Discriminative Training of
Translation Models
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e” = argmaxp(e | g)
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= argmaxlogp(g | e) + log p(e)
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Noisy Channels Again

e* = arg maxp(e g)
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Noisy Channels Again

This is a linear combinaion

— - —|— _ -
_ Ll |logp(g | e)
I B log p(e)

w h(g.e)
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The Noisy Channel
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As a Linear Model
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As a Linear Model

-log p(gle) [

Improvement |:

change w to find better translations
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As a Linear Model

-log p(gle) | o

Improvement 2:

Add dimensions to make points separable
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Linear Models

e = arg max w ' h(g,e)
® |mprove the modeling capacity of the noisy
channel in two ways
® Reorient the weight vector
® Add new dimensions (new features)
® Questions
® VVhat features? h(g,e)

® How do we set the weights! w
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Mann beil3t Hund

lil x BITES y n‘

Mann beil3t Hund Mann beil3t Hund
man bites cat man chase dog
Mann beil3t Hund Mann beil3t Hund
man bite cat man bite dog
Mann beil3t Hund Mann beil3t Hund

dog bites man | man bites dog
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Feature Classes

Lexical
Are lexical choices appropriate?
bank = “River bank” vs.“Financial institution”

20

Friday, September 7, 2012



Feature Classes

Lexical
Are lexical choices appropriate?
bank = “River bank” vs.“Financial institution’

Configurational

Are semantic/syntactic relations preserved?
“Dog bites man” vs.”Man bites dog”
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Feature Classes

Lexical
Are lexical choices appropriate?
bank = “River bank” vs.“Financial institution”

Configurational

Are semantic/syntactic relations preserved?
“Dog bites man” vs.”Man bites dog”

Grammatical
Is the output fluent / well-formed?

“Man bites dog” vs.Man bite dog”
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What do lexical features look like?

Mann beil3t Hund

man bites cat

21
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Mann beil3t Hund

man bites | cat
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What do lexical features look like?

Mann beil3t Hund

man bites | cat

First attempt:

score(g,e) = w ' h(g,e)
1, d¢,7:9; = Hund,e; = cat

his.342(g,€) = {

0, otherwise

21
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What do lexical features look like?

Mann beil3t Hund

man bites | cat

First attempt:

score(g,e) = w ' h(g,e)
1, d¢,7:9; = Hund,e; = cat

0, otherwise

his.342(g,€) = {

But what if a cat is being chased by a Hund?
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What do lexical features look like?

Mann beil3t Hund

man bites | cat

Latent variables| enable more precise features:

score(g, e@) = w' h(g, e, @)

1, if g, = Hund,e; = cat
hissa2(g @) = ) { !

0, otherwise
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Standard Features

® Target side features

log p(e) [ n-gram language model ]

Number of words in hypothesis

® Source + target features

log relative frequency e|f of each rule [ log #(e,f) - log #(f) ]
log relative frequency fle of each rule [ log #(e,f) - log #(e) ]
“lexical translation” log probability e|f of each rule [ = log pmodeii(elf) ]

“lexical translation” log probability fle of each rule [ = log pmodeli(fle) ]

® Other features

Count of rules/phrases used

Reordering pattern probabilities

23
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Parameter Learning
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Hypothesis Space
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Hypothesis Space
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Hypothesis Space

potheses
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Hypothesis Space

26
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Preliminaries

We assume a decoder that computes:

&

(e*|a*l) = argmaxw ' h(g,e/a)

(eja)

And K-best lists of, that is:

{(ef|a]) }i=1* = argi*"- Mmax w ' h(g, e, a)

Standard, efficient algorithms exist for this.
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Learning VWeights

® Try to match the reference translation exactly
® Conditional random field

® Maximize the conditional probability of the
reference translations

® “Average” over the different latent variables

28
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Learning VWeights

® Try to match the reference translation exactly
® Conditional random field

® Maximize the conditional probability of the
reference translations

® “Average” over the different latent variables
® Max-margin

® Find the weight vector that separates the reference
translation from others by the maximal margin

® Maximal setting of the latent variables

28
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Problems

® These methods give “full credit” when the
model exactly produces the reference and no
credit otherwise

® What is the problem with this?

29
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Problems

® These methods give “full credit” when the
model exactly produces the reference and no
credit otherwise

® What is the problem with this?
® There are many ways to translate a sentence

® What if we have multiple reference
translations!?

® What about partial credit?

29
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Cost-Sensitive Training

® Assume we have a cost function that gives
a score for how good/bad a translation is

/(e &) —|0,1]

® Optimize the weight vector by making
reference to this function

® Ve will talk about two ways to do this

30
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K-Best List Example
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K-Best List Example
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K-Best List Example

® 0.8< V< 1.0
e 0.6 </ <0.8
0 04</<0.6
e 0.2</<04

e 0.0</7<0.2
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Training as Classification

® Pairwise Ranking Optimization
® Reduce training problem to bin;r' classification
with a linear model
e Algorithm
® Fori=ltoN
® Pick random pair of hypotheses (A,B) from K-best list
® Use cost function to determine if is A or B better

® Create ith training instance

® Train binary linear classifier

33
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@ 0.6 </ <08
0 04</¢<0.6
e 0.2</<04

e 0.0</<0.2
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K-Best List Example

® 0.8< V< 1.0
e 0.6 </ <0.8
0 04</<0.6
e 0.2</<04

e 0.0</7<0.2
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® Minimum Error Rate Training

® Directly target an automatic evaluation
metric

® BLEU is defined at the corpus level
e MERT optimizes at the corpus level
® Downsides

® Does not deal well with > ~20 features

46
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MERT

Given weight vector w, any hypothesis (e, a)
will have a (scalar) score m = w ' h(g, e, a)

Now pick a search vector v, and consider
how the score of this hypothesis will change:

Whew — W + YV

47
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MERT

Given weight vector w, any hypothesis (e, a)
will have a (scalar) score m = w ' h(g, e, a)

Now pick a search vector v, and consider
how the score of this hypothesis will change:

Whew — W + YV

m = (w+7v) h(g, e, a)
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MERT

Given weight vector w, any hypothesis (e, a)
will have a (scalar) score m = w ' h(g, e, a)

Now pick a search vector v, and consider
how the score of this hypothesis will change:

Wiew = W + 7V
m = (w+7v) h(g, e, a)
= w'h(g,e,a) +7v h(g,e,a)
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MERT

Given weight vector w, any hypothesis (e, a)
will have a (scalar) score m = w ' h(g, e, a)

Now pick a search vector v, and consider
how the score of this hypothesis will change:

Wiew = W + YV
m = (w+7v) h(g, e, a)
= w'h(g,e,a) +7v h(g,e,a)
—r ———
b a

m =ay—+ b
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MERT

Given weight vector w, any hypothesis (e, a)
will have a (scalar) score m = w ' h(g, e, a)

Now pick a search vector v, and consider
how the score of this hypothesis will change:

Wiew = W + 7V
m = (w+7v) h(g, e, a)
= w'h(g,e,a) +7v h(g,e,a)

N N
b a

m =ay—+ b
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MERT

Given weight vector w, any hypothesis (e, a)
will have a (scalar) score m = w ' h(g, e, a)

Now pick a search vector v, and consider
how the score of this hypothesis will change:

Wiew = W + 7V
m = (w+7v) h(g, e, a)
= w'h(g,e,a) +7v h(g,e,a)

N N
b a

Linear function in 2D!
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MERT
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MERT

Recall our k-best set {(e;,a;)

K
1=1
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Recall our k-best set {(e;,a;)

K
1=1
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MERT

® |n practice “errors’ are sufficient statistics
for evaluation metrics (e.g., BLEU)

® Can maximize or minimize!

® Envelope can also be computed using
dynamic programming

® |nteresting complexity bounds

® How do you pick the search direction!?
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Summary

® Evaluation metrics
® Figure out how well we're doing
® Figure out if a feature helps
® But ALSO: train your system!
® What's a great way to improve translation?

¢ Improve evaluation!
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Thank You!

™m

(162> Al62) <e$3
(€35, A5g)

*
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