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Abstract 

This study presents the NICT automatic speech recognition 
(ASR) system submitted for the IWSLT 2013 ASR evaluation. 
We apply two types of acoustic features and three types of 
acoustic models to the NICT ASR system. Our system is 
comprised of six subsystems with different acoustic features 
and models. This study reports the individual results and 
fusion of systems and highlights the improvements made by 
our proposed methods that include the automatic segmentation 
of audio data, language model adaptation, speaker adaptive 
training of deep neural network models, and the NICT 
SprinTra decoder. Our experimental results indicated that our 
proposed methods offer good performance improvements on 
lecture speech recognition tasks. Our results denoted a 13.5% 
word error rate on the IWSLT 2013 ASR English test data set. 

1. Introduction 

The IWSLT 2013 Automatic Speech Recognition is an 
ongoing evaluation whose goal is to automatically transcribe 
TED 1  talks from audio to text [1]. TED is a nonprofit 
organization that promotes the dissemination of ideas. People 
can access TED talks on its website. Due to speech disfluency, 
emotional speech, noisy speech, different channels and 
speakers, the automatic transcription of TED talks is 
challenging. This year, the evaluation contains English and 
German speech materials as well as the automatic and 
mandatory segmentation of audio data. Since some talks are 
with non-native speakers, this year’s evaluations are 
particularly challenging. 

Automatic speech recognition has been widely applied in 
different kinds of applications [2]-[4]. To achieve better 
speech recognition performance, many techniques [5]-[9] 
have been proposed to address the problems in speech 
recognition. Cui et al. [5] presented a new semi-supervised 
learning method that exploits cross-view transfer learning for 
speech recognition through a committee machine that consists 
of multiple views learned from different acoustic features and 
randomized decision trees. A multi-objective scheme is 
generalized to a unified semi-supervised learning framework 
that can be interpreted into a variety of learning strategies 
under different weighting schemes. Huang et al. [6] proposed 
a joint analysis approach which simultaneously considers the 
vocal tract length normalization and the averaged temporal 
information of cepstral features. The Gaussian mixture model 
estimates conditional parameters in a data-driven manner. 
Chelba et al. [8] reviewed an approach to acoustic modeling 
that borrows from n-gram language modeling to increase both 
the amount of training data and the model size to 
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approximately 100 times larger than the current sizes used in 
ASR. They experimented with contexts that span seven or 
more context-independent phones, and up to 620 mixture 
components per state. Hinton et al. [9] provided an overview 
of deep neural networks (DNNs) for acoustic modeling. Most 
speech recognition systems use hidden Markov models 
(HMMs) to deal with the temporal variability of speech and 
Gaussian mixture models (GMMs) to determine how well 
each state of each HMM fits a frame or a short window of 
frames of coefficients that represents the acoustic input. 
DNNs trained using new methods have outperformed GMMs 
on a variety of speech recognition benchmarks. In addition, 
Kaldi2 [10] is an open-source toolkit of ASR written in C++. 
The core library support state-of-the-art techniques of 
modeling and feature extraction including DNN models, 
subspace Gaussian mixture models (SGMMs), decoder of 
finite-state transducers, and so on. In this study, we adopt 
Kaldi and NICT SprinTra for ASR system development and 
investigate speech recognition techniques on data analysis, 
feature extraction, acoustic and language models, and speech 
decoders. 

The rest of this paper is organized as follows. Section 2 
introduces data analysis and segmentation. We present the 
construction of combining multiple features and models for 
lecture speech recognition in Section 3. In Section 4, we 
describe our experiment setup, experiment results as well as a 
discussion of the results. Finally, we conclude this work in 
Section 5. 

2. Data Analysis and Segmentation 

We used three types of speech data to build acoustic models: 
the Wall Street Journal (WSJ), HUB4 English Broadcast 
news, and collected TED talks. We obtained WSJ and HUB4 
from the Linguistic Data Consortium (LDC3). We crawled 
760 TED talks from its online website published before 
December 31, 2010. The data are summarized in Table 1. 
WSJ is read speech. HUB4 is spontaneous broadcast news 
speech. TED is lecture style speech. Totally, we have about 
300 hours of speech to build acoustic models with transcripts. 

Both WSJ and HUB4 provide manual transcripts that can 
be directly used for acoustic model training. Text captions or 
subtitles of TED are provided with the speech recording, but 
speech segmentation and word alignment are not available. 
We used the SailAlign toolkit for speech segmentation and 
speech-text alignment [11]. SailAlign, which provides 
decoder-based segmentation with acoustic and language 
model adaptation, runs with HTK in which the acoustic model 
is trained by WSJ. Based on the segmentation results, the 
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speech-text alignment can be viewed as text-text alignment 
using dynamic programming to minimize the distance 
between reference and hypothesized texts. 

In this study, the techniques of speaker clustering and 
automatic segmentation are applied to training and test audio 
data sets. First, speaker clustering has been widely adopted 
for clustering speech data based on speaker characteristics so 
that speaker-based cepstral mean normalization (CMN) and 
speaker adaptive training (SAT) [12] can be applied for better 
automatic speech recognition performance. TED talks are not 
always monologue; they might include interviews or 
conversations. We apply the vector space strategy to 
represent spoken utterances and conduct speaker clustering to 
group the spoken utterances into a number of speaker clusters 
in each talk. Experimental analysis is available in our earlier 
study [13]. 

Second, the length of a TED talk may range from 3 to 18 
minutes with speech, laugh, applause, music, etc. For a good 
speech transcription, we apply the automatic segmentation 
processing to the audio data to remove non-speech segments 
(Fig. 1). Energy-based voice activity detection (VAD) is first 
used to detect the voice segments. Then the log-likelihood 
score with sliding windows is computed to detect speech/non-
speech segments based on two GMMs trained using labeled 
speech/non-speech data. Finally, we merge the speech 
segments with a short interval between them and discard short 
segments. Merging and discard are based on a threshold of 
170 ms. 

3. System Description 

3.1. Feature Extraction 

Feature extraction is crucial to estimate numerical 
representation from speech samples. In this study, we 
extracted two sets of acoustic features to build acoustic 
models. The first set is Mel-frequency cepstral coefficient 
(MFCC), which is popular in speech recognition applications 
[14]. In MFCC feature extraction, 16-KHz speech input is 
coded with 13-demensional MFCCs with a 25ms window and 
a 10ms frame-shift. Each frame of the speech data is 
represented by a 39-dimensional feature vector that consists 
of 13 MFCCs with their deltas and double-deltas. Nine 
consecutive feature frames are spliced and projected to 40 
dimensions using linear discriminant analysis (LDA) and 
maximum likelihood linear transformation (MLLT). The 
second acoustic feature is a perceptual linear predictive 
cepstrum (PLP) [15], which has the same LDA and MLLT. 
Both have 40 dimensions. 

3.2. Subsystem Descriptions 

The HMM models were with maximum 10,000 tied states and 
160,000 Gaussian mixture components. We investigated three 

kinds of acoustic models: training of maximum mutual 
information (MMI), SGMM, and DNN. 

Maximum Mutual Information Training: We maximized 
the auxiliary function in the M-steps of the EM estimation of 
the HMM parameters. The likelihood of the data given HMM 
is bound to increase when the value of the auxiliary function 
increases. In model space MMI training, we maximize a 
model’s correctness by formulating an objective function and 
penalizing confusable models to the true model [16]. fMMI is 
feature space discriminative training with the same objective 
function as model space MMI training. After applying a 
global matrix, a high dimension feature vector is projected 
and added to the original features. In this study, we first apply 
speaker adaptive training on a triphone HMM system. Then 
discriminative training is applied with a feature space boosted 
fMMI followed by tree rebuilding and model space MMI 
training with indirect differential [17]. 

Subspace GMM Training: The subspace Gaussian mixture 
model is a compact representation of a large collection of a 
mixture of Gaussian models [18]-[20]. SGMM’s basic idea is 
that all phonetic states share a common GMM structure, but 
the means and mixture weights vary in the total parameter 
space. Since most parameters are shared, we have more 
robust parameter estimation. We initialize the model by 
training a single GMM on all the speech classes that are 
pooled together. This is the universal background model 
(UBM). We use a total of 800 Gaussians in the UBM. Before 
SGMM training, SAT is used on the triphone system that is 
related to MLLR adaptation. 

DNN Training: The deep neural networks are feed-
forward, artificial neural networks that show more than one 
hidden layers between inputs and outputs [9, 21]. Recently, 
DNN has become a popular technique because it indicates 
good results for modeling speech acoustics. Many studies 
show that neural network based HMMs significantly 
outperform Gaussian mixture model based HMMs. In this 
study, starting from a DNN trained using cross-entropy, 
sequence discriminative training is then applied based on the 
state level minimum Bayesian risk criterion (sMBR) [22]. 
sMBR’s objective function is explicitly designed to minimize 
the expected error corresponding to state labels, but we 
minimize the cross-entropy at the frame-level. We build 
DNNs by using five hidden layers and 2100 neurons (the 
structure is 300-2100-2100-2100-2100-2100-8070) (Fig. 2). 
DNN’s input features are obtained by splicing together 15 
frames (seven on each side of the current frame) and 
projected down to 300 dimensions using LDA. To better fit 
new speakers and environments, DNN acoustic models have 
been further adapted for specific talks using speaker adaptive 
training. Due to the limited amount of data in each talk, an 
efficient and effective method of speaker adaptive training of 
DNN models is only to adapt the middle layer (the third 
hidden layer). Speaker adaptation for DNN is difficult. In 

 

Figure 1: Illustration of the automatic segmentation of audio 
data. 

Table 1: Details of acoustic training data. 

Name Data Type Hours 

TED - Lecture  167.8 

HUB4 LDC97S44, LDC98S71 Broadcast    62.9 
WSJ LDC93S6B, LDC94S13B Read    81.1 

 



most studies, a speaker independent DNN (SI-DNN) is first 
trained. Then a speaker adaptation DNN is done by retraining 
the DNN parameters for different speakers either on all layers 
or some specific layers in the DNN [23, 24]. 

In this study, we propose a new speaker adaptive DNN 
training framework (SAT-DNN). We first assume that 
speaker specific processing is done in one layer in the DNN. 
All other layers are related to the speaker independent 
processing. Based on this assumption, we constructed a DNN 
with one layer as a speaker dependent layer, and the other 
layers are shared cross all speakers. In the DNN training, the 
parameters related to the speaker dependent layer are 
modified for each speaker while the parameters for all the 
shared layers are updated for all speakers. Explicitly 
specifying one layer as a speaker dependent layer in training 
focuses the training much more on speaker adaptation in 
DNN. 

3.3. N-best ROVER 

We considered a combination of two subsystems of MMI and 
SGMM in last year’s evaluation [25]. This year, we built six 
subsystems using three types of acoustic models with two 
types of acoustic features. We integrated multiple 
complementary features and models for a better performance 
(Fig. 3). Several methods can be used to combine different 
recognition results. One popular approach is called recognizer 
output voting error reduction (ROVER) [26, 27]. Cui et al. [5] 
applied ROVER as a decision committee that votes for the 
labels of unlabeled data by cross validation. The combination 
can be carried out at the text output level as an n-best ROVER 
by output voting. We combine all decoding directories by 
composing the lattices. In this paper, different combination 
weights are applied to MMI, SGMM and DNN subsystems 
with 0.25, 0.25, and 0.5, respectively. 

3.4. Language Model Adaptation and RNN Rescoring 

We used the CMU pronouncing dictionary which has 133.3K 
words. We extended 39 phones of the dictionary to a 336 
monophone set based on the accent and position information. 
The language models (LM) are modified Kneser-Ney 
smoothed 4-gram LMs trained on official data using the 
SRILM toolkit [28]. We used two different pruning 4-gram 

LMs in our experiments. The small 4-gram LM has 212 MB, 
and the big 4-gram LM has 9.6 GB and its perplexity is 115.4. 
Due to hardware and software limits, speech is decoded using 
the small 4-gram LM and rescored using the big 4-gram LM 
on MMI and SGMM subsystems. We use the first pass 
decoding results to adapt the language models that are used 
for second pass decoding [29]. In addition to conventional 4-
gram LMs, we also applied a recurrent neural network (RNN) 
based LM [30] to rescore the n-best results. The sigmoidal 
recurrent network was built with the RNN-LM toolkit [31]. 

3.5. NICT SprinTra Decoder 

In this paper, the ASR decoding process was based on 
weighted finite state transducers (WFSTs) [32], which 
integrate the acoustic and language models at the lattice level. 
We used the NICT SprinTra decoder, which has two major 
advantages [33]. First, the NICT SprinTra has smaller 
memory requirement and shows much faster decoding speed 
than the Kaldi decoder. Both NICT SprinTra and Kaldi use 
OpenFST 4  tools and library [34], but we use different 
structures to build the decoding graph. We also computed the 
so-called real-time (RT) factor. On the small 4-gram LM, 
SprinTra’s decoding time was about 0.729×RT measured on 
an Intel Xeon CPU at 2.6GHz. This is better than the 
1.023×RT of Kaldi and about a 30% difference in decoding 
time. Running on the big 4-gram LM, NICT SprinTra is ten 
times faster than Kaldi. Second, since the NICT SprinTra 
decoder decodes speech using the one pass method without 
language model rescoring, it is more accurate than decoding 
using language model rescoring. The word error rates vary 
from 0.1% to 0.3% between NICT SprinTra and Kali. This 
also denotes the gain using the big 4-gram LM decoding or 
rescoring. 

4. Experiments 

4.1. Training of Different Acoustic Data Sets 

We experimented on the IWSLT 2013 ASR English test data 
set, which contained 4.5 hours of lecture speech, with 28 talks 
including 14 males and 14 females. There were at least eight 
non-native speakers (four males and four females) and one 
child. The effect of reverberation can be found in ten lectures. 
Non-native speech may be the main reason for the decrease of 
recognition accuracy. System performance was assessed 
using Word Error Rate (WER). Table 2 shows the results of 
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Figure 3: The combination of multiple systems for speech 

recognition using ROVER. 
 

speaker 
data

Figure 2: Illustration of speaker adaptive training of deep 
neural network models. 

 



the MFCC-DNN subsystem using different training data sets. 
All results were conducted on the entire lecture without any 
segmentation. Our experiments indicated that more data 
improved performance. Only the TED training was not good 
enough to recognize the TED speech of the IWSLT 2013 
ASR English test data set. We achieved 15.7% WER using 
TED+HUB4+WSJ for the single MFCC-DNN subsystem, 
although HUB4 and WSJ were different types of speech from 
TED. We used the 15.7% WER result as the baseline in the 
following experiments. 

4.2. Step-by-Step Improvements 

Based on an MFCC-DNN baseline of 15.7% WER, Table 3 
summarizes the step-by-step WER reductions with our 
proposed methods. First, the WER can be reduced to 14.8% 
using six ROVER subsystems. Due to error propagation and 
non-speech segments, the entire lecture decoding indicated 
poor performance. Adding an automatic segmentation 
technique reduced the WER from 14.8% to 14.5%, or 3.4% 
relative WER reduction. In addition, WER reductions of 1.4% 
and 4.3% were achieved for LM adaptation and SAT on DNN. 
Both adaptation methods were used to adjust models to better 
fit new speakers and environments. Our proposed methods 
offered more than 10% WER reduction on average. Our best 
result was 13.5% WER on the IWSLT 2013 ASR English test 
data set. Note that the application order of these techniques 
impacted the gain. For example, to get good speech 
transcriptions for adaptation, the LM adaptation technique is 
based on automatic segmentation results of audio data and six 
ROVER subsystems. In addition, the single MFCC-DNN 
subsystem indicated about 1.0% absolute WER reduction 
using the automatic segmentation of audio data, LM 
adaptation, and SAT on DNN. 

4.3. Subsystems and ROVER Results 

Table 4 shows the speech recognition evaluation of a 
combination of multiple features and models. Our 
experiments suggest the following observations. First, the 
MFCC and PLP features indicated similar results in most 
cases. Second, we evaluated the results of individual 
subsystems (1S). The DNN acoustic models significantly 

outperformed SGMM and MMI. Even the SGMM and MMI 
performances were much worse than DNN, and a 
combination of six subsystems (6S) further reduced the WER 
using ROVER. Compared with the 13.5% WER of six 
ROVER subsystems, the best result of the single MFCC-
DNN system was 14.0% WER. The ROVER result was about 
13.9% if we only considered MFCC features on three 
acoustic models (3S). Interestingly, we can obtain 13.9% 
WER using ROVERs of MFCC-DNN and PLP-DNN. 

4.4. Summary Results 

Table 5 indicated the detailed results of each talk on the 
IWSLT ASR 2013 English test data set. Non-native speakers 
have the higher error rate in most cases. The WER is lower 
than 5% in the best condition but over 30% in the worst 
condition. Due to child voices and non-native speakers, 
talkid1699 denoted the worst recognition result. Furthermore, 
the IWSLT ASR 2011 (tst2011) and 2012 (tst2012) test data 
sets were used as progressive tests. There are eight and 11 
talks in tst2011 and tst2012, respectively. Compared with this 
year’s result of 13.5% WER, 7.7% and 8.2% WER results 
were achieved for tst2011 and tst2012 using our proposed 
approaches. 

5. Conclusions 

In this study, we propose a combination of multiple features 
and models for lecture speech recognition. We build six 
subsystems using three types of acoustic models (MMI, 
SGMM, and DNN) with two types of acoustic features 
(MFCC and PLP). The n-best ROVER denotes a good 
solution for a subsystem combination. We discover 
techniques of discriminative training and the adaptation of 
both acoustic and language models show great contributions 
to ASR. We propose the automatic segmentation of audio 
data, language model adaptation, speaker adaptive training of 
DNN models, and NICT SprinTra decoder. The results of our 
proposed methods demonstrate good performance 
improvement on the IWSLT 2013 ASR data set. There is still 
room for improvement when considering both good and a 
large amount of data. 
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