Discriminative Training of Translation Models

MT Marathon - September 7, 20 I2

Noisy Channels Again

$$
p(\mathbf{e})
$$

Noisy Channels Again

German

Noisy Channels Again

Noisy Channels Again

$$
\begin{aligned}
\mathbf{e}^{*} & =\arg \max _{\mathbf{e}} p(\mathbf{e} \mid \mathbf{g}) \\
& =\arg \max _{\mathbf{e}} \frac{p(\mathbf{g} \mid \mathbf{e}) \times p(\mathbf{e})}{p(\mathbf{g})} \\
& =\arg \max _{\mathbf{e}} p(\mathbf{g} \mid \mathbf{e}) \times p(\mathbf{e})
\end{aligned}
$$

Noisy Channels Again

$$
\begin{aligned}
\mathbf{e}^{*} & =\arg \max _{\mathbf{e}} p(\mathbf{e} \mid \mathbf{g}) \\
& =\arg \max _{\mathbf{e}} \frac{p(\mathbf{g} \mid \mathbf{e}) \times p(\mathbf{e})}{p(\mathbf{g})} \\
& =\arg \max _{\mathbf{e}} p(\mathbf{g} \mid \mathbf{e}) \times p(\mathbf{e}) \\
& =\arg \max _{\mathbf{e}} \log p(\mathbf{g} \mid \mathbf{e})+\log p(\mathbf{e})
\end{aligned}
$$

Noisy Channels Again

$$
\begin{aligned}
\mathbf{e}^{*} & =\arg \max _{\mathbf{e}} p(\mathbf{e} \mid \mathbf{g}) \\
& =\arg \max _{\mathbf{e}} \frac{p(\mathbf{g} \mid \mathbf{e}) \times p(\mathbf{e})}{p(\mathbf{g})} \\
& =\arg \max _{\mathbf{e}} p(\mathbf{g} \mid \mathbf{e}) \times p(\mathbf{e}) \\
& =\arg \max _{\mathbf{e}} \log p(\mathbf{g} \mid \mathbf{e})+\log p(\mathbf{e}) \\
& =\arg \max _{\mathbf{e}} \underbrace{\left[\begin{array}{l}
1 \\
1
\end{array}\right]}_{\mathbf{w}^{\top}} \underbrace{\left[\begin{array}{c}
\log p(\mathbf{g} \mid \mathbf{e}) \\
\log p(\mathbf{e})
\end{array}\right]}_{\mathbf{h}(\mathbf{g}, \mathbf{e})}
\end{aligned}
$$

Noisy Channels Again

$$
\begin{aligned}
& \mathrm{e}^{*}=\arg \max _{\mathrm{e}} p(\mathrm{e} \mid \mathrm{g}) \\
&=\arg \max _{\mathrm{e}} \frac{p(\mathrm{~g} \mid \mathrm{e}) \times p(\mathrm{e})}{p(\mathrm{~g})} \\
&=\arg \max _{\mathrm{e}} p(\mathrm{~g} \mid \mathrm{e}) \times p(\mathrm{e}) \\
& \text { inisis adineargaconabinaion }
\end{aligned}
$$

$$
=\arg \max _{\mathbf{e}} \underbrace{\left[\begin{array}{l}
1 \\
1
\end{array}\right]^{\top}}_{\mathbf{w}^{\top}} \underbrace{\left[\begin{array}{c}
\log p(\mathbf{g} \mid \mathbf{e}) \\
\log p(\mathbf{e})
\end{array}\right]}_{\mathbf{h}(\mathbf{g}, \mathbf{e})}
$$

The Noisy Channel

As a Linear Model

As a Linear Model

As a Linear Model

As a Linear Model

$-\log p(\mathbf{g} \mid \mathbf{e})^{\wedge} \quad$.

Improvement I:
change $\overrightarrow{\mathrm{w}}$ to find better translations

As a Linear Model

As a Linear Model

As a Linear Model

As a Linear Model

$-\log p(\mathbf{g} \mid \mathbf{e}) \uparrow \quad$ -

Improvement 2:
Add dimensions to make points separable

Linear Models

$$
\mathbf{e}^{*}=\arg \max _{\mathbf{e}} \mathbf{w}^{\top} \mathbf{h}(\mathbf{g}, \mathbf{e})
$$

- Improve the modeling capacity of the noisy channel in two ways
- Reorient the weight vector
- Add new dimensions (new features)
- Questions
- What features?
$h(g, e)$
- How do we set the weights? w

Mann
 Hund

Mann

beißt x BITES y

Hund π

Mann
 beißt x BITES y
 Hund

Mann
 beißt Hund x BITES y

Mann
man beißt
bites

Mann
beißt
man bite
cat

Hund
Mann
beißt
dog bites man

Mann
man
chase

Mann
beißt
man
bite

Mann
beißt
man bites

Hund
dog

Hund
dog

Hund
dog

Mann
 beißt Hund x BITES y

Mann man beißt bites

Hund dog

Mann

beißt
man
bite
cat
man
beißt
Hund
Mann
bite
dog
Mann
beißt
Hund
dog bites man
man bites
dog

Mann beißt Hund x BITES y

Mann man beißt
bites

Mann beißt Hund x BITES y π

Hund dog

Mann
 beißt
 Hund
 man
 bites
 dog

Feature Classes

Lexical

Are lexical choices appropriate? bank = "River bank" vs."Financial institution"

Feature Classes

Lexical

Are lexical choices appropriate?
bank = "River bank" vs."Financial institution"
Configurational
Are semantic/syntactic relations preserved?
"Dog bites man" vs."Man bites dog"

Feature Classes

Lexical

Are lexical choices appropriate?
bank = "River bank" vs. "Financial institution"
Configurational
Are semantic/syntactic relations preserved? "Dog bites man" vs."Man bites dog"

Grammatical
Is the output fluent / well-formed?
"Man bites dog" vs."Man bite dog"

What do lexical features look like?

Mann beißt Hund man bites cat

What do lexical features look like?

Mann beißt bites
 Hund cat

What do lexical features look like?

Mann beißt
 Hund man bites
 cat

First attempt:

$$
\begin{aligned}
\operatorname{score}(\mathbf{g}, \mathbf{e}) & =\mathbf{w}^{\top} \mathbf{h}(\mathbf{g}, \mathbf{e}) \\
h_{15,342}(\mathbf{g}, \mathbf{e}) & = \begin{cases}1, & \exists i, j: g_{i}=H u n d, e_{j}=c a t \\
0, & \text { otherwise }\end{cases}
\end{aligned}
$$

What do lexical features look like?

Mann beißt
 Hund man bites cat

First attempt:

$$
\begin{aligned}
\operatorname{score}(\mathbf{g}, \mathbf{e}) & =\mathbf{w}^{\top} \mathbf{h}(\mathbf{g}, \mathbf{e}) \\
h_{15,342}(\mathbf{g}, \mathbf{e}) & = \begin{cases}1, & \exists i, j: g_{i}=H u n d, e_{j}=c a t \\
0, & \text { otherwise }\end{cases}
\end{aligned}
$$

But what if a cat is being chased by a Hund?

What do lexical features look like?

Mann , man
 beißt
 bites
 Hund
 cat

Latent variables enable more precise features:

$$
\begin{aligned}
\operatorname{score}(\mathbf{g}, \mathbf{e}, \mathbf{a}) & =\mathbf{w}^{\top} \mathbf{h}(\mathbf{g}, \mathbf{e}, \mathbf{a}) \\
h_{15,342}(\mathbf{g}, \mathbf{e}, \mathbf{a}) & =\sum_{(i, j) \in \mathbf{a}} \begin{cases}1, & \text { if } g_{i}=H u n d, e_{j}=c a t \\
0, & \text { otherwise }\end{cases}
\end{aligned}
$$

Standard Features

- Target side features
- $\log p(e) \quad[n$-gram language model]
- Number of words in hypothesis
- Source + target features
- log relative frequency elf of each rule $\quad[\log \#(e, f)-\log \#(f)]$
- log relative frequency fle of each rule $\quad[\log \#(e, f)-\log \#(e)]$
- "lexical translation" log probability e|f of each rule $\left[\approx \log \operatorname{Pmodell}^{(\mathrm{e} \mid \mathrm{f})}\right.$]
- "lexical translation" log probability fle of each rule $\quad\left[\approx \log\right.$ Pmodell $\left.^{(f \mid e)}\right]$
- Other features
- Count of rules/phrases used
- Reordering pattern probabilities

Parameter Learning

Hypothesis Space

Hypothesis Space

Features

Hypothesis Space

Hypothesis Space

Preliminaries

We assume a decoder that computes:

$$
\left\langle\mathbf{e}^{*}, \underline{\left.\mathbf{a}^{*}\right\rangle}\right\rangle=\arg \max _{\langle\mathbf{e}, \underline{\mathbf{a}}\rangle} \mathbf{w}^{\top} \mathbf{h}(\mathbf{g}, \mathbf{e}, \underline{\mathbf{a}})
$$

And K-best lists of, that is:

$$
\left\{\left\langle\mathbf{e}_{i}^{*}, \mid \mathbf{a}_{i}^{*}\right\rangle\right\}_{i=1}^{i=K}=\arg i^{\mathrm{th}}-\max _{\langle\mathbf{e}, \mathbf{a}\rangle} \mathbf{w}^{\top} \mathbf{h}(\mathbf{g}, \mathbf{e}, \mathbf{a})
$$

Standard, efficient algorithms exist for this.

Learning Weights

- Try to match the reference translation exactly
- Conditional random field
- Maximize the conditional probability of the reference translations
- "Average" over the different latent variables

Learning Weights

- Try to match the reference translation exactly
- Conditional random field
- Maximize the conditional probability of the reference translations
- "Average" over the different latent variables
- Max-margin
- Find the weight vector that separates the reference translation from others by the maximal margin
- Maximal setting of the latent variables

Problems

- These methods give "full credit" when the model exactly produces the reference and no credit otherwise
- What is the problem with this?

Problems

- These methods give "full credit" when the model exactly produces the reference and no credit otherwise
- What is the problem with this?
- There are many ways to translate a sentence
- What if we have multiple reference translations?
- What about partial credit?

Cost-Sensitive Training

- Assume we have a cost function that gives a score for how good/bad a translation is

$$
\ell(\hat{\mathbf{e}}, \mathcal{E}) \mapsto[0,1]
$$

- Optimize the weight vector by making reference to this function
- We will talk about two ways to do this

K-Best List Example

K-Best List Example

K-Best List Example

$$
\begin{aligned}
& -0.8 \leq \ell<1.0 \\
& -0.6 \leq \ell<0.8 \\
& \text { - } 0.4 \leq \ell<0.6 \\
& \text { - } 0.2 \leq \ell<0.4 \\
& -0.0 \leq \ell<0.2
\end{aligned}
$$

Training as Classification

- Pairwise Ranking Optimization
- Reduce training problem to binary classification with a linear model
- Algorithm
- For $i=1$ to N
- Pick random pair of hypotheses (A, B) from K-best list
- Use cost function to determine if is A or B better
- Create ith training instance
- Train binary linear classifier

> - $0.8 \leq \ell<1.0$
> - $0.6 \leq \ell<0.8$
> - $0.4 \leq \ell<0.6$
> - $0.2 \leq \ell<0.4$
> - $0.0 \leq \ell<0.2$

$\circ 0.8 \leq \ell<1.0$
\circ
\circ
\circ
\circ
\circ

- $0.4 \leq \ell<$
- $0.2 \leq \ell<0.8$
- $0.0 \leq \ell<0.4$

K-Best List Example

$$
\begin{aligned}
& -0.8 \leq \ell<1.0 \\
& -0.6 \leq \ell<0.8 \\
& \text { - } 0.4 \leq \ell<0.6 \\
& -0.2 \leq \ell<0.4 \\
& -0.0 \leq \ell<0.2
\end{aligned}
$$

MERT

- Minimum Error Rate Training
- Directly target an automatic evaluation metric
- BLEU is defined at the corpus level
- MERT optimizes at the corpus level
- Downsides
- Does not deal well with > ~20 features

MERT

Given weight vector \mathbf{w}, any hypothesis $\langle\mathbf{e}, \mathbf{a}\rangle$
will have a (scalar) score $m=\mathbf{w}^{\top} \mathbf{h}(\mathbf{g}, \mathbf{e}, \mathbf{a})$

Now pick a search vector v , and consider how the score of this hypothesis will change:

$$
\mathbf{w}_{\text {new }}=\mathbf{w}+\gamma \mathbf{v}
$$

MERT

Given weight vector \mathbf{w}, any hypothesis $\langle\mathbf{e}, \mathbf{a}\rangle$ will have a (scalar) score $m=\mathbf{w}^{\top} \mathbf{h}(\mathbf{g}, \mathbf{e}, \mathbf{a})$

Now pick a search vector v , and consider how the score of this hypothesis will change:

$$
\begin{aligned}
\mathbf{w}_{\text {new }} & =\mathbf{w}+\gamma \mathbf{v} \\
m & =(\mathbf{w}+\gamma \mathbf{v})^{\top} \mathbf{h}(\mathbf{g}, \mathbf{e}, \mathbf{a})
\end{aligned}
$$

MERT

Given weight vector \mathbf{w}, any hypothesis $\langle\mathbf{e}, \mathbf{a}\rangle$ will have a (scalar) score $m=\mathbf{w}^{\top} \mathbf{h}(\mathbf{g}, \mathbf{e}, \mathbf{a})$

Now pick a search vector v , and consider how the score of this hypothesis will change:

$$
\begin{aligned}
\mathbf{w}_{\text {new }} & =\mathbf{w}+\gamma \mathbf{v} \\
m & =(\mathbf{w}+\gamma \mathbf{v})^{\top} \mathbf{h}(\mathbf{g}, \mathbf{e}, \mathbf{a}) \\
& =\mathbf{w}^{\top} \mathbf{h}(\mathbf{g}, \mathbf{e}, \mathbf{a})+\gamma \mathbf{v}^{\top} \mathbf{h}(\mathbf{g}, \mathbf{e}, \mathbf{a})
\end{aligned}
$$

MERT

Given weight vector \mathbf{w}, any hypothesis $\langle\mathbf{e}, \mathbf{a}\rangle$ will have a (scalar) score $m=\mathbf{w}^{\top} \mathbf{h}(\mathbf{g}, \mathbf{e}, \mathbf{a})$

Now pick a search vector v , and consider how the score of this hypothesis will change:

$$
\begin{aligned}
\mathbf{w}_{\text {new }} & =\mathbf{w}+\gamma \mathbf{v} \\
m & =(\mathbf{w}+\gamma \mathbf{v})^{\top} \mathbf{h}(\mathbf{g}, \mathbf{e}, \mathbf{a}) \\
& =\underbrace{\mathbf{w}^{\top} \mathbf{h}(\mathbf{g}, \mathbf{e}, \mathbf{a})}_{b}+\gamma \underbrace{\mathbf{v}^{\top} \mathbf{h}(\mathbf{g}, \mathbf{e}, \mathbf{a})}_{a} \\
m & =a \gamma+b
\end{aligned}
$$

MERT

Given weight vector \mathbf{w}, any hypothesis $\langle\mathbf{e}, \mathbf{a}\rangle$ will have a (scalar) score $m=\mathbf{w}^{\top} \mathbf{h}(\mathbf{g}, \mathbf{e}, \mathbf{a})$

Now pick a search vector v , and consider how the score of this hypothesis will change:

$$
\begin{aligned}
\mathbf{w}_{\text {new }} & =\mathbf{w}+\gamma \mathbf{v} \\
m & =(\mathbf{w}+\gamma \mathbf{v})^{\top} \mathbf{h}(\mathbf{g}, \mathbf{e}, \mathbf{a}) \\
& =\underbrace{\mathbf{w}^{\top} \mathbf{h}(\mathbf{g}, \mathbf{e}, \mathbf{a})}_{b}+\gamma \underbrace{\mathbf{v}^{\top} \mathbf{h}(\mathbf{g}, \mathbf{e}, \mathbf{a})}_{a} \\
m & =a \gamma+b
\end{aligned}
$$

MERT

Given weight vector \mathbf{w}, any hypothesis $\langle\mathbf{e}, \mathbf{a}\rangle$ will have a (scalar) score $m=\mathbf{w}^{\top} \mathbf{h}(\mathbf{g}, \mathbf{e}, \mathbf{a})$

Now pick a search vector v , and consider how the score of this hypothesis will change:

$$
\mathbf{w}_{\mathrm{new}}=\mathbf{w}+\gamma \mathbf{v}
$$

$$
\begin{aligned}
m & =(\mathbf{w}+\gamma \mathbf{v})^{\top} \mathbf{h}(\mathbf{g}, \mathbf{e}, \mathbf{a}) \\
& =\underbrace{\mathbf{w}^{\top} \mathbf{h}(\mathbf{g}, \mathbf{e}, \mathbf{a})}_{b}+\gamma \underbrace{\mathbf{v}^{\top} \mathbf{h}(\mathbf{g}, \mathbf{e}, \mathbf{a})}_{a} \\
m & =a \gamma+b \text { Linear function in 2D! }
\end{aligned}
$$

MERT

MERT

Recall our k-best set $\left\{\left\langle\mathbf{e}_{i}^{*}, \mathbf{a}_{i}^{*}\right\rangle\right\}_{i=1}^{K}$

MERT

Recall our k-best set $\left\{\left\langle\mathbf{e}_{i}^{*}, \mathbf{a}_{i}^{*}\right\rangle\right\}_{i=1}^{K}$

MERT

MERT

- In practice "errors" are sufficient statistics for evaluation metrics (e.g., BLEU)
- Can maximize or minimize!
- Envelope can also be computed using dynamic programming
- Interesting complexity bounds
- How do you pick the search direction?

Summary

- Evaluation metrics
- Figure out how well we're doing
- Figure out if a feature helps
- But ALSO: train your system!
- What's a great way to improve translation?
- Improve evaluation!

Thank You!

