-gram approximation:

p(w | x y) =
{
f∗(w | x y) if f∗(w | x y) > 0
αxy × λ(x y)p(w | y) otherwise

(5)

where αxy is an appropriate normalization term.3

• Interpolation, i.e. sum up the two approximations:

p(w | x y) = f∗(w | x y) + λ(x y)p(w | y). (6)

Smoothed frequencies are learned bottom-up, starting from 1-grams ...

3[Exercise 2. Find and expression for αxy s.t.
P
w p(w | x y) = 1.]
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13Frequency Smoothing of 1-grams

Unigram smoothing permits to treat out-of-vocabulary (OOV) words in the LM.

Assumptions:

• |U |: upper-bound estimate of the size of the true vocabulary

• f∗(w) > 0 on observed vocabulary V , e.g. f∗(w) = c(w)/(N + |V |)
• λ: total discount reserved to OOV words, e.g. λ = N/(N + |V |)
Then: 1-gram back-off/interpolation schemes collapse to:

p(w) =
{
f∗(w) if w ∈ V
λ× (|U | − |V |)−1 otherwise

(7)

Notice: we introduce approximations when an OOV word o appears:

p(w | h1 o h2) = p(w | h2) and p(o | h) = p(o)

Important: use a common value |U | when comparing/combining different LMs!
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14Discounting Methods

Linear interpolation (LI) [Jelinek, 1990]

• Insight:
– learn λ(x y) from data with a mixture model
– MLE on some held-out data (EM algorithm)

• Solution:

f∗(w | xy) = (1− λ([x y])f(w | xy) and 0 ≤ λ([x y]) ≤ 1

the notation [x y] means that a map is applied to reduce the set of parameters,
e.g., according to the frequency of the last word in the history:

[x y] =

 0 if c(y) ≤ k1

c(y) if k1 < c(y) ≤ k2

y + k2 if k2 < c(y)

• Pros: sound and robust

• Cons: over-smooths frequent n-grams
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15Discounting Methods

Witten-Bell estimate (WB) [Witten and Bell, 1991]

• Insight: count how often you would back-off after x y in the training data
– corpus: x y u x x y t t x y u w x y w x y t u x y u x y t
– assume λ(x y) ∝ number of back-offs (i.e. 3)
– hence f∗(w | x y) ∝ relative frequency (linear discounting)

• Solution:

λ(x y) =
n(x y ∗)

c(x y) + n(x y ∗)
and f∗(w | xy) =

c(x y w)
c(x y) + n(x y ∗)

where c(x y) =
∑
w c(x y w) and n(x y ∗) = |{w : c(x y w) > 0}|. 4

• Pros: easy to compute, robust for small corpora, works with artificial data.

• Cons: underestimates probability of frequent n-grams

4[Exercise 3. Compute f∗(u | x y) with WB on the above artificial text.]
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16Discounting Methods

• Interpolation and back-off with WB discounting

• Trigram LMs estimated on the English Europarl corpus

• Logprobs of 3-grams of type aiming at observed in training
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17Discounting Methods

Absolute Discounting (AD) [Ney and Essen, 1991]

• Insight:
– high counts are be more reliable than low counts
– subtract a small constant β (0 < β ≤ 1) from each count
– estimate β by maximizing the leaving-one-out likelihood of the training data

• Solution: (notice: one distinct β for each n-gram order)

f∗(w | x y) = max

{
c(xyw)− β
c(xy)

, 0
}

which gives λ(xy) = β

∑
w:c(xyw)>1 1

c(xy)

where β ≈ n1
n1+2n2

≤ 1 and nr = |{x y w : c(x y w) = r}|. 5

• Pros: easy to compute, accurate estimate of frequent n-grams.

• Cons: problematic with small and artificial samples.

5[Exercise 4. Given the text in WB slide find the number of 3-grams, n1, n2, β, f∗(w | x y) and λ(x y)]
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18Discounting Methods

Kneser-Ney method (KN) [Kneser and Ney, 1995]

• Insight: lower order counts are only used in case of back-off
– estimate frequency of back-offs to y w in the training data (cf. WB)
– corpus: x y w x t y w t x y w u y w t y w u x y w u u y w
– replace c(x y) with n(∗ y w) = # of observed back-offs (=3)

• Solution: (for 3-gram normal counts)

f∗(w | y) = max

{
n(∗ y w)− β
n(∗ y ∗)

, 0
}

which gives λ(y) = β

∑
w:n(∗ y w)>1 1

n(∗ y ∗)

where n(∗ y w) = |{x : c(x y w) > 0}| and n(∗ y ∗) = |{x w : c(x y w) > 0}|

• Pros: better back-off probabilities, can be applied to other smoothing methods

• Cons: LM cannot be used to compute lower order n-gram probs
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19Discounting Methods

Modified Kneser-Ney (MKN) [Chen and Goodman, 1999]

• Insight:
- specific discounting coefficients for infrequent n-grams
- introduce more parameters and estimate them with leaving-one-out

• Solution:

f∗(w | x y) =
c(x y w)− β(c(x y w))

c(x y)
where β(0) = 0, β(1) = D1, β(2) = D2 , β(c) = D3+ if c ≥ 3, coefficients are
computed from nr statistics, corrected counts used for lower order n-grams

• Pros: see previous + more fine grained smoothing

• Cons: see previous + more sensitiveness to noise

Important: LM interpolation with MKN is the most popular smoothing method.
Under proper training conditions it gives the best PP and BLEU scores!
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20Discounting Methods

• Interpolation with WB and MKN discounting (Europarl corpus)

• The plot shows the logprob of observed 3-grams of type aiming at
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• Notice that for less frequent 3-grams WB assigns higher probability

• We have three very high peaks corresponding to large corrected counts:
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• Another interesting peak at rank #26: n(* at very)=61
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21Discounting Methods

• Train: interpolation with WB and MKN discounting (Europarl corpus)

• Test: 3-grams of type aiming at (Google 1TWeb corpus)
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22Discounting Methods

• Train: interpolation with WB and MKN discounting (Europarl corpus)

• Test: 3-grams of type aiming at (Google 1TWeb corpus)

• Plot: cumulative score differences between MKN and WB on top 1000 3-grams
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23Approximate Smoothing

• LM Quantization [Federico and Bertoldi, 2006]
– Idea: one codebook for each n-gram/back-off level
– Pros: improves storage efficiency
– Cons: reduces discriminatory power
– Experiments with 8bit quantization on ZH-EN NIST task showed:

* 2.7% BLEU drop with a 5-gram LM trained on 100M-words
* 1.6% BLEU drop with a 5-gram LM trained on 1.7G words.

• Stupid back-off [Brants et al., 2007]
– no discounting, no corrected counts, no back-off normalization

p(w | x y) =
{
f(w | x y) if f(w | x y) > 0
k · p(w | y) otherwise

(8)

where k = 0.4 and p(w) = c(w)/N .
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24Is LM Smoothing Necessary?

From [Brants et al., 2007]. SB=stupid back-off, KN=modified Kneser-Ney

• Conclusion: proper smoothing useful up to 1 billion word training data!
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25Factored LMs

• Use less sparse representation of words than surface form words
– e.g. part-of-speech, semantic classes, lemmas, automatic clusters

• Higher chance to match longer n-grams in test sequences
– allows to model longer dependencies, to capture more syntax structure

• For a text w we assume a corresponding class sequence g
– ambiguous (e.g. POS) or deterministic (word classes)

• Factored LMs can be integrated into log-linear models with:

– a word-to-class factored model: f → e→ g with features:

h1(f , e) , h2(f ,g) , h3(f) , h4(g)

– a word-class joint model f → (e,g) with features

h1(f , e,g) , h2(f) , h3(g)

Features of single sequences are log-probs of standard n-gram LMs.
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26Maximum Entropy N-gram LMs

• The n-gram prob is modeled with log-linear model [Rosenfeld, 1996]:

pλ(w | h) =
exp (

∑m
r=1 λrhr(h,w))∑

w′ exp (
∑m
r=1 λrhr(h,w′))

=
1

Z(h)
exp

(
m∑
r=1

λrhr(h,w)

)

• hr(·) are feature functions (arbitrary statistics), λr are free paramenters

• Features can model any dependency between w and h.

• Given feature functions and training sample w, parameters can be estimated
[Berger et al., 1996] by maximizing the posterior log-likelihood:

λ̂ = arg max
λ∈Rm

|w|∑
t=1

log pλ(wt | ht) + log q(λ)

• where the second term is a regularizing Gaussian prior

• ME n-grams are rarely used: perform comparably but at higher computational
costs, because of the partition function Z(h).
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27Neural Network LMs

• Most promising among recent development on n-gram LMs.

• Idea: Map single word into a |V |-dimensional vector space
– Represent n-gram LM as a map between vector spaces

• Solution: Learn map with neural network (NN) architecture
– one hidden layer compress information (projection)
– second hidden layer performs the n-gram prediction
– other architectures are possible: e.g. recurrent NN

• Implementations:
– Continuous Space Language Model [Schwenk et al., 2006]
– Recurrent Neural Network Language Modeling Toolkit 6

• Pros:
– Fast run-time, competitive when used jointly with standard model

• Cons:
– Computational cost of training phase
– Not easy to integrate into search algorithm (used in re-scoring)

6http://rnnlm.sourceforge.net
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28Neural Network LMs

(From [Schwenk et al., 2006])
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29Language Modelling Today

• Availability of large scale corpora has pushed research toward using huge LMs

• MT systems set for evaluations use LMs with over a billion of 5-grams

• Estimating accurate large scale LMs is still computationally costly

• Querying large LMs can be carried out rather efficiently (with adequate RAM)

Available LM toolkits

• SRILM: training and run-time, Moses support, open source (no commercial)

• IRSTLM: training and run-time, Moses support, open source

• KENLM: run-time, Moses support, open source

Interoperability

• The standard for n-gram LM representation is the so-called ARPA file format.
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30ARPA File Format (srilm, irstlm)

Represents both interpolated and back-off n-gram LMs

• format: log(smoothed-prob) :: n-gram :: log(back-off weight)

• computation: look first for smoothed-prob, otherwise back-off

ngram 1= 86700
ngram 2= 1948935
ngram 3= 2070512

\1-grams:
-2.94351     world    -0.51431
-6.09691     friends  -0.15553
-2.88382     !        -2.38764

  ...

\2-grams:
-3.91009     world !       -0.3514
-3.91257     hello world   -0.2412
-3.87582     hello friends -0.0312

  ...

\3-grams:
-0.00108     hello world  ! 
-0.00027     hi hello  !  
  ...

\end\
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31ARPA File Format (srilm, irstlm)

Represents both interpolated and back-off n-gram LMs

• format: log(smoothed-prob) :: n-gram :: log(back-off weight)

• computation: look first for smoothed-prob, otherwise back-off

ngram 1= 86700
ngram 2= 1948935
ngram 3= 2070512

\1-grams:
-2.94351     world    -0.51431
-6.09691     friends  -0.15553
-2.88382     !        -2.38764

  ...

\2-grams:
-3.91009     world !       -0.3514
-3.91257     hello world   -0.2412
-3.87582     hello friends -0.0312

  ...

\3-grams:
-0.00108     hello world  ! 
-0.00027     hi hello  !  
  ...

\end\

Query: Pr( ! / hello friends )?

1. look-up logPr(hello friends !)
    failed! then back-off
2. look-up logBow(hello friends)
    res=-0.0312
3. look-up logPr(friends !)
    failed! then back-off
4. look-up logBow(friends)
    res=res-0.15553
5. look-up logPr(!)
    res=res-2.88382
6. prob=exp(res)=0.04640
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