

FBK's Machine Translation Systems for IWSLT 2012's TED Lectures

Nick Ruiz, Arianna Bisazza Roldano Cattoni, Marcello Federico

Outline

- Common components
- Arabic-English
- Turkish-English
- Dutch-English
- Conclusion

Fill-Up

(Bisazza et al., 2011; Nakov, 2008)

Cross-Entropy LM Filtering

(Moore & Lewis, 2010)

- Cross-Entropy ranking of sentences in a out-of-domain corpus against TED
- Incrementally add sentences to minimize perplexity on a development set
- Also applicable to parallel corpora by filtering on target language

Cross-Entropy LM Filtering

(Moore & Lewis, 2010)

Cross-Entropy Filtering on English Corpora

Number of Words

Filtering tuned on TED dev2010 data

Outline

- Common features
- Arabic-English
- Turkish-English
- Dutch-English
- Conclusion

Arabic-English

- Early Distortion Cost
- Hybrid Language Modeling
- Phrase/Reordering Fill-Up (TED+MultiUN)
- Mixture LM (TED, Gigaword, WMT News)

Early Distortion Cost

(Moore & Quirk, 2007)

- Improved distortion penalty
- Anticipates gradual accumulation of total distortion cost
 - Incorporates an estimate of future jump's cost
 - Same distortion penalty as standard distortion cost over a complete hypothesis
- Benefits: Improves comparability of translation hypotheses with the same number of covered words

Early Distortion Cost

(Moore & Quirk, 2007)

Early Distortion Cost

(Moore & Quirk, 2007)

DL	DC	tst2010
6	std	26.12/6.514
8	std	25.95/6.460
8	edc	26.31/6.551

Hybrid Language Modeling

(Bisazza & Federico, 2011)

 Replace bottom 25% of tokens with POS tags – corresponds to 2% of types

In-domain target data

Now you **VB**, but that **NN** has kind of a **NN** to it, right. And I think the reason it has...

...a sting is because thousands of years of history don 't reverse themselves without a lot of pain.

...a **NN** is because **NNS** of years of history don 't **VB PP** without a lot of **NN**.

Allows for the construction of 10-gram LMs

Arabic-English results

	LM	DL	tst2011	tst2012
P	MixAll.4g +TED.Hybrid10g		25.46/6.232	27.86/6.881
C_1	MixAll.4g	8 edc	25.19/6.205	27.74/6.903
C ₂	MixFiltered.5g +TED.Hybrid10g		25.13/6.190	27.54/6.828

Outline

- Common features
- Arabic-English
- Turkish-English
- Dutch-English
- Conclusion

Turkish-English

- Morphological Segmentation
- Hierarchical phrase-based decoding
- Mixture LM

Morphological Splitting

Rule-based vs. Unsupervised segmentation

Distortion Limit	Distortion Calc	Seg	tst2010
15	std	MS6	13.61/5.280
15	std	MS15	14.38/5.273
15	std	Morfessor	13.45/5.080

- MS6: Nominal suffixes (case + possessive) only
- MS15: Nominal and verbal suffixes
 - e.g. person-subject, negation, passive, etc.
- Morfessor:
 - Concatenates non-initial "morphs" into word endings
 - Could perhaps be trained with better configurations

Morphological Splitting

FONDAZIONE BRUNO KESSLER

Hierarchical Phrase-Based Decoding

- Better able to handle mismatches in predicateargument structure between languages
- Robust with respect to long-distance reordering

Turkish (source)	English (target)	Rule
[X] söyle+Verb+Fut	will say [X]	SOV → SVO
[X] +Dat bak	look at [X]	S Comp V → S V Comp
[X] +Dat baktı	looked at [X]	S Comp V → S V Comp

Turkish-English results

	System	Seg	tst2011	tst2012
Р	Hierarchical	MS15	17.24/5.560	17.15/5.702
C ₁	Phrase-based (dl=15, edc)	MS15	15.45/5.289	15.24/5.145

Outline

- Common features
- Arabic-English
- Turkish-English
- Dutch-English
- Conclusion

Dutch-English

- Language properties
 - Similar to German
 - SVO for main clauses, SOV for subordinates
 - Noun casing, but less than German
 - Only "gendered" and "neutered" nouns/determiners
 - Compound nouns and verbs

Dutch-English

- Compound Splitting
- Phrase/Reordering Fill-Up (TED+Europarl)
- Mixture LM

Compound Splitting

(Koehn & Knight, 2003)

- Preliminary experiments on German, carried over to Dutch
- Moses Compound Splitting tool
 - Split candidate words into tokens already existing in a corpus' vocabulary
 - Default (normal) setting: min 4 characters per split
 - Aggressive setting: reduce minimum to 2 chars
 - e.g. "aanvragen", "afvallen"

Compound Splitting

He said he didn 't know . He would ask around .

Hij zei dat hij het niet wist . Hij zou

rondvragen

(Normal/Aggressive splitting)

rond

vragen

And he said that he did not know. He would ask around.

Compound Splitting

Dutch-English results

	Splitter	tst2011	tst2012
Р	Normal	36.11/7.921	32.68/7.743
C_1	Normal	36.23/7.946	32.48/7.722
C_2	Aggressive	35.82/7.881	32.68/7.725

P: 4-gram Mix LM

• C1: 5-gram Mix LM

C2: 6-gram Mix LM

Dutch-English results

	Splitter	tst2011	tst2012
Р	Normal	36.11/7.921	32.68/7.743
C_1	Normal	36.23/7.946	32.48/7.722
C_2	Aggressive	35.82/7.881	32.68/7.725

• P: 4-gram Mix LM

• C1: 5-gram Mix LM

C2: 6-gram Mix LM

Conclusion

- We present several ideas for Arabic-, Turkish-, and Dutch-English machine translation
- Contributions:
 - Early distortion limit (Arabic, attempted w/ Turkish)
 - Morphological Segmentation (Turkish)
 - Compound Splitting (Dutch)
 - Corpora Filtering