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Abstract

Phrase reordering is a challenge for statis-
tical machine translation systems. Posing
phrase movements as a prediction prob-
lem using contextual features modeled by
maximum entropy-based classifier is su-
perior to the commonly used lexicalized
reordering model. However, Training
this discriminative model using large-scale
parallel corpus might be computationally
expensive. In this paper, we explore recent
advancements in solving large-scale clas-
sification problems. Using the dual prob-
lem to multinomial logistic regression, we
managed to shrink the training data while
iterating and produce significant saving in
computation and memory while preserv-
ing the accuracy.

1 Introduction

Phrase reordering is a common problem when
translating between two grammatically different
languages. Analogous to speech recognition sys-
tems, statistical machine translation (SMT) sys-
tems relied on language models to produce more
fluent output. While early work penalized phrase
movements without considering reorderings aris-
ing from vastly differing grammatical structures
across language pairs like Arabic-English (Koehn,
2004a), many researchers considered lexicalized
reordering models that attempted to learn orienta-
tion based on the training corpus (Tillmann, 2004;
Kumar and Byrne, 2005; Koehn et al., 2005).

Building on this, some researchers have bor-
rowed powerful ideas from the machine learning
literature, to pose the phrase movement problem
as a prediction problem using contextual input fea-
tures whose importance is modeled as weights of
a linear classifier trained by entropic criteria. The
approach (so called maximum entropy classifier

or simply MaxEnt) is a popular choice (Zens and
Ney, 2006; Xiong et al., 2006; Nguyen et al.,
2009; Xiang et al., 2011). Max-margin structure
classifiers were also proposed (Ni et al., 2011).
Alternatively, Cherry (2013) proposed recently us-
ing sparse features optimize the translation quality
with the decoder instead of training a classifier in-
dependently.

While large-scale parallel corpus is advanta-
geous for improving such reordering model, this
improvement comes at a price of computational
complexity. This issue is particularly pronounced
when discriminative models are considered such
as maximum entropy-based model due to the re-
quired iterative learning.

Advancements in solving large-scale classifica-
tion problems have been shown to be effective
such as dual coordinate descent method for linear
support vector machines (Hsieh et al., 2008). Sim-
ilarly, Yu et al. (2011) proposed a two-level dual
coordinate descent method for maximum entropy
classifier.

In this work we explore the dual problem to
multinomial logistic regression for building large-
scale reordering model (section 3). One of the
main advantages of solving the dual problem is
providing a mechanism to shrink the training data
which is a serious issue in building such large-
scale system. We present empirical results com-
paring between the primal and the dual problems
(section 4). Our approach is shown to be fast and
memory-efficient.

2 Baseline System

In statistical machine translation, the most likely
translation ebest of an input sentence f can be
found by maximizing the probability p(e|f), as
follows:

ebest = arg max
e
p(e|f). (1)
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A log-linear combination of different models
(features) is used for direct modeling of the poste-
rior probability p(e|f) (Papineni et al., 1998; Och
and Ney, 2002):

ebest = arg max
e

n∑
i=1

λihi(f , e) (2)

where the feature hi(f , e) is a score function
over sentence pairs. The translation model and the
language model are the main features in any sys-
tem although additional features h(.) can be inte-
grated easily (such as word penalty). State-of-the-
art systems usually have around ten features.

The language model, which ensures fluent
translation, plays an important role in reordering;
however, it has a bias towards short translations
(Koehn, 2010). Therefore, a need for developing a
specific model for the reordering problem.

2.1 Lexicalized Reordering Model

Adding a lexicalized reordering model consis-
tently improved the translation quality for sev-
eral language pairs (Koehn et al., 2005). Re-
ordering modeling involves formulating phrase
movements as a classification problem where each
phrase position considered as a class (Tillmann,
2004). Some researchers classified phrase move-
ments into three categories (monotone, swap, and
discontinuous) but the classes can be extended to
any arbitrary number (Koehn and Monz, 2005). In
general, the distribution of phrase orientation is:

p(ok|f̄i, ēi) =
1
Z
h(f̄i, ēi, ok) . (3)

This lexicalized reordering model is estimated
by relative frequency where each phrase pair
(f̄i, ēi) with such an orientation (ok) is counted
and then normalized to yield the probability as fol-
lows:

p(ok|f̄i, ēi) =
count(f̄i, ēi, ok)∑
o count(f̄i, ēi, o)

. (4)

The orientation of a current phrase pair is de-
fined with respect to the previous target phrase.
Galley and Manning (2008) extended the model to
tackle long-distance reorderings. Their hierarchi-
cal model enables phrase movements that are more
complex than swaps between adjacent phrases.

3 Multinomial Logistic Regression

Multinomial logistic regression (MLR), also
known as maximum entropy classifier (Zens and
Ney, 2006), is a probabilistic model for the multi-
class problem. The class probability is given by:

p(ok|f̄i, ēi) =
exp(w>k φ(f̄i, ēi))∑
k′ exp(w>k′φ(f̄i, ēi))

, (5)

where φ(f̄i, ēi) is the feature vector of the i-th
phrase pair. An equivalent notation to w>k φ(f̄i, ēi)
is w>f(φ(f̄i, ēi), ok) where w is a long vector
composed of all classes parameters (i.e. w> =
[w>1 . . .w>K ] ) and f(., .) is a joint feature vec-
tor decomposed via the orthogonal feature rep-
resentation (Rousu et al., 2006). This repre-
sentation simply means there is no crosstalk be-
tween two different feature vectors. For example,
f(φ(f̄i, ēi), o1)> = [φ(f̄i, ēi)> 0 . . . 0].

The model’s parameters can be estimated by
minimizing the following regularized negative
log-likelihood P(w) as follows (Bishop, 2006):

min
w

1
2σ2

K∑
k=1

‖wk‖2−
N∑
i=1

K∑
k=1

p̃ik log p(ok|f̄i, ēi)
(6)

Here σ is a penalty parameter and p̃ is the em-
pirical distribution where p̃ik equals zero for all
ok 6= oi.

Solving the primal optimization problem (6) us-
ing the gradient:

∂P(w)
∂wk

=
wk

σ2
−

N∑
i=1

(
p̃ik − p(ok|f̄i, ēi)

)
φ(f̄i, ēi),

(7)
do not constitute a closed-form solution. In our

experiments, we used stochastic gradient decent
method (i.e. online learning) to estimate w which
is shown to be fast and effictive for large-scale
problems (Bottou, 2010). The method approxi-
mates (7) by a gradient at a single randomly picked
phrase pair. The update rule is:

w′k = wk − ηi∇kPi(w), (8)

where ηi is a positive learning rate.
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3.1 The Dual Problem
Lebanon and Lafferty (2002) derived an equiva-
lent dual problem to (6). Introducing Lagrange
multipliers α, the dual becomes

min
w

1
2σ2

K∑
k=1

‖wk(α)‖2 +
N∑
i=1

K∑
k=1

αik logαik,

s.t.
K∑
k=1

αik = 1 and αik ≥ 0 ,∀i, k, (9)

where

wk(α) = σ2
N∑
i=1

(p̃ik − αik)φ(f̄i, ēi) (10)

As mentioned in the introduction, Yu et al.
(2011) proposed a two-level dual coordinate de-
scent method to minimize D(α) in (9) but it has
some numerical difficulties. Collins et al. (2008)
proposed simple exponentiated gradient (EG) al-
gorithm for Conditional Random Feild (CRF). The
algorithm is applicable to our problem, a special
case of CRF. The rule update is:

α′ik =
αik exp(−ηi∇ikD(α))∑
k′ αik′ exp(−ηi∇ik′D(α))

(11)

where

∇ikD(α) ≡ ∂D(α)
∂αik

= 1 + logαik

+
(
wy(α)>φ(f̄i, ēi)−wk(α)>φ(f̄i, ēi)

)
.

(12)

Here y represents the true class (i.e. oy = oi).
To improve the convergence, ηi is adaptively ad-
justed for each example. If the objective function
(9) did not decrease, ηi is halved for number of tri-
als (Collins et al., 2008). Calculating the function
difference below is the main cost in EG algorithm,

D(α′)−D(α) =
K∑
k=1

(
α′ik logα′ik − αik logαik

)
−

K∑
k=1

(α′ik − αik)wk(α)>φ(f̄i, ēi)

+
σ2

2
‖φ(f̄i, ēi)‖2

K∑
k=1

(α′ik − αik)2. (13)

Clearly, the cost is affordable because wk(α) is
maintained throughout the algorithm as follows:

wk(α′) = wk(α)−σ2(α′ik−αik)φ(f̄i, ēi) (14)

Following Yu et al. (2011), we initialize αik as
follows:

αik =
{

(1− ε) if ok = oi;
ε

K−1 else. (15)

where ε is a small positive value. This is because
the objective function (9) is not well defined at
αik = 0 due to the logarithm appearance.

Finally, the optimal dual variables are achieved
when the following condition is satisfied for all ex-
amples (Yu et al., 2011):

max
k
∇ikD(α) = min

k
∇ikD(α) (16)

This condition is the key to accelerate EG al-
gorithm. Unlike the primal problem (6), the dual
variables αik are associated with each example
(i.e. phrase pair) therefore a training example can
be disregarded once its optimal dual variables ob-
tained. More data shrinking can be achieved by
tolerating a small difference between the two val-
ues in (16). Algorithm 1 presents the overall pro-
cedure (shrinking step is from line 6 to 9).

Algorithm 1 Shrinking stochastic exponentiated
gradient method for training the dual problem
Require: training set S = {φ(f̄i, ēi), oi}Ni=1

1: Given α and the corresponding w(α)
2: repeat
3: Randomly pick i from S
4: Claculate∇ikD(α) ∀k by (12)
5: vi = maxk∇ikD(α)−mink∇ikD(α)
6: if vi ≤ ε then
7: Remove i from S
8: Continue from line 3
9: end if

10: η = 0.5
11: for t = 1 to maxTrial do
12: Calculate α′ik ∀k by (11)
13: if D(α′)−D(α) ≤ 0 then
14: Update α and w(α) by (14)
15: Break
16: end if
17: η = 0.5 η
18: end for
19: until vi ≤ ε ∀i
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4 Experiments

We used MultiUN which is a large-scale parallel
corpus extracted from the United Nations website
(Eisele and Chen, 2010). We have used Arabic
and English portion of MultiUN where the English
side is about 300 million words.

We simplify the problem by classifying phrase
movements into three categories (monotone,
swap, discontinuous). To train the reordering
models, we used GIZA++ to produce word align-
ments (Och and Ney, 2000). Then, we used the
extract tool that comes with the Moses toolkit
(Koehn et al., 2007) in order to extract phrase pairs
along with their orientation classes.

As shown in Table 1, each extracted phrase pair
is represented by linguistic features as follows:

• Aligned source and target words in a phrase
pair. Each word alignment is a feature.

• Words within a window around the source
phrase to capture the context. We choose ad-
jacent words of the phrase boundary.

The extracted phrase pairs after filtering are
47,227,789. The features that occur more than 10
times are 670,154.

Sentence pair:
f : f1 f2

1
f3 f4 f5

2
f6

3
.

e : e1
1

e2 e3
3

e4 e5
2
.

Extracted phrase pairs (f̄ , ē) :
f̄i ||| ēi ||| oi ||| alignment ||| context

f1 f2 ||| e1 ||| mono ||| 0-0 1-0 ||| f3

f3 f4 f5 ||| e4 e5 ||| swap ||| 0-1 2-0 ||| f2 f6

f6 ||| e2 e3 ||| other ||| 0-0 0-1 ||| f5

All linguistic features:

1. f1&e1 2. f2&e1 3. f3 4. f3&e5 5. f5&e4
6. f2 7. f6 8. f6&e2 9. f6&e3 10. f5

Bag-of-words representation:
a phrase pair is represented as a vector where each feature
is a discrete number (0=not exist).

φ(f̄i, ēi) 1 2 3 4 5 6 7 8 9 10
φ(f̄1, ē1) = 1 1 1 0 0 0 0 0 0 0
φ(f̄2, ē2) = 0 0 0 1 1 1 1 0 0 0
φ(f̄3, ē3) = 0 0 0 0 0 0 1 1 1 1

Table 1: A generic example of the process of
phrase pair extraction and representation.

4.1 Classification

We trained our reordering models by both primal
and dual classifiers for 100 iterations. For the dual
MLR, different shrinking levels have been tried by
varying the parameter (ε) in Algorithm 1. Table 2
reports the training time and classification error
rate of these models.

Training the dual MLR with moderate shrinking
level (i.e. ε = 0.1) is almost four times faster than
training the primal one. Choosing larger value for
(ε) leads to faster training but might harm the per-
formance as shown below.

Classifier Training Time Error Rate
Primal MLR 1 hour 9 mins 17.81%
Dual MLR ε:0.1 18 minutes 17.95%
Dual MLR ε:1.0 13 minutes 21.13%
Dual MLR ε:0.01 22 minutes 17.89%

Table 2: Performance of the primal and dual MLR
based on held-out data.

Figure 1 shows the percentage of active set dur-
ing training dual MLR with various shrinking lev-
els. Interestingly, the dual MLR could disregard
more than 99% of the data after a couple of iter-
ations. For very large corpus, the data might not
fit in memory and training primal MLR will take
long time due to severe disk-swapping. In this sit-
uation, using dual MLR is very beneficial.
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Figure 1: Percentage of active set in dual MLR.
As the data size decreases, each iteration takes far
less computation time (see Table 2 for total time).
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4.2 Translation

We used the Moses toolkit (Koehn et al., 2007)
with its default settings to build three phrase-based
translation systems. They differ in how their re-
ordering models were estimated. The language
model is a 5-gram with interpolation and Kneser-
Ney smoothing (Kneser and Ney, 1995). We tuned
the system by using MERT technique (Och, 2003).

As commonly used in statistical machine trans-
lation, we evaluated the translation performance
by BLEU score (Papineni et al., 2002). The test
sets are NIST MT06 and MT08 where the En-
glish sides are 35,481 words (1056 sentences) and
116,840 words (3252 sentences), respectively. Ta-
ble 3 shows the BLEU scores for the translation
systems. We also computed statistical significance
for the models using the paired bootstrap resam-
pling method (Koehn, 2004b).

Translation System MT06 MT08
Baseline + Lexical. model 30.86 34.22
Baseline + Primal MLR 31.37* 34.85*
Baseline + Dual MLR ε:0.1 31.36* 34.87*

Table 3: BLEU scores for Arabic-English transla-
tion systems with different reordering models (*:
better than the lexicalized model with at least 95%
statistical significance).

5 Conclusion

In training such system with large data sizes and
big dimensionality, computational complexity be-
come a serious issue. In SMT, maximum entropy-
based reordering model is often introduced as a
better alternative to the commonly used lexical-
ized one. However, training this discriminative
model using large-scale corpus might be compu-
tationally expensive due to the iterative learning.

In this paper, we propose training the model
using the dual MLR with shrinking method. It
is almost four times faster than the primal MLR
(also know as MaxEnt) and much more memory-
efficient. For very large corpus, the data might not
fit in memory and training primal MLR will take
long time due to severe disk-swapping. In this sit-
uation, using dual MLR is very beneficial. The
proposed method is also useful for many classi-
fication problems in natural language processing
that require large-scale data.
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