
Toward Synchronous Extensible Dependency Grammar

Michael Gasser
School of Informatics and Computing

Indiana University
Bloomington, Indiana USA 47405
gasser@cs.indiana.edu

Abstract

Extensible Dependency Grammar
(XDG; Debusmann, 2007) is a flex-
ible, modular dependency grammar
framework in which sentence analyses
consist of multigraphs and processing
takes the form of constraint satisfac-
tion. This paper shows how XDG
lends itself to grammar-driven machine
translation and introduces the machin-
ery necessary for synchronous XDG.
Since the approach relies on a shared
semantics, it resembles interlingua MT.
It differs in that there are no separate
analysis and generation phases. Rather,
translation consists of the simultaneous
analysis and generation of a single
source-target “sentence”.

1 Introduction

Despite the impressive advances in statistical ma-
chine translation (SMT) in the last 20 years, rule-
based machine translation remains appropriate
when the goal is publication quality translation of
documents, especially within a restricted domain
(Ranta et al., 2010). Furthermore, SMT is ruled
out when bilingual corpora are unavailable for the
language pairs of interest.

Our long-term goals are translation between
English and the Ethiopian languages Amharic and
Oromo and between Spanish and the Andean lan-
guage Quechua within several restricted domains
related to science and health. In addition to the

language-specific software that we are develop-
ing, all of it freely available, we plan to develop a
range of open-source tools that will enable other
developers to take on translation projects of this
sort involving under-resourced languages.

In search of a general purpose grammatical
framework, we settled on Extensible Dependency
Grammar (XDG), developed by Ralph Debus-
mann and colleagues (Debusmann et al., 2004;
Debusmann, 2007), because of its modular struc-
ture; its extensibility; and its simple, declarative
format. Dependency grammars have attracted
considerable attention within computational lin-
guistics in recent years due to their simplicity, the
ease of the integration of syntax and semantics,
and their handling of word-order variation and
long-distance dependencies. These advantages
apply to rule-based machine translation as well,
and dependency grammar is increasingly seen as
a viable and productive framework for RBMT
(see, for example, Bick, 2007; Čmejrek et al.,
2003; Diaconescu, 2004; Mel’čuk and Wanner,
2006). Among the various dependency grammar
frameworks, XDG has the disadvantage that it
has not been tested with wide coverage grammars
and unconstrained input (see Bojar (2005) for an
initial attempt at this task for Czech). However,
we feel that the XDG’s flexibility and its proven
capacity to handle complex syntactic constraints
outweigh this drawback, especially since our goal
is relatively small grammars for restricted input.

This paper proposes a way to integrate transla-
tion into XDG. After a brief overview of XDG,
Section 3 shows how it is possible to accommo-
date translation within the framework relatively

F. Sánchez-Mart́ınez, J.A. Pérez-Ortiz (eds.)
Proceedings of the Second International Workshop on Free/Open-Source Rule-Based Machine Translation, p. 3–10
Barcelona, Spain, January 2011. http://hdl.handle.net/10609/5643



simply with the addition of cross-lingual links be-
tween elements in the lexicons of the two lan-
guages. Section 4 illustrates the proposal with
a simple example based on small grammar frag-
ments for English and Amharic. Section 5 dis-
cusses the current status of our project. Section 6
concludes with a consideration of ongoing work.

2 Extensible Dependency Grammar

2.1 Dimensions and principles

Like other dependency grammar frameworks,
XDG is lexical; the basic units are words and
the directed, labeled arcs connecting them. In
the simplest case, an analysis (“model” in XDG
terms) of a sentence is a weakly connected, di-
rected graph over a set of nodes, one for each
word in the analyzed sentence and a distinguished
root node representing the end-of-sentence punc-
tuation. As in some other dependency frame-
works, XDG permits analyses at multiple lev-
els, known as dimensions, each corresponding to
some level of grammatical abstraction. For ex-
ample, one dimension could represent syntax, an-
other semantics. Two dimensions may also be re-
lated by an explicit interface dimension which has
no arcs itself but constrains how arcs in the related
dimensions associate with one another.

In the general case, then, an analysis of a sen-
tence is a multigraph, consisting of a separate
dependency graph for each dimension over a sin-
gle sequence of word nodes. For most languages,
syntax requires at least two dimensions, an imme-
diate dominance dimension responsible for syn-
tactic relations, including agreement, and a linear
precedence dimension responsible for word order.
For the sake of simplicity, the syntactic dimen-
sions are collapsed into a single syntax dimension
(SYN) in this paper. Likewise for semantics, mul-
tiple dimensions may be necessary, but in this pa-
per we confine ourselves to a single one (SEM),
corresponding closely to Debusmann’s predicate
argument dimension.

Figure 1 shows a possible analysis for the En-
glish sentence the water is contaminated on these
two dimensions. Arrows go from heads to de-
pendents (daughters) in the figure. On the SEM

dimension, we maintain the convention that only
content words participate in the representation.

That is, any grammatical words appearing in the
SYN dimension are effectively “deleted” in the
SEM dimension. Actual deletion is not possible
because of the constraint that the graph on each
dimension be connected. As shown in the figure,
“virtual deletion” is handled in XDG through the
use of special del arcs (Debusmann, 2007).

water is contaminated

root

sbj adjcomp

the

det

SYN

SEM

del
del

pat root

.

Figure 1: XDG analysis of an English sentence.

A grammatical analysis is one that conforms to
a set of constraints, each generated by one or an-
other principle. Each dimension has its own set
of principles, and all principles are defined in a
language-independent fashion. Some examples:

• Principles concerned with the structure of
the graph; for example, the Tree Principle,
which constrains the graph to be a tree
• The Valency Principle, governing the labels

on the arcs into and out of nodes
• The Agreement Principle, constraining how

features of certain words must match fea-
tures of other words
• The Agr Principle, constraining what values

the agreement features of a word can have
• The Order Principle, concerned with the or-

der of the words in the sentence
• The Linking End Principle, an interface di-

mension principle that associates arc labels
on one of the dimensions with arc labels on
the other.

2.2 The lexicon

An XDG grammar of a language consists of a set
of dimensions, each with its own set of principles
and arc labels, and a lexicon. As XDG is com-

4



pletely lexical, it is at the level of words that the
principles apply. That is, all specific grammatical
constraints are stored in word-level units.

The lexicon consists of a set of entries ar-
ranged in an inheritance hierarchy. At their most
specific, entries are associated with particular
wordforms such as contaminated. Higher up in
the hierarchy are entries associated with lexemes
such as CONTAMINATE. At the top of the hier-
archy are entries associated with lexical classes
such as verb (V).

Each entry specifies the more abstract entries
that it inherits from, if any, and one or grammati-
cal constraint specifications. A grammatical con-
straint specification has the following form.

dimension:
principle: constraint attributes

For example, consider the constraints that par-
ticipate in the Valency Principle. Entry 1 shows a
portion of the English transitive verb entry. The
entry includes a pointer to one parent entry (V)
and three valency constraints on the SYN dimen-
sion. The word requires outgoing subject (sbj)
and object (obj) arcs and an incoming root arc.1

(The “!” represents the requirement of exactly
one arc with the given label.)

Entry 1 English transitive verb
- name: V_T
classes: [V]
syn:

val: {out: {sbj: !, obj: !},
in: {root: !}}

The overall structure of a portion of the lexicon
is shown in Figure 2. Each rectangle with a dou-
ble border represents a lexical entry; the arrows
represent inheritance relations.

2.3 Processing

Parsing within XDG takes the form of constraint
satisfaction. Given an input sentence to be ana-
lyzed, lexicalization creates a node for each word
in the sentence and searches the lexicon for en-
tries that match the words. A copy of each match-
ing entry (a node entry) is added to the nodes; all
of the information in ancestors of the matching
nodes in the lexical inheritance hierarchy is also

1In our simple grammar, there are no dependent clauses
so all finite verbs are the heads of sentences.

N_SING

NOUN

N_MASS

N_COMMON

water

ADJ

ADJ_PRED

CONTAMINATE

V_T

V

contaminated1 contaminated2

Figure 2: Portion of the English lexicon.

copied to the node entries. Each node is identified
by an index representing its position in the input
sentence.

For morphologically complex languages, such
as most of those we are concerned with, it is im-
practical to store all wordforms in the lexicon. In
Gasser (2010), we showed how a morphological
analyzer can be incorporated in sentence analy-
sis in XDG. Morphological analysis of the input
words results in a lexeme and a set of grammati-
cal features for each analyzed word. We have de-
veloped finite state morphological analyzers for
Amharic, Oromo, and Quechua for this purpose;
the theoretical approach behind the analyzers is
described in Gasser (2009).

Next, lexicalization invokes the principles that
are referenced in the matching lexical entries and
their ancestors in the lexical hierarchy. Each of
these principle invocations results in the instan-
tiation of one or more constraints, each applying
to a set of variables. For example, each node n
has a daughters variable whose value is the set
of indices of the daughter nodes of n. Among the
constraints that apply to such a variable are those
associated with the Tree Principle.

For ambiguous words, lexicalization finds mul-
tiple entries in the lexicon. The result is that some
nodes may end up with more than one node entry,
each with its own set of constraints. Each node’s
entries take the form of a list. A disambiguation
variable is created for each node; the value of this
variable is the index of an entry in the node entry
list that satisfies all of the grammatical constraints
for that node.

5



Finally, constraint satisfaction is applied to the
variables and constraints that have been instanti-
ated. If this succeeds, it returns all possible com-
plete variable assignments, each corresponding to
a single analysis of the input sentence, that is,
a multigraph across the sentence nodes. Lexi-
cal disambiguation occurs during constraint sat-
isfaction when the values of disambiguation vari-
ables for nodes are restricted by the different con-
straints.

Because an XDG grammar is declarative, it can
be used for generation as well as for analysis. The
main difference for generation is that the seman-
tic input does not specify the positions for words
in the output. This problem can be handled in
a straightforward fashion through the creation of
a position variable for each node; these variables
are constrained by the Order Principle.

The XDG framework has been applied to pars-
ing for a number of languages but, to our knowl-
edge, never to translation. In what follows we
show how the modularity and application of con-
straint satisfaction that characterize XDG lend
themselves to translation.

3 Multiple languages in XDG

3.1 Semantics

Assume we have XDG grammars in the form of
hierarchical lexicons for two or more languages.
Each grammar specifies constraints on one or
more syntactic dimensions and one or more se-
mantic dimensions. A single interface dimension
relates syntax to semantics, constraining the way
in which arc labels on one syntactic dimension are
associated with arc labels on one semantic dimen-
sion. The grammars for the different languages
share their semantics, in the sense that a particu-
lar class of predicate types has a fixed representa-
tional format on the semantic dimension in each
grammar. In the semantic representation for the
sentence shown in Figure 1, the semantic head of
the sentence is the word contaminated, which has
the single pat (patient) argument water.

3.2 Syntax

Now consider the analysis of one possible
Amharic translation of the same sentence, shown
in Figure 3. The Amharic sentence consists of

only two words, the noun wƒw w1haw ‘the wa-
ter’2 and the verb °¤kýl tEbEkk1lwal ‘(it) has
been contaminated’. The graph on the semantic
dimension is identical to that for the English sen-
tence, except that the nodes are associated with
completely different words and the nodes corre-
sponding to the grammatical words in the English
sentence, the and is, are missing.

ውሃው ተበክሏል .

root
pat

SYN

SEM

root
sbj

Figure 3: XDG analysis of an Amharic sentence.

It is in the syntax-semantics interface dimen-
sion (SYNSEM) that the differences between the
two languages are spelled out. For English the
word contaminated is ambiguous: here we con-
sider only its interpretation as a predicate adjec-
tive, which happens to be the right choice for this
sentence. For this case, the word inherits from
Entry 2.

Entry 2 English predicate adjective
- name: ADJ_PRED
syn:

val: {in: {adjcomp: !}}
sem:

val: {in: {root: !}, out: {pat: !}}
synsem:

linkend: {pat: [adjcomp]}

According to this entry, a word belonging to
this lexical class must have an incoming adjective
complement adjcomp arc on the SYN dimension.
On the SYNSEM dimension, there is constraint for
the Linking End Principle, specifying that a pat
daughter of this word on the SEM dimension must
be an adjcomp daughter of some node on the SYN

dimension.
For Amharic the corresponding entry is quite

different. The word °¤kýl is not an adjective
but a passive verb in the present perfect tense. For

2The definite article in Amharic takes the form of a noun
suffix.

6



Amharic intransitive change-of-state verbs such
as °¤¼† ‘be contaminated’, the present perfect
form can refer to the state resulting from the
change of state, as it does in this case. For this
sentence the verb inherits from Entry 3. Accord-
ing to this entry, a word belonging to this lexi-
cal class must have an incoming root arc and an
outgoing sbj arc on the SYN dimension. On the
SYNSEM dimension, the linking end constraint as-
sociates the semantic pat with the syntactic sbj.

Entry 3 Amharic intransitive present perfect verb
- name: V_I_PRESPERF
syn:

val: {in: {root: !}, out: {sbj: !}}
sem:

val: {in: {root: !}, out: {pat: !}}
synsem:

linkend: {pat: [sbj]}

3.3 Cross-lingual links
Given lexicons for two languages with common
semantics, we associate entries in one language
with corresponding entries in the other using links
that behave like the inheritance links within each
lexicon. Three of these links are shown in Fig-
ure 4.

N_SING

NOUN

N_MASS

N_COMMON

N_SING

NOUN

N_COMMON

ውሃ–

Amharic Lexicon/Grammar English Lexicon/Grammar

water

VERB

–(t)bk:l–

ADJ

V_PRESPERF

V_FIN

V_I

ADJ_PRED

contaminated

V_I_PRESPERF

Figure 4: Partial lexicons of two languages with
three cross-lingual links.

One link joins the entry for the English word
water with that for the Amharic lexeme wƒ. An-
other joins the entry for the English adjective con-
taminated with that for the Amharic verb lexeme
-(t)bk:l- ‘be contaminated’. A third joins the en-
try for English adjective class ADJ PRED with
that for the Amharic verb class V I PRESPERF.
Note that these are not the only possible links out
of or into these entries. For example, like English,

Amharic has predicate adjectives, so the English
ADJ PRED entry would also be associated with
the Amharic ADJ PRED entry.

With these simple inheritance links in place,
most translation is little more than parsing. We
describe this process in the next section.

4 Translation in XDG

The key idea behind synchronous XDG is to
view the dimensions associated with different lan-
guages as part of one big multilingual grammar,
which includes the SEM dimension that is shared
by all of the languages. On this view a sentence
and its translation into one or more other lan-
guages are just a multigraph connecting the nodes
of the sentence. This is illustrated for our example
sentence in Figure 5; for simplicity we have omit-
ted the semantic dimension. Note that the posi-
tions of the nodes in the target language (numbers
in the small rectangles) are a part of the represen-
tation.

water
ውሃው is

contaminated
ተበክሏል .

root

sbj adjcomp

the

det

English SYN

Amharic SYN

del
del

1 2

root
sbj

Figure 5: Multigraph representation of a bilingual
“sentence”.

Beginning with the English sentence as input,
translation into the Amharic sentence is just or-
dinary XDG constraint satisfaction with the ad-
ditional step of morphological generation of the
Amharic words at the end of the process. In
what follows, we examine each step in the trans-
lation of the English sentence the water is con-
taminated.

4.1 Lexicalization

As with ordinary sentence analysis, each word is
assigned a node. Since the source language in this
case is English, the morphological analysis step is

7



skipped. For each node all matching entries in the
lexicon are copied, resulting in node entries, and
the principles referenced in these entries are in-
voked, resulting in constraints. The word contam-
inated is ambiguous so multiple node entries are
created for node 4. A disambiguation variable is
also created for each node. At this point a number
of syntactic and semantic constraints have been
instantiated, including those associated with var-
ious principles: Valency, Agreement, Agr, Order,
Tree, and LinkingEnd.

Related entries in the Amharic lexicon are ac-
cessed via the cross-lingual links, with lexical-
ization operating as before. That is, the prin-
ciples in the entries found in the Amharic lexi-
con are also invoked, resulting in constraints rel-
evant to the Amharic SYN and SYNSEM dimen-
sions. In addition, the lexeme forms associated
with the Amharic entries are copied to the node
entries. Figure 6 depicts node 4 at this point. The
small ovals represent node entries for two differ-
ent senses of contaminated. Both of these entries
are associated with the Amharic lexeme -(t)bk:l-
‘be contaminated’. The instantiated constraints
are indicated by arrows. These include English
syntactic, Amharic syntactic, and semantic con-
straints related to the different senses of contami-
nated. The disambiguation variable for the node,
4disambig, has also been created.

The Amharic verb root -(t)bk:l- is not a pro-
nounceable surface form; the surface form will
have to be generated at the end of processing,
once the grammatical features of the word are
known. Both node entries inherit a grammati-
cal constraint specification from the Amharic verb
entry that is associated with the Agr Principle
and will provide the required grammatical fea-
tures once constraint satisfaction has taken place.
This specifies that an Amharic verb must take one
of eight possible person-number-gender combina-
tions as the value of its subject agreement feature.
A variable has been created for this agreement
feature (?4amsyn agr sbj in the figure). Sim-
ilarly, node 2 (water) has an agreement variable
for the Amharic noun, which must get a value for
its definiteness feature.

Two words in the input sentence correspond to
nothing in the Amharic translation, the and is. Re-
call, however, that the same set of nodes must

4: contaminated
?4disambig, ?4amsyn_agr_sbj

am:–(t)bk:l– am:–(t)bk:l–

Figure 6: A node after lexicalization.

be present on every dimension in an XDG analy-
sis. For these words, there are cross-lingual links
to Amharic entries representing “empty nodes”.
On the Amharic SYN dimension, these nodes are
constrained to have incoming del arcs. For more
on empty nodes in XDG, see Gasser (2010) and
Pelizzoni and Nunes (2005).

4.2 Constraint satisfaction and
morphological generation

Constraint satisfaction searches for variable as-
signments that satisfy all of the constraints that
were instantiated during lexicalization. Among
the variables are ones for the daughters and moth-
ers of all nodes on each dimension, ones for the
daughters and mothers of all nodes specific to par-
ticular arc labels on each dimension, ones for the
positions of the words in the target language sen-
tence, ones for the agreement features of nouns
and verbs, and ones for lexical disambiguation for
each node.

Consider how node 4 ends up with a sbj arc to
node 2 on the Amharic SYN dimension. Based on
the initial constraints, node 4 expects an outgo-
ing sbj arc, and node 2 expects an incoming sbj
or obj arc on the Amharic SYN dimension. Since
node 2 is the only node that can satisfy node 4’s
constraint, both constraints are satisfied by bind-
ing the variable ?4amsyn sbj out to {2} and
the variable ?2amsyn sbj in to {4}.

A multigraph is created for each variable as-
signment. The positions of words in the output
sentence are read off of the values of the target-
language position variables for each node.

When the target language is morphologically
complex, as in this case, each of the output word
forms for lexical nodes must be generated from

8



the root and the values of the agreement variables
for the node and language. As well as analyz-
ers, we have implemented finite state morpholog-
ical generators for the morphologically complex
languages in our project, Amharic, Oromo, and
Quechua; these are invoked when one of these
languages is the target language of translation.
For node 4 in the example sentence, the Amharic
root is -(t)bk:l-, the value of the subject feature
variable is third person singular masculine, and
the value of the tense-aspect-mood feature vari-
able is present perfect. Given these inputs to the
Amharic morphological generator, the wordform
°¤kýl tEbEkk1lwal is output for node 4. For
node 2, the Amharic root is wƒ w1ha, and the
value of the definiteness feature variable is True.3

The generator outputs the form wƒw w1haw .

4.3 Ambiguity and disambiguation

As noted in Section 2.3, lexical disambiguation
in XDG takes the form of the constraining of a
node’s disambiguation variable during constraint
satisfaction. Ambiguity that cannot be resolved
within a sentence results in multiple analyses.

In a translation context, ambiguous source lan-
guage words are often associated with completely
different target language words. For example, the
English noun water corresponds to the Amharic
noun w€ while the English verb water corre-
sponds to the Amharic object+verb phrase w€
…°³, literally ‘cause to drink water’. Within the
translation framework described above, source
language analysis and target language generation
take place simultaneously, so a source language
word such as water will be disambiguated while
the target language constraints are being sorted
out. It is possible that it would be more effi-
cient to deal with the source language ambiguity
first, as far as this is possible. Within the XDG
framework, one alternative would be to run con-
straint satisfaction first on the constraints apply-
ing to source language dimensions and only later
to run it on the target language dimensions. We
have not yet experimented with this possibility.

More challenging is ambiguity that is only ap-
parent in the context of translation, that is, one-to-

3For simplicity we omit a number of other features re-
quired for the morphological generation of Amharic verbs
and nouns.

many source-to-target ambiguity. Sometimes dis-
ambiguation is possible in such cases on the basis
of other words in the source language sentence.
For example, the English verb break corresponds
to several Amharic verbs, depending on the type
of breaking action, and the action may be inferred
from the patient of the breaking. If the patient
is string, the appropriate Amharic verb is ¤°˜,
whereas if the patient is glass, the Amharic trans-
lation is ˜¤�. For now we treat this sort of cross-
lingual ambiguity as we treat intra-language am-
biguity; we simply create a new candidate node
entry for each possibility. This leaves the ambigu-
ity unresolved in all cases. One way to handle this
sort of ambiguity is to create a database of asso-
ciations between source-language contextual ele-
ments and target-language alternatives that is in-
dependent of the XDG lexicons and the usual con-
straint satisfaction mechanism. The associations
would be invoked before or during constraint sat-
isfaction to facilitate selection of one of the target-
language alternatives. We are currently exploring
this possibility.

5 Implementation

Because we intend in the long run to make
some basic modifications to XDG, in particu-
lar to add weights to the constraints, we have
re-implemented XDG from the bottom up, re-
maining mostly faithful to constraint satisfaction
in the Mozart/Oz constraint programming frame-
work that XDG relies on. Our implementation
is in Python; lexicon/grammars are encoded in
YAML format.

All of our software, including the XDG imple-
mentation, lexicons, and morphological analyz-
ers and generators for Amharic, Spanish, Oromo,
and Quechua, is available under a GNU GPL3
license, at http://www.cs.indiana.edu/
˜gasser/Research/software.html.

6 Conclusions

This paper has attempted to show how the proper-
ties of XDG, especially the multi-dimensionality
and modularity, lend themselves to grammar-
driven machine translation. A synchronous XDG
grammar consists of modular lexicons of two or
more languages and a set of simple cross-lingual

9



links joining lexical entries. Source and target
language sentences are viewed as a single abstract
“sentence” consisting of bilingual nodes joined
by arcs on dimensions at various levels of abstrac-
tion. This representation allows us to capitalize
on what is shared between the languages as well
as to keep separate what is different. Further-
more, because lexicons are represented declara-
tively, the knowledge required for translation in
one direction suffices for translation in the oppo-
site direction.

This approach has more in common with tra-
ditional interlingua approaches than with transfer
approaches, the SEM dimension playing the role
of the interlingua. However, unlike in usual inter-
lingua translation, there are no separate analysis
and generation phases (except for morphological
analysis or generation, when these are necessary).
Constraint satisfaction seeks a representation of
the sentence on all levels simultaneously: seman-
tics constrains syntax, syntax constrains seman-
tics, and, through semantics, the evolving syntac-
tic representations of source and target languages
constrain one another. It is quite possible, for ex-
ample, for some of the target-language syntax to
take shape before the source-language syntax is
sorted out.

The contribution of this paper is a theoretical
proposal. It offers no evaluation data at all. Thus
the framework is really only the first step towards
the development of the machine translation sys-
tem we envision. Our next step is to test it on a
much wider variety of sentence types, including
the full range of possible syntactic differences be-
tween languages (Mel’čuk and Wanner, 2006).

References

Bick, E. (2007). Dan2eng: wide-coverage
Danish-English machine translation. In Pro-
ceedings of Machine Translation Summit Xi,
pages 37–43, Copenhagen.

Bojar, O. (2005). Problems of inducing large
coverage constraint based dependency gram-
mar. In et al., H. C., editor, Constraint Solving
and Language Processing, First International
Workshop, CSLP 2004, pages 90–103, Berlin.
Springer Verlag.

Debusmann, R. (2007). Extensible Dependency

Grammar: A Modular Grammar Formalism
Based On Multigraph Description. PhD thesis,
Universität des Saarlandes.

Debusmann, R., Duchier, D., and Kruijff, G.-J. M.
(2004). Extensible dependency grammar: A
new methodology. In Proceedings of the COL-
ING 2004 Workshop on Recent Advances in
Dependency Grammar, Geneva/SUI.

Diaconescu, S. (2004). Multiword expression
translation using generative dependency gram-
mar. In Proceedings of EsTAL, Alicante, Spain.

Gasser, M. (2009). Semitic morphological anal-
ysis and generation using finite state transduc-
ers with feature structures. In Proceedings of
the 12th Conference of the European Chapter
of the ACL, pages 309–317, Athens, Greece.

Gasser, M. (2010). A dependency grammar for
Amharic. In Proceedings of the Workshop
on Language Resources and Human Language
Technologies for Semitic Languages, Valletta,
Malta.

Mel’čuk, I. and Wanner, L. (2006). Syntactic
mismatches in machine translation. Machine
Translation, 20(2):81–138.

Pelizzoni, J. M. and Nunes, M. d. G. V. (2005).
N:m mapping in XDG — the case for upgrad-
ing groups. In Proceedings of the Workshop on
Constraint Solving and Language Processing,
Roskilde, Denmark.

Ranta, A., Angelov, K., and Hallgren, T. (2010).
Tools for multilingual grammar-based transla-
tion on the web. In Proceedings of the Asso-
ciation for Computational Linguistics System
Demonstrations, Beijing.

Čmejrek, M., Cuřı́n, J., and Havelka, J.
(2003). Czech-english dependency-based ma-
chine translation. In Proceedings fo the 10th
Conference of the European Chapter of the As-
sociation for Computational Linguistics, pages
83–90, Budapest.

10


