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Abstract

Simultaneous translation is the challeng-
ing task of listening to source language
speech, and at the same time, produc-
ing target language speech. Human inter-
preters achieve this task routinely and ef-
fortlessly, using different strategies in or-
der to minimize the latency in produc-
ing target language. Toward modeling the
human interpretation process, we propose
a novel input segmentation method using
the phrase alignment structure of the lan-
guage pair. We compare and contrast three
incremental decoding and two different in-
put segmentation strategies, including our
proposed method, for simultaneous trans-
lation. We present accuracy and latency
tradeoffs for each of the decoding strate-
gies when applied to audio lectures from
the TED collection.

1 Introduction

In simultaneous speech translation, it is important
to keep the delay between a source language chunk
and its corresponding target language chunk (re-
ferred to as ear-voice span) minimal in order to
continually engage the listeners. Simultaneous hu-
man interpreters are able to generate target speech
incrementally with very low ear-voice span by us-
ing a variety of strategies (Chernov, 2004) such
as anticipation, cognitive and linguistic inference,
paraphrasing, etc. However, current methodolo-
gies for simultaneous translation are far from be-
ing able to exploit or model such complex phe-
nomena. Quite often, models trained for consec-
utive translation are repurposed for incremental
translation.

One of the first attempts at incremental text
translation was presented by Furuse and Iida
(1996) using a transfer-based MT approach and
more recently by Sankaran et al. (2010) us-
ing a phrase-based approach. On the other

hand, incremental speech translation has been ad-
dressed in simultaneous translation of lectures and
speeches (Hamon et al., 2009; Fügen et al., 2007).
Some previous work (Cettolo and Federico, 2006;
Rao et al., 2007; Matusov et al., 2007) addressed
source text (reference or ASR hypothesis) seg-
mentation strategies in speech translation. Con-
straining the search process during decoding to be
monotonic (Tillmann and Ney, 2000) is one way
of reducing latency and promoting incrementality.
However, finding the optimal segmentation of the
complete source string using dynamic program-
ming is still slow.

By shifting the focus of the task to appropriate
segmentation of incoming text, consecutive trans-
lation models have been used with good success
to simulate incremental translation, such as incre-
mental speech-to-speech translation (Bangalore et
al., 2012) which focuses on translating the par-
tial hypotheses generated based on the silences
detected by a speech recognizer. However, stud-
ies on human interpreters show that in only a few
cases the interpreters encode the chunks of speech
as uttered in the source: the mean proportion
of silence-based chunking by interpreters is 6.6%
when the source is English, 10% when it is French,
and 17.1% when it is German (Pöchhacker, 2002).
As an alternative to silence-based segmentation, in
this work, we propose a novel approach for seg-
menting the incoming text that exploits the align-
ment structure between words (phrases) across a
language pair. We compare the two segmenta-
tion methods in three different decoding strategies.
We perform our investigation within an English-
French phrase-based speech translation system
trained and tested on TED talks released as part
of the IWSLT evaluation (Federico et al., 2011).

2 Non-incremental and Incremental
Translation

The objective in machine translation is to translate
a source sentence f = fJ

1 = f1, · · · , fJ into tar-
get sentence e = eI1 = e1, · · · , eI . Given the in-
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put sentence f , we choose the sentence with high-
est probability among all possible target sentences.
Since, it is intractable to estimate the conditional
probability distribution Pr(e|f) over sentences, we
simplify the problem as mapping between senten-
tial sub-units (words or phrases) and represent the
correspondence across these units using an align-
ment structure, a = aJ

1 = a1, · · · , aJ .

ê(f) = arg max
e

{∑
a

Pr(e,a|f)

}
(1)

In an incremental translation framework, we do
not observe the entire string f . Instead, we ob-
serve segments of the string. A sentence pair
(fJ

1 , e
I
1) can be segmented into K phrase pairs

s = sK
1 = s1, · · · , sK ,

sk = (ik; bk, jk) ∀ k = 1, · · · ,K (2)

where ik is the end position of the word in target
phrase k and (bk, jk) represent the start and end
positions of the source phrase aligned with the tar-
get phrase k. To achieve the highest monotonic-
ity in incremental translation, we may restrict the
decoding problem to strictly generate monotonic
phrases by satisfying the constraint, bk = jk−1+1
∀ k = 1, · · · ,K. We also constrain the source
and target phrases to be ordered monotonically,
meaning that if a source phrase at position j is
translated to a target phrase at position i , then a
source phrase at position j′ > j will be translated
to a target phrase at position i′ > i. We call such
phrase pairs to be a monotonic phrase alignment
for a sentence pair. Figure 1 shows an example of
a word alignment matrix, all possible phrase pairs,
and all possible monotonic phrase alignments (4
alignments) for the parallel sentences e-f , shown
with different line styles. For instance, the mono-
tonic phrase alignment shown with dark lines has
three phrase pairs s1 = (0; 0, 0), s2 = (3; 1, 3),
s3 = (4; 4, 5). Grey dotted-line phrases are not
monotonic. In Section 3.2 we present a source sen-
tence segmentation approach that makes use of the
monotonic phrase alignments information.

3 Segmentation of ASR output for MT

In this section, we describe two alternative meth-
ods to split the input sentence into partial segments
for incremental translation. Since the ASR com-
ponent is not the main focus of our study, we do
not explain the ASR system we used in detail.
Our ASR system uses context-dependent HMMs
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Figure 1: Word alignment matrix for two parallel
sentences and their monotonic phrase alignments.

with Vocal Tract Length Normalization (VTLN)
to build its acoustic model from 1119 talks we har-
vested from the TED website. We used the AT&T
FSM toolkit (Mohri et al., 1997) to train a tri-
gram language model for English from the permit-
ted data in IWSLT 2011 evaluation. We reached
78.8% and 77.4% ASR word accuracies on the
IWSLT dev2010 and tst2010 sets respectively.

3.1 Silence-based Segmentation

The output of automatic speech recognition in-
cludes silence information that is typically dis-
carded before passing the source string into the
machine translation component. We use any si-
lence, irrespective of the frame length, as a seg-
mentation marker. The average length of a seg-
ment using this strategy is 4.28±3.28 words.

3.2 Monotonic Phrase-Based Segmentation

In this section, we present an approach to split the
source sentence into segments that can be mono-
tonically translated to the target language. To pre-
pare the training data for our segmentation model,
we extracted monotonic phrase alignments from
the set of all possible phrase alignments of a sen-
tence pair in the word alignment matrix produced
by GIZA++ using dynamic programming. We
used 90% of the total parallel sentences and their
extracted monotonic phrase alignments as training
set, and reserved the rest 10% as development set.
To get more meaningful alignments, we restricted
those to the alignments of length at least 4.

Having the above training data, we trained a bi-
nary classifier, which was applied independently
at each word in the sentence, to decide whether
that word is a segment boundary or not. We used a
discriminative log-linear model to train the classi-
fier and we used the perceptron algorithm (Collins,
2002) to train the model parameters. Fisher and
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Roark (2007), successfully used a discriminative
log-linear model using the perceptron algorithm
for automatic discourse segmentation task.

The task is to learn a mapping from inputs
x ∈ X to outputs y ∈ Y , where X is the set
of sentences and Y is the set of possible mono-
tonic alignments of the sentences. Given a set
of training examples (xi, yi), a function GEN(x)
that enumerates a set of possible monotonic align-
ments of x, ᾱ ∈ Rd a parameter vector, and rep-
resentation Φ that maps each (x, y) ∈ X × Y to a
feature vector Φ(x, y), there is a mapping from an
input x to an output F (x) defined by the formula:

F (x) = arg max
y∈GEN(x)

Φ(x, y) · ᾱ (3)

The model learns the parameter values ᾱ during
the training, and the decoding algorithm searches
for the y that maximizes 3. The feature vec-
tor Φ(x, y) represents arbitrary features of the
alignments. In our study, the feature set con-
tains word, position of the word in the sentence,
and segment length. For example, one feature
might be (word=’cat’, position=8, seg length=3,
seg boundary = true), which returns 1 if the cur-
rent word is ’cat’, it is the 8th word in the sentence,
it is the 3rd word in the segment, and it is marked
as a segment boundary, and returns 0 otherwise.

We evaluated our segmentation model with pre-
cision, recall and F1-score, defined in Eq. 4. Sup-
pose a sentence of length n hasm segment bound-
aries in the gold standard and k segment bound-
aries in the system output. Assume t out of k
guessed boundaries are correct. Since we might
have multiple valid segmentations for a sentence
in our training data, we chose the gold standard to
be the valid segmentation which has the minimum
Levenshtein edit distance with the system output.

P =
t

k
,R =

t

m
, F1 =

2PR

P +R
=

2t

k +m
(4)

We achieved P = 70.51%, R = 91.52%, and
F1 = 75.89% on the development set. The av-
erage length of a segment using this strategy is
6.56±4.73 words.

4 Decoding Strategies

We used three different decoding strategies for
translating the ASR outputs. We tried each of
these three techniques for incremental as well as
regular (non-incremental) translation.

First, we used the Moses toolkit (Koehn et al.,
2007) for statistical machine translation. Mini-
mum error rate training (MERT) was performed
on the development set (dev2010) to optimize the
feature weights of the log-linear model used in
translation. During decoding, the unknown words
were preserved in the hypotheses. The parallel text
for building the English-French translation model
– around 6.3 million parallel sentences – was ob-
tained from several corpora: Europarl (Koehn,
2005), jrc-acquis corpus (Steinberger et al., 2006),
Opensubtitle corpus (Tiedemann and Lars Ny-
gaard, 2004), WMT11 Gigaword (Callison-Burch
et al., 2011), WMT11 News (Callison-Burch et al.,
2011), and Web crawling (Rangarajan Sridhar et
al., 2011) as well as human translation of propri-
etary data.

Second, we used a finite-state implementation
of translation without reordering. We represent
the phrase translation table as a weighted finite
state transducer (FST) and the language model as
a finite-state acceptor. The weight on the arcs of
the FST is the dot product of the MERT weights
with the translation scores. Our FST-based trans-
lation is the equivalent of phrase-based translation
in Moses without reordering.

In addition to Moses and FST decoders, we used
the incremental beam search decoder introduced
by Sankaran et al. (2010) for translating in regular
and incremental modes. This decoder modifies the
beam-search decoding algorithm for phrase-based
MT aiming at efficient computation of future costs
and avoiding search errors. In Section 6 we show
the results of translating our data using these three
decoding strategies, referred to as Moses, FST and
IncBeam decoders.

5 Data

In this work, we focus on the speech translation of
TED talks. Over the past couple of years, the Inter-
national Workshop on Spoken Language Transla-
tion (IWSLT) has been conducting the evaluation
of speech translation on TED talks for English-
French. We leverage the IWSLT TED campaign
by using identical development (dev2010) and test
data (tst2010).

6 Experiments and Results

We compare the results in terms of accuracy of
translation and latency of generating partial out-
puts. We translated and evaluated each of 11 test
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sets independently and we report the average val-
ues. In incremental mode, we ran Moses with
continue-partial-translation option which enables
chunk translation to be conditioned on history. In
contrast, FST performs a chunk-wise translation
which is independent of history.

Moses FST IncBeam

Regular
ASR 18.67 18.11 17.73
Transcript 22.66 22.11 21.32

Incr. silence seg. ASR 17.41 16.88 17.33
Incr. monotone seg. ASR 17.64 17.09 17.40

a) Reference translation has punctuations
Moses FST IncBeam

Regular
ASR 23.04 22.58 22.00
Transcript 28.38 27.75 26.63

Incr. silence seg. ASR 21.66 21.12 21.38
Incr. monotone seg. ASR 21.69 21.26 21.48

b) Reference translation has no punctuations

Table 1: Accuracy (BLEU) of English-French MT
models on reference transcripts and ASR outputs

Table 1 shows translation accuracies in terms of
BLEU scores. We consider the regular decoding
as the baseline. Since we know the entire source
input in advance, our baseline, obviously, has the
highest accuracy but also the highest latency. For
the baseline, we translated the ASR output and the
reference transcript of the utterance. As shown in
the ”Regular” row, the accuracy on the ASR output
drops by around 4% compared to that on the refer-
ence text. Since ASR outputs and the training data
for our translation model do not contain punctua-
tions, we also measured the accuracy against the
references with removed punctuations.

Incremental translation of monotone-based seg-
ments gets a slightly higher accuracy than the
silence-based segments for all the three decoders.
In both regular and incremental decoding settings,
the BLEU scores of Moses are higher than other
two decoders. The FST decoder is better than
the IncBeam decoder in regular setting; on the
other hand the performance of the IncBeam de-
coder is better than the FST decoder and com-
parable to Moses in the two incremental settings.
Both Moses and IncBeam decoders use reordering
knowledge as well as history of translation in the
incremental decoding settings, whereas the FST
decoder lacks the latter.

In Table 2, we present the average speed of
translating ASR output chunks. For each sen-
tence the speed is calculated as the total time taken
to translate the chunks divided by the number of

Moses FST IncBeam
Regular 2.35 2.06 17.68
Incr. silence seg. 0.68 1.75 6.43
Incr. monotone seg. 0.87 1.59 8.60

Table 2: Speed of generating target chunks (sec)

chunks of the sentence. The speed reported in the
table is then calculated by taking the average of
speeds of all sentences in the test set. This mea-
surement provides a good indication of latency in
real-time translation. We note that we do not com-
pare the delay of the decoders with each other due
to differences in implementation and invoking the
decoders, instead we compare the delays of each
decoder by itself in three modes of translation.

Comparing the accuracy values in Table 1 and
latency values in Table 2 shows that in incremental
decoding using the Moses and IncBeam decoders,
we get some gain in accuracy but we loose some
speed in monotone-based model compared to the
silence-based model.

The interesting achievement is in incremental
translation of monotone-based segments using the
FST decoder. In this condition, we not only
achieve an improvement in accuracy, but we also
get a reduction in latency compared to the transla-
tion of silence-based segments. When translating
each chunk independently, a meaningful segmen-
tation of the input toward increasing the mono-
tonicity yields a better performance in simultane-
ous translation than a silence-based segmentation.

7 Conclusions

In this paper we introduced a novel incoming text
segmentation approach aiming at increasing the
monotonicity of simultaneous translation. Using
our proposed framework, we could achieve a point
in segmenting and decoding the ASR output which
enables simultaneous speech translation with a
good accuracy/latency trade-off, even without re-
lying on the history of translation. For future work
we plan to improve our monotone-based segmen-
tation model by using richer feature sets which for
example include syntactic knowledge of the lan-
guage. We are also interested in exploring our
techniques on translating the languages with dif-
ferent word orders such as English/Japanese.
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