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Abstract
We propose a simple and effective ap-
proach to learn translation spans for
the hierarchical phrase-based translation
model. Our model evaluates if a source
span should be covered by translation
rules during decoding, which is integrated
into the translation system as soft con-
straints. Compared to syntactic con-
straints, our model is directly acquired
from an aligned parallel corpus and does
not require parsers. Rich source side
contextual features and advanced machine
learning methods were utilized for this
learning task. The proposed approach was
evaluated on NTCIR-9 Chinese-English
and Japanese-English translation tasks and
showed significant improvement over the
baseline system.

1 Introduction

The hierarchical phrase-based (HPB) translation
model (Chiang, 2005) has been widely adopted in
statistical machine translation (SMT) tasks. The
HPB translation rules based on the synchronous
context free grammar (SCFG) are simple and pow-
erful.

One drawback of the HPB model is the appli-
cations of translation rules to the input sentence
are highly ambiguous. For example, a rule whose
English side is “X1 by X2” can be applied to any
word sequence that has “by” in them. In Figure 1,
this rule can be applied to the whole sentence as
well as to “experiment by tomorrow”.

In order to tackle rule application ambiguities,
a few previous works used syntax trees. Chi-
ang (2005) utilized a syntactic feature in the HPB

I  will  �nish  this  experiment  by  tomorrow

我  会  在  明天  之前  完成  这个  实验

Figure 1: A translation example.

model, which represents if the source span cov-
ered by a translation rule is a syntactic constituent.
However, the experimental results showed this
feature gave no significant improvement. Instead
of using the undifferentiated constituency feature,
(Marton and Resnik, 2008) defined different soft
syntactic features for different constituent types
and obtained substantial performance improve-
ment. Later, (Mylonakis and Sima’an, 2011) in-
troduced joint probability synchronous grammars
to integrate flexible linguistic information. (Liu
et al., 2011) proposed the soft syntactic constraint
model based on discriminative classifiers for each
constituent type and integrated all of them into the
translation model. (Cui et al., 2010) focused on
hierarchical rule selection using many features in-
cluding syntax constituents.

These works have demonstrated the benefits of
using syntactic features in the HPB model. How-
ever, high quality syntax parsers are not always
easily obtained for many languages. Without this
problem, word alignment constraints can also be
used to guide the application of the rules.

Suppose that we want to translate the English
sentence into the Chinese sentence in Figure 1, a
translation rule can be applied to the source span
“finish this experiment by tomorrow”. Nonethe-
less, if a rule is applied to “experiment by”, then
the Chinese translation can not be correctly ob-
tained, because the target span projected from “ex-
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periment by” contains words projected from the
source words outside “experiment by”.

In general, a translation rule projects one con-
tinuous source word sequence (source span) into
one continuous target word sequence. Meanwhile,
the word alignment links between the source and
target sentence define the source spans where
translation rules are applicable. In this paper, we
call a source span that can be covered by a trans-
lation rule without violating word alignment links
a translation span.

Translation spans that have been correctly iden-
tified can guide translation rules to function prop-
erly, thus (Xiong et al., 2010) attempted to use
extra machine learning approaches to determine
boundaries of translation spans. They used two
separate classifiers to learn the beginning and end-
ing boundaries of translation spans, respectively.
A source word is marked as beginning (ending)
boundary if it is the first (last) word of a translation
span. However, a source span whose first and last
words are both boundaries is not always a transla-
tion span. In Figure 1, “I” is a beginning boundary
since it is the first word of translation span “I will”
and “experiment” is an ending boundary since it is
the last word of translation span “finish this exper-
iment” , but “I will finish this experiment” is not a
translation span. This happens because the trans-
lation spans are nested or hierarchical. Note that
(He et al., 2010) also learned phrase boundaries to
constrain decoding, but their approach identified
boundaries only for monotone translation.

In this paper, taking fully into account that
translation spans being nested, we propose an
approach to learn hierarchical translation spans
directly from an aligned parallel corpus that
makes more accurate identification over transla-
tion spans.

The rest of the paper is structured as follows:
In Section 2, we briefly review the HPB transla-
tion model. Section 3 describes our approach. We
describe experiments in Section 4 and conclude in
Section 5.

2 Hierarchical Phrase-based Translation

Chiang’s HPB model is based on a weighted
SCFG. A translation rule is like: X → 〈γ, α,∼〉,
where X is a nonterminal, γ and α are source and
target strings of terminals and nonterminals, and∼
is a one-to-one correspondence between nontermi-

nals in γ and α. The weight of each rule is:

w (X → 〈γ, α,∼〉) =
∏
t

ht(X → 〈γ, α,∼〉)λt (1)

where ht are the features defined on the rules.
Rewriting begins with a pair of linked start sym-

bols and ends when there is no nonterminal left.
Let D be a derivation of the grammar, f (D) and
e (D) be the source and target strings generated
by D. D consists of a set of triples 〈r, i, j〉, each
of which stands for applying a rule r on a span
f (D)j

i . The weight of D is calculated as:

w (D) =
∏

〈r,i,j〉∈D
w (r)× Plm(e)λlm × exp (−λwp |e|)

(2)

where w (r) is the weight of rule r, the last two
terms represent the language model and word
penalty, respectively.

3 Learning Translation Spans

We will describe how to learn translation spans in
this section.

3.1 Our Model
We make a series of binary classifiers
{C1, C2, C3, ...} to learn if a source span
f (D)j

i should be covered by translation rules dur-
ing translation. Ck is trained and tested on source
spans whose lengths are k, i.e., k = j − i+ 1.1

Ck learns the probability
Pk (v|f (D) , i, j) (3)

where v ∈ {0, 1}, v = 1 represents a rule is ap-
plied on f (D)j

i , otherwise v = 0.
Training instances for these classifiers are ex-

tracted from an aligned parallel corpus according
to Algorithm 1. For example, “I will” and “will
finish” are respectively extracted as positive and
negative instances in Figure 1.

Note that our model in Equation 3 only uses
the source sentence f (D) in the condition. This
means that the probabilities can be calculated be-
fore translation. Therefore, the predicted prob-
abilities can be integrated into the decoder con-
veniently as soft constraints and no extra time is
added during decoding. This enables us to use
rich source contextual features and various ma-
chine learning methods for this learning task.

1We indeed can utilize just one classifier for all source
spans. However, it will be difficult to design features for such
a classifier unless only boundary word features are adopted.
On the contrary, we can fully take advantage of rich informa-
tion about inside words as we turn to the fixed span length
approach.
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3.2 Integration into the decoder
It is straightforward to integrate our model into
Equation 2. It is extended as

w (D) =
∏

〈r,i,j〉∈D
w (r)× Plm(e)λlm × exp (−λwp |e|)

× Pk(v = 1|f (D) , i, j)λk

(4)

where λk is the weight for Ck.
During decoding, the decoder looks up the

probabilities Pk calculated and stored before de-
coding.

Algorithm 1 Extract training instances.
Input: A pair of parallel sentence fn

1 and em1 with
word alignments A.

Output: Training examples for {C1, C2, C3, ...}.
1: for i = 1 to n do
2: for j = i to n do
3: if ∃eqp, 1 ≤ p ≤ q ≤ m

& ∃ (k, t) ∈ A, i ≤ k ≤ j, p ≤ t ≤ q
& ∀ (k, t) ∈ A, i ≤ k ≤ j ↔ p ≤ t ≤ q
then

4: f j
i is a positive instance for Cj−i+1

5: else
6: f j

i is a negative instance for Cj−i+1

7: end if
8: end for
9: end for

3.3 Classifiers
We compare two machine learning methods for
learning a series of binary classifiers.

For the first method, each Ck is individually
learned using the maximum entropy (ME) ap-
proach (Berger et al., 1996):

Pk (v|f (D) , i, j) =
exp

(∑
t µtht (v, f (D) , i, j)

)∑
v′ exp

(∑
t µtht (v

′, f (D) , i, j)
)

(5)

where ht is a feature function and µt is weight
of ht. We use rich source contextual fea-
tures: unigram, bigram and trigram of the phrase
[fi−3, ..., fj+3].

As the second method, these classification tasks
are learned in the continuous space using feed-
forward neural networks (NNs). Each Ck has
the similar structure with the NN language model
(Vaswani et al., 2013). The inputs to the NN are
indices of the words: [fi−3, ..., fj+3]. Each source
word is projected into an N dimensional vector.

The output layer has two output neurons, whose
values correspond to Pk (v = 0|f (D) , i, j) and
Pk (v = 1|f (D) , i, j).

For both ME and NN approaches, words that
occur only once or never occur in the training
corpus are treated as a special word “UNK” (un-
known) during classifier training and predicting,
which can reduce training time and make the clas-
sifier training more smooth.

4 Experiment

We evaluated the effectiveness of the proposed ap-
proach for Chinese-to-English (CE) and Japanese-
to-English (JE) translation tasks. The datasets of-
ficially provided for the patent machine translation
task at NTCIR-9 (Goto et al., 2011) were used in
our experiments. The detailed training set statis-
tics are given in Table 1. The development and test

SOURCE TARGET

CE
#Sents 954k
#Words 37.2M 40.4M
#Vocab 288k 504k

JE
#Sents 3.14M
#Words 118M 104M
#Vocab 150k 273k

Table 1: Data sets.

sets were both provided for CE task while only the
test set was provided for JE task. Therefore, we
used the sentences from the NTCIR-8 JE test set
as the development set. Word segmentation was
done by BaseSeg (Zhao et al., 2006; Zhao and Kit,
2008; Zhao et al., 2010; Zhao and Kit, 2011; Zhao
et al., 2013) for Chinese and Mecab 2 for Japanese.

To learn the classifiers for each translation task,
the training set and development set were put to-
gether to obtain symmetric word alignment us-
ing GIZA++ (Och and Ney, 2003) and the grow-
diag-final-and heuristic (Koehn et al., 2003). The
source span instances extracted from the aligned
training and development sets were used as the
training and validation data for the classifiers.

The toolkit Wapiti (Lavergne et al., 2010) was
adopted to train ME classifiers using the classi-
cal quasi-newton optimization algorithm with lim-
ited memory. The NNs are trained by the toolkit
NPLM (Vaswani et al., 2013). We chose “recti-
fier” as the activation function and the logarithmic
loss function for NNs. The number of epochs was
set to 20. Other parameters were set to default

2http://sourceforge.net/projects/mecab/files/
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Span
length

CE JE

Rate
ME NN

Rate
ME NN

P N P N P N P N
1 2.67 0.93 0.63 0.93 0.64 1.08 0.85 0.79 0.86 0.80
2 1.37 0.83 0.70 0.82 0.75 0.73 0.69 0.84 0.71 0.87
3 0.86 0.70 0.80 0.73 0.83 0.52 0.56 0.89 0.63 0.90
4 0.62 0.57 0.81 0.67 0.88 0.36 0.48 0.93 0.54 0.93
5 0.48 0.52 0.90 0.61 0.91 0.26 0.30 0.96 0.47 0.95
6 0.40 0.47 0.91 0.58 0.92 0.20 0.25 0.97 0.41 0.96
7 0.34 0.40 0.93 0.53 0.93 0.16 0.14 0.98 0.33 0.97
8 0.28 0.35 0.94 0.46 0.94 0.13 0 1 0.32 0.97
9 0.22 0.28 0.96 0.37 0.96 0.10 0 1 0.25 0.98
10 0.15 0.21 0.97 0.28 0.97 0.08 0 1 0.23 0.99

Table 2: Classification accuracies. The Rate column represents ratio of positive instances to negative
instances; the P and N columns give classification accuracies for positive and negative instances.

values. The training time of one classifier on a
12-core 3.47GHz Xeon X5690 machine was 0.5h
(2.5h) using ME (NN) approach for CE task; 1h
(4h) using ME (NN) approach for JE task .

The classification results are shown in Table 2.
Instead of the undifferentiated classification accu-
racy, we present separate classification accuracies
for positive and negative instances. The big differ-
ence between classification accuracies for positive
and negative instances was caused by the unbal-
anced rate of positive and negative instances in the
training corpus. For example, if there are more
positive training instances, then the classifier will
tend to classify new instances as positive and the
classification accuracy for positive instances will
be higher. In our classification tasks, there are less
positive instances for longer span lengths.

Since the word order difference of JE task is
much more significant than that of CE task, there
are more negative Japanese translation span in-
stances than Chinese. In JE tasks, the ME classi-
fiers C8, C9 and C10 predicted all new instances to
be negative due to the heavily unbalanced instance
distribution.

As shown in Table 2, NN outperformed ME ap-
proach for our classification tasks. As the span
length growing, the advantage of NN became
more significant. Since the classification accura-
cies deceased to be quite low for source spans with
more than 10 words, only {C1, ..., C10} were inte-
grated into the HPB translation system.

For each translation task, the recent version
of Moses HPB decoder (Koehn et al., 2007)
with the training scripts was used as the base-
line (Base). We used the default parameters for
Moses, and a 5-gram language model was trained
on the target side of the training corpus by IRST

LM Toolkit 3 with improved Kneser-Ney smooth-
ing. {C1, ..., C10} were integrated into the base-
line with different weights, which were tuned by
MERT (Och, 2003) together with other feature
weights (language model, word penalty,...) under
the log-linear framework (Och and Ney, 2002).

BLEU-n n-gram precisions
Method TER 4 1 2 3 4

CE
Base 49.39- - 33.07- - 69.9/40.7/25.8/16.9
BLM 48.60 33.93 70.0/41.4/26.6/17.6
ME 49.02- 33.63- 70.0/41.2/26.3/17.4
NN 48.09++ 34.35++ 70.1/41.9/27.0/18.0

JE
Base 57.39- - 30.13- - 67.1/38.3/23.0/14.0
BLM 56.79 30.81 67.7/38.9/23.6/14.5
ME 56.48 31.01 67.6/39.0/23.8/14.7
NN 55.96++ 31.77++ 67.8/39.7/24.6/15.4

Table 3: Translation results. The symbol ++ (- -)
represents a significant difference at the p < 0.01
level and - represents a significant difference at the
p < 0.05 level against the BLM.

We compare our method with the baseline and
the boundary learning method (BLM) (Xiong et
al., 2010) based on Maximum Entropy Markov
Models with Markov order 2. Table 3 reports
BLEU (Papineni et al., 2002) and TER (Snover
et al., 2006) scores. Significance tests are con-
ducted using bootstrap sampling (Koehn, 2004).
Our ME classifiers achieve comparable translation
improvement with the BLM and NN classifiers en-
hance translation system significantly compared to
others. Table 3 also shows that the relative gain
was higher for higher n-grams, which is reason-
able since the higher n-grams have higher ambi-
guities in the translation rule application.

It is true that because of multiple parallel sen-
tences, a source span can be applied with transla-

3http://hlt.fbk.eu/en/irstlm
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tion rules in one sentence pair but not in another
sentence pair. So we used the probability score
as a feature in the decoding. That is, we did not
use classification results directly but use the prob-
ability score for softly constraining the decoding
process.

5 Conclusion

We have proposed a simple and effective transla-
tion span learning model for HPB translation. Our
model is learned from aligned parallel corpora and
predicts translation spans for source sentence be-
fore translating, which is integrated into the trans-
lation system conveniently as soft constraints. We
compared ME and NN approaches for this learn-
ing task. The results showed that NN classifiers on
the continuous space model achieved both higher
classification accuracies and better translation per-
formance with acceptable training times.
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