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Abstract
This paper describes our English Speech-to-Text (STT) sys-
tem for the 2011 IWSLT ASR track. The system consists of
2 subsystems with different front-ends—one MVDR based,
one MFCC based—which are combined using confusion net-
work combination to provide a base for a second pass speaker
adapted MVDR system. We demonstrate that this set-up pro-
duces competitive results on the IWSLT 2010 dev and test
sets.

1. Introduction
In this paper we describe our English Speech-to-Text (STT)
system with which we participated in the 2011 IWSLT STT
evaluation [1]. Our system makes use of system combination
and cross-adaptation, by utilising acoustic models which are
trained with different acoustic front-ends.

The system has been derived from our 2010 English
Quaero ASR evaluation system, by taking acoustic mod-
els out of that system and combining them with a language
model that has been specifically tailored to the IWSLT lec-
ture task.

1.1. IWSLT

The goal of the International Workshop on Spoken Language
Translation (IWSLT) evaluation campaign is the translation
of TED Talks (http://www.ted.com/talks), short 5-25min pre-
sentations by people from various fields related in some way
to Technology, Entertainment, and Design (TED). In order
to evaluate different aspects of spoken language translation
IWSLT offers 4 evaluation tracks, the ASR and MT tracks are
traditional evaluations measuring the word error rate (WER)
of ASR systems and the quality (in BLEU) of the MT sys-
tems when translating the transcripts. In the SLT track the
performance of MT systems on ASR output is evaluated and
the SC track evaluates the performance of system combina-
tion techniques.

The rest of this paper is structured as follows. Section 2
provides a description of two acoustic front-ends used in our
system. An overview of the techniques and data used to build
our acoustic models is given in Section 3. We describe the

language model used for this evaluation in Section 4 and our
decoding strategy is explained in Section 5.

2. Front-ends
We trained systems for two different kinds of acoustic front-
ends. One is based on the widely used Mel-frequency Cep-
stral Coefficients (MFCC) obtained from a discrete Fourier
transform and the other on the warped minimum variance
distortionless response (MVDR). The second front-end re-
places the Fourier transformation by a warped MVDR spec-
tral envelope [2], which is a time domain technique to esti-
mate an all-pole model using a warped short time frequency
axis such as the Mel scale. The use of the MVDR elimi-
nates the overemphasis of harmonic peaks typically seen in
medium and high pitched voiced speech when spectral esti-
mation is based on linear prediction.

For training, both front-ends have provided features ev-
ery 10 ms. During decoding this was changed to 8ms after
the first stage. In training and decoding, the features were
obtained either by the Fourier transformation followed by a
Mel-filterbank or the warped MVDR spectral envelope.

For the MVDR front-end we used a model order of 22
without any filter-bank since the warped MVDR already pro-
vides the properties of the Mel-filterbank, namely warping
to the Mel-frequency and smoothing. The advantage of this
approach over the use of a higher model order and a linear-
filterbank for dimensionality reduction is an increase in res-
olution in low frequency regions which cannot be attained
with traditionally used Mel-filterbanks. Furthermore, with
the MVDR we apply an unequal modelling of spectral peaks
and valleys that improves noise robustness, due to the fact
that noise is mainly present in low energy regions.

Both frond ends apply vocal tract length normalization
(VTLN) [3]. For MFCC this is done in the linear domain, for
MVDR in the warped frequency domain. The MFCC front-
end uses 13 cepstral coefficients, the MVDR front-end uses
15. The mean and variance of the cepstral coefficients were
normalized on a per-utterance basis. For both front-ends 15
adjacent frames were combined into one single feature vec-
tor. The resulting feature vectors were then reduced to 42
dimensions using linear discriminant analysis (LDA).
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3. Acoustic Modeling
For a given front-end our standard method of training an
acoustic model requires first performing LDA to reduce the
input dimension. All models are context dependent quin-
phone systems with three states per phoneme, and a left-to-
right topology without skip states. All models use 6,000 dis-
tributions and codebooks. The models were trained using
incremental splitting of Gaussians training (MAS), followed
by Semi-Tied Covariance (STC) [4] training using one global
matrix, and 2 iterations of Viterbi training. All models use
vocal tract length normalization (VTLN). In addition to that
feature space constraint MLLR (cMLLR) speaker adaptive
training (SAT) [5] was applied on top.

We improved the initial acoustic models further with the
help of Maximum Mutual Information Estimation (MMIE)
training [6]. We applied MMIE training firstly to the models
after the 2 Viterbi iterations, and secondly to the models after
the FSA-SAT training, taking the adaptation matrices from
the last iteration of the maximum likelihood FSA-training
and keeping them unchanged during the MMIE training.

3.1. Training Data

For acoustic model training we used a mix of data of several
types and from different sources:

• 80h of manually trancribed English European Parlia-
ment Plenary Session (EPPS) data provided by RWTH
Aachen within the TC-STAR project [7]

• 167h of unsupervised EPPS training material that had
been collected within TC-STAR by RWTH Aachen but
had not been manually transcribed

• 9.8h of data from the Translingual English Data data-
base [8]

• 140h of BroadCast News data from the HUB-4 corpus

• 50h of Quaero data

4. Language Modeling
A 4-gram case sensitive language model with modified
Kneser-Ney smoothing was built for each of the text sources
listed in Table 1. This was done using the SRI Language
Modelling Toolkit [9]. The transcripts of the IWSLT train-
ing data were cleaned and split into a 3,000k word training
set and a 593k word tuning set. The aforementioned lan-
guage models built from the text sources in Table 1 were in-
terpolated using interpolation weights estimated on the tun-
ing set resulting in a language model with 47,554k 2-grams,
277,442k 3-grams and 788,400k 4-grams. Even compressed
in an easy to load binary format our language model required
about 7.4 Gbytes of RAM. Our ASR system deals with this
by loading the language model into a region of shared mem-
ory and allows multiple decoder instances running on differ-
ent cores to access it. On a fully utilized 16 core compute

Text corpus Word Count sources
IWSLT training data transcripts 3 million 2
News (+news commentary) 2114 million 4
Parallel Giga Corpus 523 million 1
UN + Europarl documents 376 million 1
google Book Ngrams 1.12 bln ngrams 1
total 3016 million 9

Table 1: Language Model training data word count per cor-
pus and number of text sources included in corpus. The total
word count does not include the google Book Ngrams.

node for example the language model will only require about
0.5 GByte per instance.

4.1. Vocabulary Selection

To select the vocabulary the development data text was split
into a tuning set and a test set with each containing approx-
imately half the text of every show. For each of our text
sources (see Table 1) we built a Witten-Bell smoothed un-
igram language model using the union of the text sources’
vocabulary as the language models’ vocabulary (global vo-
cabulary). With the help of the maximum likelihood count
estimation method described in [10] we found the best mix-
ture weights for representing the tuning set’s vocabulary as a
weighted mixture of the sources’ word counts thereby giving
us a ranking of all the words in global vocabulary by their rel-
evance to the tuning set. The top 150k words were selected
as our vocabulary. Missing pronunciations were generated
using Festival [11].

5. Decoding Strategy
Our decoding strategy is based on the principal of system
combination and cross-system adaptation. System combi-
nation works on the principle that different systems com-
mit different errors that cancel each other out. Cross-system
adaptation profits from the fact that the unsupervised acous-
tic model adaptation works better when performed on output
that was created with a different systems that works approxi-
mately equally well [12]. The set-up used for our evaluation
system consists of two stages. In the first stage two systems
are being run and in the second stage only one. The two
systems’ outputs of the first stage is combined with the help
of confusion network comination (CNC) [13]. On this out-
put the acoustic model of the second stage is then adapted
using Vocal Tract Length Normalization (VTLN) [3], Max-
imum Likelihood Linear Regression (MLLR) [14], and fea-
ture space constrained MLLR (fMLLR) [15].

The segmentation of the individual shows into sentence
like units was already given by the evaluators. For the sake
of simplicity we only assumed one speaker per lecture and
did not perform any automatic speaker clustering.

Table 2 shows the word error rates of the different stages
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Figure 1: Decoding Strategy

system dev2010 test2010
MVDR 24.6% 22.8%
MFCC 25.0% 23.1%
CNC 24.9% 22.0%
MVDR 2nd pass 21.2% 19.7%

Table 2: Results on the 2010 test and dev set.

on the IWSLT 2010 dev and test set for the lecture task.

6. Conclusion
In this paper we described our English speech-to-text system
with which we participated in the 2011 IWSLT evaluation on
the lecture task. While the acoustic model was unchanged
from last year’s system, we retrained the language model in
order to fit the constraints for this year’s evaluation. Our sys-
tem utilizes a multi-pass strategy with system combination.
On the 2010 development set for the IWSLT lecture task our
system achieves a WER of 21.2%, and a WER of 19.7% on
the 2010 test set.

7. Acknowledgements
This work was realized as part of the Quaero Programme,
funded by OSEO, French State agency for innovation. ‘Re-
search Group 3-01’ received financial support by the ‘Con-
cept for the Future’ of Karlsruhe Institute of Technology
within the framework of the German Excellence Initiative.

8. References
[1] M. Federico, L. Bentivogli, M. Paul, and S. Stüker,
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