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Abstract

We present a new language pair agnostic ap-
proach to inducing bilingual vector spaces
from non-parallel data without any other re-
source in a bootstrapping fashion. The pa-
per systematically introduces and describes all
key elements of the bootstrapping procedure:
(1) starting point or seed lexicon, (2) the confi-
dence estimation and selection of new dimen-
sions of the space, and (3) convergence. We
test the quality of the induced bilingual vec-
tor spaces, and analyze the influence of the
different components of the bootstrapping ap-
proach in the task of bilingual lexicon extrac-
tion (BLE) for two language pairs. Results re-
veal that, contrary to conclusions from prior
work, the seeding of the bootstrapping pro-
cess has a heavy impact on the quality of the
learned lexicons. We also show that our ap-
proach outperforms the best performing fully
corpus-based BLE methods on these test sets.

1 Introduction

Bilingual lexicons serve as an indispensable source
of knowledge for various cross-lingual tasks such
as cross-lingual information retrieval (Lavrenko et
al., 2002; Levow et al., 2005) or statistical machine
translation (Och and Ney, 2003). Additionally, they
are a crucial component in cross-lingual knowledge
transfer, where the knowledge about utterances in
one language may be transferred to another. The
utility of the transfer or annotation projection by
means of bilingual lexicons has already been proven
in various tasks such as semantic role labeling (Padó
and Lapata, 2009; van der Plas et al., 2011), parsing

(Zhao et al., 2009; Durrett et al., 2012; Täckström et
al., 2013b), POS tagging (Yarowsky and Ngai, 2001;
Das and Petrov, 2011; Täckström et al., 2013a), etc.

Techniques for automatic bilingual lexicon ex-
traction (BLE) from parallel corpora on the basis
of word alignment models are well established (Och
and Ney, 2003). However, due to a relative scarce-
ness of parallel data for many language pairs and
domains, alternative approaches that rely on compa-
rable corpora have also gained much interest (e.g.,
Fung and Yee (1998); Rapp (1999)).

The models that rely on non-parallel data typ-
ically represent each word by a high-dimensional
vector in a feature vector space, where the dimen-
sions of the vector are its context features. The con-
text features are typically words co-occurring with
the word in a predefined context.1 The similar-
ity of two words, wS

1 given in the source language
LS with vocabulary V S and wT

2 in the target lan-
guage LT with vocabulary V T is then computed as
sim(wS

1 , w
T
2 ) = SF (cv(wS

1 ), cv(wT
2 )). cv(wS

1 ) =
[scS1 (c1), . . . , sc

S
1 (cN )] is a context vector for wS

1

with N context features ck, where scS1 (ck) denotes
the score for wS

1 associated with context feature ck
(similar for wT

2 ). SF is a similarity function (e.g.,
cosine, the Kullback-Leibler divergence, the Jaccard
index) operating on the context vectors (Lee, 1999).

When operating with 2 languages, the context fea-
tures cannot be compared directly. Therefore, in
order to compare the feature vectors cv(wS

1 ) and
cv(wT

2 ), the context features need to span a shared

1The context may be a document, a paragraph, a window of
predefined size around each occurrence of wS

i in CS , etc. For
an overview, see, e.g., (Tamura et al., 2012).
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bilingual vector space. The standard way of build-
ing a bilingual vector space is to use bilingual lex-
icon entries (Rapp, 1999; Fung and Cheung, 2004;
Gaussier et al., 2004) as dimensions of the space.
However, there seems to be an apparent flaw in
logic, since the methods assume that there exist
readily available bilingual lexicons that are then
used to induce bilingual lexicons! Therefore, the fo-
cus of the researchers has turned to designing BLE
methods that do not rely on any external translation
resources such as machine-readable bilingual lex-
icons and parallel corpora (Haghighi et al., 2008;
Vulić et al., 2011).

In order to circumvent this issue, one line of re-
cent work aims to bootstrap high-quality bilingual
vector spaces from a small initial seed lexicon. The
seed lexicon is constructed by harvesting identical
or similarly spelled words across languages (Koehn
and Knight, 2002; Peirsman and Padó, 2010), and it
spans the initial bilingual vector space. The space is
then gradually enriched with new dimensions/axes
during the bootstrapping procedure. The bootstrap-
ping process has already proven its validity in induc-
ing bilingual lexicons for closely similar languages
such as Spanish-Portuguese or Croatian-Slovene
(Fišer and Ljubešić, 2011), but it still lacks further
generalization to more distant language pairs.

The main goal of this paper is to shed new light
on the bootstrapping approaches to bilingual lexicon
extraction, and to construct a language pair agnos-
tic bootstrapping method that is able to build high-
quality bilingual vector spaces that consequently
lead to high-quality bilingual lexicons for more dis-
tant language pairs where orthographic similarity is
not sufficient to seed bilingual vector spaces. We
aim to answer the following key questions:

• How to seed bilingual vector spaces besides us-
ing only orthographically similar words?
• Is it better to seed bilingual spaces with trans-

lation pairs/dimensions that are frequent in the
corpus, and does the frequency matter at all?
Does the size of the initial seed lexicon matter?
• How to enrich bilingual vector spaces with only

highly reliable dimensions in order to prevent
semantic drift?

With respect to these questions, the main contribu-
tions of this article are:

• We present a complete overview of the frame-
work of bootstrapping bilingual vector spaces
from non-parallel data without any additional
resources. We dissect the bootstrapping pro-
cess and describe all its key components.
• We introduce a new way of seeding the boot-

strapping procedure that does not rely on any
orthographic clues and that yields bilingual
vector spaces of higher quality. We analyze the
impact of different seed lexicons on the quality
of induced bilingual vector spaces.
• We show that in the setting without any ex-

ternal translation resources, our bootstrapping
approach yields lexicons that outperform the
best performing corpus-based BLE methods on
standard test datasets for 2 language pairs.

2 Boostrapping Bilingual Vector Spaces: A
General Overview

This section presents the complete bootstrapping
procedure that starts with an initial seed lexicon
which spans the initial bilingual vector space, while
as the output in each iteration of the procedure it pro-
duces an updated bilingual vector space that can be
used to extract a bilingual lexicon.

2.1 General Framework

We assume that we are solely in possession of a
(non-parallel) bilingual corpus C that is composed
of a sub-corpus CS given in the source language LS ,
and a sub-corpus CT in the target language LT . All
word types that occur in CS constitute a set V S . All
word types in CT constitute a set V T . The goal is to
build a bilingual vector space using only corpus C.

Assumption 1. Dimensions of the bilingual vector
space are one-to-one word translation pairs. For in-
stance, dimensions of a Spanish-English space are
pairs like (perro, dog), (ciencia, science), etc. The
one-to-one constraint (Melamed, 2000), although
not valid in general, simplifies the construction of
the bootstrapping procedure. Z denotes the set of
translation pairs that are the dimensions of the space.

Computing cross-lingual word similarity in a
bilingual vector space. Now, assume that our bilin-
gual vector space consists of N one-to-one word
translation pairs ck = (cSk , c

T
k ), k = 1, . . . , N . For

each word wS
i ∈ V S , we compute the similarity of
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that word with each word wT
j ∈ V T by computing

the similarity between their context vectors cv(wS
i )

and cv(wT
j ), which are actually their representations

in the N -dimensional bilingual vector space.

The cross-lingual similarity is computed follow-
ing the standard procedure (Gaussier et al., 2004):
(1) For each source word wS

i ∈ V S , build its N -
dimensional context vector cv(wS

i ) that consists of
association scores scSk (cSk ), that is, we compute the
strength of association with the “source” part of each
dimension ck that constitutes the N -dimensional
bilingual space. The association is dependent on the
co-occurrence of wS

i and cSk in a predefined context.
Various functions such as the log-likelihood ratio
(LLR) (Rapp, 1999; Ismail and Manandhar, 2010),
TF-IDF (Fung and Yee, 1998), or pointwise mu-
tual information (PMI) (Bullinaria and Levy, 2007;
Shezaf and Rappoport, 2010) are typically used as
weighting functions to quantify the strength of the
association.
(2) Repeat step (1) for each target word wT

j ∈ V T

and build context vectors cv(wT
j ) that consist of

scores scTk (cTk ).
(3) Since cSk and cTk address the same dimension
ck in the bilingual vector space for each k =
1, . . . , N , we are able to compute the similarity be-
tween cv(wS

i ) and cv(wT
j ) using any similarity mea-

sure such as the Jaccard index, the Kullback-Leibler
or the Jensen-Shannon divergence, the cosine mea-
sure, or others (Lee, 1999; Cha, 2007).

The similarity score for two words wS
i and wT

j

is sim(wS
i , w

T
j ). For each source word wS

i , we can
build a ranked listRL(wS

i ) that consists of all words
wT

j ∈ V T ranked according to their respective sim-
ilarity scores sim(wS

i , w
T
j ). In the similar fashion,

we can build a ranked list RL(wT
j ), for each target

word wT
j . We call the top scoring target word wT

j

for some source word wS
i its translation candidate,

and write TC(wS
i ) = wT

j . Additionally, we label
the ranked list RL(wS

i ) that is pruned at position M
as RLM (wS

i ).

Bootstrapping. The key idea of the bootstrapping
approach relies on an insight that highly reliable
translation pairs (wS

1 , w
T
2 ) that are encountered us-

ing the N -dimensional bilingual vector space might
be added as new dimensions of the space. By adding

these new dimensions, it might be possible to extract
more highly reliable translation pairs that were pre-
viously not used as dimensions of the space, and the
iterative procedure repeats until no new dimensions
are found. The induced bilingual vector space may
then be observed as a bilingual lexicon per se, but it
may also be used to find translation equivalents for
other words which are not used to span the space.

Algorithm 1: Bootstrapping a bilingual vector space
Input : Bilingual corpus C = CS ∪ CT

Initialize: (1) Obtain a one-to-one seed lexicon. The
entries from the lexicon are initial dimensions of the
space: Z0; (2) s = 0;
Bootstrap:
repeat

1: For each wS
i ∈ V S : compute RL(wS

i ) using Zs ;
2: For each wT

j ∈ V T : compute RL(wT
j ) using Zs ;

3: For each wS
i ∈ V S and wT

j ∈ V T : score each
translation pair (wS

i , TC(wS
i )) and (TC(wT

j ), wT
j )

and add them to a pool of candidate dimensions ;
4: Choose the best candidates from the pool and add
them as new dimensions: Zs+1 ← Zs ∪ {best} ;
5: Resolve collisions in Zs+1;
6: s← s + 1 ;

until no new dimensions are found (convergence) ;
Output: One-to-one translation pairs→ Dimensions of a

bilingual vector space Zfinal

The overview of the procedure as given by alg. 1
reveals these crucial points in the procedure: (Q1)
how to provide initial dimensions of the space? (the
initialization step), (Q2) how to score each trans-
lation pair, estimate their confidence, and how to
choose the best candidates from the pool of candi-
dates? (steps 3 and 4), and (Q3) how to resolve
potential collisions that violate the one-to-one con-
straint? (step 5). We will discuss (Q1) and (Q2) in
more detail later, while we resolve (Q3) following a
simple heuristic as follows:

Assumption 2. In case of collision, dimen-
sions/pairs that are found at later stages of the boot-
strapping process overwrite previous dimensions.

The intuition here is that we expect for the quality of
the space to increase at each stage of the bootstrap-
ping process, and newer translation pairs should be
more confident than the older ones. For instance, if 2
out of N dimensions of a Spanish-English bilingual
space are pairs (piedra,wall) and (tapia,stone), but
then if during the bootstrapping process we extract a
new candidate pair (piedra,stone), we will delete the
former two dimensions and add the latter.
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2.2 Initializing Bilingual Vector Spaces

Seeding or initializing a bootstrapping procedure is
often a critical step regardless of the actual task
(McIntosh and Curran, 2009; Kozareva and Hovy,
2010), and it decides whether the complete process
will end as a success or a failure. However, Peirsman
and Padó (2011) argue that the initialization step is
not crucial when dealing with bootstrapping bilin-
gual vector spaces. Here, we present two different
strategies of initializing the bilingual vector space.
Identical words and cognates. Previous work re-
lies exclusively on identical and similarly spelled
words to build the initial set of dimensions Z0

(Koehn and Knight, 2002; Peirsman and Padó, 2010;
Fišer and Ljubešić, 2011). This strategy yields
promising results for closely similar language pairs,
but is of limited use for other language pairs.
High-frequency seeds. Another problem with us-
ing only identical words and cognates as seeds lies in
the fact that many of them might be infrequent in the
corpus, and as a consequence the expressiveness of a
bilingual vector space might be limited. On the other
hand, high-frequency words offer a lot of evidence
in the corpus that could be exploited in the boot-
strapping approach. In order to induce initial trans-
lation pairs, we rely on the framework of multilin-
gual probabilistic topic modeling (MuPTM) (Boyd-
Graber and Blei, 2009; De Smet and Moens, 2009;
Mimno et al., 2009; Zhang et al., 2010), that does
not require a bilingual lexicon, it operates with non-
parallel data, and is able to produce highly confident
translation pairs for high-frequency words (Mimno
et al., 2009; Vulić and Moens, 2013).2 Therefore,
we can construct the initial seed lexicon as follows:
(1) Train a multilingual topic model on the corpus.
(2) Obtain one-to-one translation pairs using any of
the MuPTM-based models of cross-lingual similar-
ity, e.g., (Vulić et al., 2011; Vulić and Moens, 2013).
(3) Retain only symmetric translation pairs. This
step ensures that only highly confident pairs are used
as seed translation pairs.
(4) Rank translation pairs according to their fre-
quency in the corpus and use a subset of the most

2One can also use other models that are similar to MuPTM
such as (Haghighi et al., 2008; Daumé III and Jagarlamudi,
2011) to produce the initial seed lexicon, but that analysis is
beyond the scope of this work.

frequent symmetric pairs as seeds.

2.3 Estimating Confidence of New Dimensions
Another crucial step in the bootstrapping proce-
dure is the estimation of confidence in a translation
pair/candidate dimension. Errors in the early stages
of the procedure may negatively affect the learning
process and even cause semantic drift (Riloff and
Shepherd, 1999; McIntosh and Curran, 2009). We
therefore impose the constraint which requires trans-
lation pairs to be symmetric in order to qualify as po-
tential new dimensions of the space. In other words,
given the current set of dimensions Zs, a transla-
tion pair (wS

i , w
T
j ) has a possibility to be chosen as

a new dimension from the pool of candidate dimen-
sions if and only if it holds: TC(wS

i ) = wT
j and

TC(wT
j ) = wS

i . This symmetry constraint should
ensure a relative reliability of translation pairs.

In each iteration of the bootstrapping process, we
may add all symmetric pairs from the pool of candi-
dates as new dimensions, or we could impose addi-
tional selection criteria that quantify the degree of
confidence in translation pairs. We are then able
to rank the symmetric candidate translation pairs in
the pool of candidates according to their confidence
scores (step 3 of alg. 1), and choose only the best
B candidates from the pool in each iteration (step 4)
as done in (Thelen and Riloff, 2002; McIntosh and
Curran, 2009; Huang and Riloff, 2012). By picking
only a subset of the B most confident candidates in
each iteration, we hope to further prevent a possibil-
ity of semantic drift, i.e., “poisoning” the bootstrap-
ping process that might happen if we include incor-
rect translation pairs as dimensions of the space.

In this paper, we investigate 3 different confidence
estimation functions:3

(1) Absolute similarity score. Confidence of a
translation pair CF (wS

i , TC(wS
i )) is simply the ab-

solute similarity value sim(wS
i , TC(wS

i ))
(2) M-Best confidence function. It contrasts the
score of the translation candidate with the average
score over the first M most similar words in the
ranked list. The larger the difference, the more con-
fidence we have in the translation candidate. Given
a word wS

i ∈ V S and a ranked list RLM (wS
i ), the

3A symmetrized version of the confidence functions is com-
puted as the geometric mean of source-to-target and target-to-
source confidence scores.
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average score of the best M words is computed as:

simM (wS
i ) =

1

M

∑
wT

j ∈RLM (wS
i )

sim(wS
i , w

T
j )

The final confidence score is then:

CF (wS
i , TC(wS

i )) = sim(wS
i , TC(wS

i ))− simM (wS
i )

(3) Entropy-based confidence function. We adapt
the well-known entropy-based confidence (Smith
and Eisner, 2007; Tu and Honavar, 2012) to this par-
ticular task. First, we need to define a distribution:

p(wT
j |wS

i ) =
esim(wS

i ,wT
j )∑

wT
l ∈V T esim(wS

i ,wT
l )

The confidence function is then minus the entropy
of the probability distribution p:

CF (wS
i , TC(wS

i )) =
∑

wT
l ∈V T

p(wT
l |wS

i ) log p(wT
l |wS

i )

3 Experimental Setup

Data collections. We investigate our bootstrapping
approach on the BLE task for 2 language pairs:
Spanish-English (ES-EN) and Italian-English (IT-
EN), and work with the following corpora previ-
ously used by Vulić and Moens (2013): (i) a col-
lection of 13, 696 Spanish-English Wikipedia arti-
cle pairs (Wiki-ES-EN), (ii) 18, 898 Italian-English
Wikipedia article pairs (Wiki-IT-EN).4

Following (Koehn and Knight, 2002; Haghighi et
al., 2008; Prochasson and Fung, 2011; Vulić and
Moens, 2013), we use TreeTagger (Schmid, 1994)
for POS-tagging and lemmatization of the corpora,
and then retain only nouns that occur at least 5 times
in the corpus. We record the lemmatized form when
available, and the original form otherwise. Our fi-
nal vocabularies consist of 9, 439 Spanish nouns and

4Vulić and Moens (2013) also worked with Dutch-English
(NL-EN), but we have decided to leave out the results obtained
for that language pair due to space constraints, high similarity
between the two languages, and the fact that the results obtained
for that language pair are qualitatively similar to the results we
report for ES-EN and IT-EN. Hence including the results for
NL-EN would not contribute to the paper with any new impor-
tant insight and conclusion.

12, 945 nouns for ES-EN, and 7, 160 Italian nouns
and 9, 116 English nouns for IT-EN.
Ground truth. The goal of the BLE task is to ex-
tract a bilingual lexicon of one-to-one translations.
In order to test the quality of bilingual vector spaces
induced by our bootstrapping approach, we evaluate
it on standard 1000 ground truth one-to-one trans-
lation pairs built for the Wiki-ES-EN and Wiki-IT-
EN datasets (Vulić and Moens, 2013). Note that
we do not explicitly test the bilingual vector space
as a bilingual lexicon, but rather its ability to find
semantically similar words and translations also for
words that are not used as dimensions of the space
(see sect. 2.1).
Evaluation metrics. We measure the performance
on the BLE task using a standard Top M accuracy
(AccM ) metric. It denotes the number of source
words wS

i from ground truth translation pairs whose
list RLM (wS

i ) contains the correct translation ac-
cording to our ground truth over the total number
of ground truth translation pairs (=1000) (Gaussier
et al., 2004; Tamura et al., 2012).5 Additionally,
we report the mean reciprocal rank (MRR) scores
(Voorhees, 1999) for some experimental runs.
Multilingual topic model. We utilize a straightfor-
ward multilingual extension of the standard Blei et
al.’s LDA model (Blei et al., 2003) called bilingual
LDA (Mimno et al., 2009; Ni et al., 2009; De Smet
and Moens, 2009). BiLDA training follows the pro-
cedure from (Vulić and Moens, 2013), that is, the
training method is Gibbs sampling with the number
of topics set to K = 2000. Hyperparameters of the
model are set to standard values (Steyvers and Grif-
fiths, 2007): α = 50/K and β = 0.01.
Building initial seed lexicons. To produce the lists
of one-to-one translation pairs that are used as seeds
for the bootstrapping approach (see sect. 2.2), we
experiment with the TopicBC and the ResponseBC
methods from (Vulić and Moens, 2013), which are
the MuPTM-based models of cross-lingual seman-
tic similarity that obtain the best results in the BLE
task on these datasets. In short, the TopicBC method
computes the similarity of two words according to
the similarity of their conditional topic distributions
(Griffiths et al., 2007; Vulić et al., 2011) using

5We can build a one-to-one bilingual lexicon by harvesting
one-to-one translation pairs (wS

i , TC(wS
i )), and the quality of

that lexicon is best reflected in the Acc1 score.
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the Bhattacharyya coefficient (BC) (Kazama et al.,
2010) as the similarity function. ResponseBC is a
second-order similarity method. It first computes
initial similarity scores between all words cross-
lingually and monolingually using the cross-lingual
topical space and, in the second step, it computes the
similarity between 2 words as the similarity between
their word vectors that now contain the initial word-
to-word similarity scores with all source and target
words. The similarity function is again BC.

We use these models of similarity as a black box
to acquire seeds for the bootstrapping approach, but
we encourage the interested reader to find more de-
tails about the methods in the relevant literature.
These two models also serve as our baseline models,
and our goal is to test whether we are able to obtain
bilingual lexicons of higher quality using bootstrap-
ping that starts from the output of these models.
Weighting and similarity functions. We have
experimented with different families of weighting
(e.g., PMI, LLR, TF-IDF, chi-square) and similar-
ity functions (e.g., cosine, Dice, Kullback-Leibler,
Jensen-Shannon) (Lee, 1999; Turney and Pantel,
2010). In this paper, we present results obtained
by positive pointwise mutual information (PPMI)
(Niwa and Nitta, 1994) as a weighting function,
which is a standard choice in vector space seman-
tics (Turney and Pantel, 2010), and (combined with
cosine) yields the best results over a group of seman-
tic tasks according to (Bullinaria and Levy, 2007).
We use a smoothed version of PPMI as presented
in (Pantel and Lin, 2002; Turney and Pantel, 2010).
Again, based on the results reported in the relevant
literature (Bullinaria and Levy, 2007; Laroche and
Langlais, 2010; Turney and Pantel, 2010), we opt
for the cosine similarity as a standard choice for SF .
We have also experimented with different window
sizes ranging from 3 to 15 in both directions around
the pivot word, but we have not detected any major
qualitative difference in the results and their inter-
pretation. Therefore, all results reported in the paper
are obtained by setting the window size to 6.

4 Results and Discussion

4.1 Are Seeds Important?

In recent work, Peirsman and Padó (2010; 2011)
report that “the size and quality of the (seed) lex-

icon are not of primary importance given that the
bootstrapping procedure effectively helped filter out
incorrect translation pairs and added more newly
identified mutual nearest neighbors.” According to
their findings, (1) noisy translation pairs are cor-
rected in later stages of the bootstrapping process,
since the quality of bilingual vector spaces gradu-
ally increases, (2) the size of the seed lexicon does
not matter since the bootstrapping approach is able
to learn translation pairs that were previously not
present in the seed lexicon. Additionally, they do not
provide any insight whether the frequency of seeds
in the corpus influences the quality of induced bilin-
gual vector spaces. In this paper, we question these
claims with a series of BLE experiments.

All experiments conducted in this section do not
rely on any extra confidence estimation except for
the symmetry constraint, that is, in each step we en-
rich the bilingual vector space with all new symmet-
ric translation pairs (see alg. 1 and sect. 2.3).
Exp. I: Same size, different seedings? The goal
of this experiment is to test whether the quality of
seeds plays an important role in the bootstrapping
approach. We experiment with 3 different seed lex-
icons: (1) Following (Peirsman and Padó, 2010;
Fišer and Ljubešić, 2011), we harvest identically
spelled words across 2 languages and treat them
as one-to-one translations. This procedure results
in 459 seed translation pairs for ES-EN, and 431
pairs for IT-EN (SEED-ID), (2) We obtain symmet-
ric translation pairs using the TopicBC method (see
sect. 3) and use 459 pairs that have the highest fre-
quency in the Wiki-ES-EN corpus as seeds for ES-
EN (similarly 431 pairs for IT-EN) (SEED-TB), (3)
As in (2), but we now use the ResponseBC method to
acquire seeds (SEED-RB). The frequency of a one-
to-one translation pair is simply computed as the ge-
ometric mean of the frequencies of words that con-
stitute the translation pair.

Fig. 1(a) and 1(b) display the progress of the same
bootstrapping procedure using the 3 different seed
lexicons. We derive several interesting conclusions:
(i) Regardless of the actual choice of the seeding
method, the bootstrapping process proves its valid-
ity and utility since we observe that the quality of
induced bilingual vector spaces increases over time
for all 3 seeding methods. The bootstrapping proce-
dure converges quickly. The increase is especially
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Figure 1: Results with 3 different seeding methods as starting points of the bootstrapping process: (i) identical words
only (SEED-ID), (ii) the TopicBC method (SEED-TB), (iii) the ResponseBC method (SEED-RB). (a)AccM scores for
ES-EN; (b) AccM scores for IT-EN; (c) the number of dimensions in the space with the 3 different seeding methods
in each iteration for ES-EN and IT-EN. The bootstrapping procedure typically converges after a few iterations.
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Figure 2: Results on the BLE task with SEED-RB when using seed translation pairs of different frequency: (i) high-
frequency (HF-SEED), (ii) medium-frequency (MF-SEED), (iii) low-frequency (LF-SEED).

prominent in the first few iterations, when the ap-
proach learns more new dimensions (see fig. 1(c)).
(ii) The seeding method is important. A bootstrap-
ping approach that starts with a better seed lexicon
is able to extract bilingual lexicons of higher quality
as reflected in Acc1 scores. Although the bootstrap-
ping approach seems more beneficial when dealing
with noisier seed lexicons (226% increase in terms
of Acc1 for ES-EN and 177% increase for IT-EN
when starting with SEED-ID, compared to 35% in-
crease for ES-EN, and 15% for IT-EN with SEED-
RB), when starting from a noisy seed lexicon such
as SEED-ID the method is unable to reach the same
level of performance. Starting with SEED-ID, the
approach is able to recover noisy dimensions from
an initial bilingual vector space, but it is still unable
to match the results that are obtained when starting
from a better initial space (e.g., SEED-RB).

(iii) SEED-RB produces slightly better results than
SEED-TB (e.g., the final Acc1 of 0.649 for SEED-
RB compared to 0.626 for SEED-TB for IT-EN, and
0.572 compared to 0.553 for ES-EN). This finding is
in line with the results reported in (Vulić and Moens,
2013) where ResponseBC proved to be a more ro-
bust and a more effective method when applied to
the BLE task directly. In all further experiments we
use ResponseBC to acquire seed pairs, i.e., the seed-
ing method is SEED-RB.
Exp. II: Does the frequency of seeds matter? In
the next experiment, we test whether the frequency
of seeds in the corpus plays an important role in
the bootstrapping process. The intuition is that by
using highly frequent and highly confident transla-
tion pairs the bootstrapping method has more reli-
able clues that help extract new dimensions in sub-
sequent iterations. On the other hand, low-frequency
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pairs (although potentially correct one-to-one trans-
lations) do not occur in the corpus and in the con-
texts of other words frequently enough, and are
therefore not sufficient to extract reliable new di-
mensions of the space.

To test the hypothesis, we again obtain all sym-
metric translation pairs using ResponseBC and then
sort them in descending order based on their fre-
quency in the corpus. In total, we retrieve a sorted
list of 2031 symmetric translation pairs for ES-EN,
and 1689 pairs for IT-EN. Following that, we split
the list in 3 parts of equal size: (i) the top third com-
prises translation pairs with the highest frequency in
the corpus (HF-SEED), (ii) the middle third com-
prises pairs of “medium” frequency (MF-SEED),
(iii) the bottom third are low-frequency pairs (LF-
SEED). We then use these 3 different seed lexicons
of equal size to seed the bootstrapping approach.
Fig. 2(a) and 2(b) show the progress of the boot-
strapping process using these 3 seed lexicons. We
again observe several interesting phenomena:
(i) High-frequency seed translation pairs are better
seeds, and that finding is in line with our hypothesis.
Although the bootstrapping approach again displays
a positive trend regardless of the actual choice of
seeds (we observe an increase even when using LF-
SEED), high-frequency seeds lead to better overall
results in the BLE task. Besides its high presence in
contexts of other words, another advantage of high-
frequency seed pairs is the fact that an initial sim-
ilarity method will typically acquire more reliable
translation candidates for such words (Pekar et al.,
2006). For instance, 89.5% of ES-EN pairs in HF-
SEED are correct one-to-one translations, compared
to 65.1% in MF-SEED, and 44.3% in LF-SEED.
(ii) The difference in results between HF-SEED and
MF-SEED is more visible in Acc1 scores. Although
both seed lexicons for all test words provide ranked
lists which contain words that exhibit some semantic
relation to the given word, the reliability and the fre-
quency of translation pairs are especially important
for detecting the relation of cross-lingual word syn-
onymy, that is, the translational equivalence that is
exploited in building one-to-one bilingual lexicons.
Exp. III: Does size matter? The following exper-
iment investigates whether bilingual vector spaces
may be effectively bootstrapped from small high-
quality seed lexicons, and if larger seed lexicons

necessarily lead to bilingual vector spaces of higher
quality as reflected in BLE results. We again retrieve
a sorted list of symmetric translation pairs as in Exp.
II. Following that, we build seed lexicons of vari-
ous sizes by retaining only the first N pairs from
the list, where we vary N from 200 to 1400 in steps
of 200. We also use the entire sorted list as a seed
lexicon (All), and compare the results on the BLE
task with the results obtained by applying the Re-
sponseBC and TopicBC methods directly (Vulić and
Moens, 2013). The results are summarized in tables
1 and 2. We observe the following:
(i) If we provide a seed lexicon with sufficient en-
tries, the bootstrapping procedure provides compa-
rable results regardless of the seed lexicon size, al-
though results tend to be higher for larger seed lex-
icons (e.g., compare results when starting with 600
and 1200 lexicon entries). When starting with the
size of 600, the bootstrapping approach is able to
find dimensions that were already in the seed lexi-
con of size 1200. The consequence is that, although
bootstrapping with a smaller seed lexicon displays a
slower start (see the difference in results at iteration
0), the performances level after convergence.
(ii) Regardless of the seed lexicon size, the boot-
strapping approach is valuable. It consistently im-
proves the quality of the induced bilingual vector
space, and consequently, the quality of bilingual lex-
icons extracted using that vector space. The positive
impact is more prominent for smaller seed lexicons,
i.e., we observe an increase of 78% for ES-EN when
starting with only 200 seed pairs, compared to an
increase of 15% when starting with 800 seed pairs,
and 10% when starting with 1400 seed pairs.
(iii) The bootstrapping approach outperforms Re-
sponseBC and TopicBC in terms of Acc1 and MRR
scores for both language pairs when the seed lexi-
con provides a sufficient number of entries. How-
ever, in terms of Acc10, TopicBC and ResponseBC
still exhibit comparable (for IT-EN) or even better
(ES-EN) results. Both TopicBC and ResponseBC
are MuPTM-based methods that, due to MuPTM
properties, model the similarity of two words at the
level of documents as contexts, while the bootstrap-
ping approach is a window-based approach that nar-
rows down the context to a local neighborhood of a
word. The MuPTM-based models are better suited
to detect a general topical similarity of words, and
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Iteration: 0 2 5 10

Seed lexicon Acc1 MRR Acc10 Acc1 MRR Acc10 Acc1 MRR Acc10 Acc1 MRR Acc10

200(→1617) 0.274 0.352 0.525 0.446 0.534 0.713 0.481 0.569 0.753 0.488 0.576 0.752
400(→1563) 0.416 0.499 0.663 0.518 0.602 0.774 0.542 0.620 0.787 0.545 0.625 0.788
600(→1554) 0.459 0.539 0.707 0.550 0.630 0.787 0.573 0.650 0.803 0.578 0.654 0.802
800(→1582) 0.494 0.572 0.728 0.548 0.631 0.799 0.563 0.644 0.802 0.567 0.646 0.806

1000(→1636) 0.516 0.591 0.744 0.563 0.644 0.805 0.578 0.656 0.813 0.581 0.658 0.817
1200(→1740) 0.536 0.613 0.764 0.586 0.661 0.804 0.588 0.664 0.812 0.591 0.667 0.814
1400(→1888) 0.536 0.620 0.776 0.583 0.659 0.808 0.589 0.666 0.815 0.588 0.666 0.818

All-2031(→2437) 0.543 0.625 0.785 0.589 0.667 0.813 0.597 0.675 0.818 0.599 0.677 0.820

TopicBC 0.433 0.576 0.843 − − − − − − − − −
ResponseBC 0.517 0.635 0.891 − − − − − − − − −

Table 1: ES-EN: Results with different sizes of the seed lexicon. The number in the parentheses denotes the number
of dimensions in the bilingual space after the bootstrapping procedure converges. The seeding method is SEED-RB.

Iteration: 0 2 5 10

Seed lexicon Acc1 MRR Acc10 Acc1 MRR Acc10 Acc1 MRR Acc10 Acc1 MRR Acc10

200(→1255) 0.394 0.469 0.703 0.515 0.595 0.757 0.548 0.621 0.782 0.555 0.628 0.787
400(→1265) 0.546 0.618 0.757 0.623 0.690 0.831 0.639 0.704 0.840 0.644 0.709 0.844
600(→1309) 0.585 0.657 0.798 0.653 0.718 0.856 0.664 0.726 0.859 0.672 0.734 0.862
800(→1365) 0.602 0.672 0.813 0.657 0.723 0.857 0.663 0.726 0.865 0.665 0.730 0.867

1000(→1416) 0.616 0.688 0.828 0.629 0.706 0.853 0.636 0.709 0.857 0.642 0.714 0.861
1200(→1581) 0.628 0.700 0.840 0.655 0.724 0.869 0.664 0.733 0.877 0.668 0.736 0.883
1400(→1749) 0.626 0.701 0.851 0.654 0.727 0.867 0.656 0.728 0.867 0.661 0.733 0.874

All-1689(→2008) 0.616 0.695 0.850 0.643 0.716 0.860 0.653 0.724 0.862 0.654 0.726 0.866

TopicBC 0.578 0.667 0.834 − − − − − − − − −
ResponseBC 0.622 0.729 0.882 − − − − − − − − −

Table 2: IT-EN: Results with different sizes of the seed lexicon. The number in the parentheses denotes the number of
dimensions in the bilingual space after the bootstrapping procedure converges. The seeding method is SEED-RB.

are therefore not always able to push the real cross-
lingual synonyms higher in the ranked list of seman-
tically similar words, while the window-based boot-
strapping approach is better tailored to model the
relation of cross-lingual synonymy, i.e., to extract
one-to-one translation pairs (as reflected in Acc1
scores). A similar conclusion for monolingual set-
tings is drawn by Baroni and Lenci (2010).
(iv) Since our bootstrapping approach utilizes Re-
sponseBC or TopicBC as a preprocessing step, it is
obvious that the approach leads to an increased com-
plexity. On top of the initial complexity of Respon-
seBC and TopicBC, the bootstrapping method re-
quires |V S ||V T | comparisons at each iteration, but
given the fact that each wS

i ∈ V S may be processed
independently of any other wS

j ∈ V S in each itera-
tion, the bootstrapping method is trivially paralleliz-
able. That makes the method computationally fea-
sible even for vocabularies larger than the ones re-
ported in the paper.

4.2 Is Confidence Estimation Important?

According to the results from tables 1 and 2, re-
gardless of the seed lexicon size, the bootstrapping
approach does not suffer from semantic drift, i.e.,
if we seed the process with high-quality symmetric
translation pairs, it is able to recover more pairs and
add them as new dimensions of the bilingual vector
space. However, we also study the influence of ap-
plying different confidence estimation functions on
top of the symmetry constraint (see sect 2.3), but we
do not observe any improvement in the BLE results,
regardless of the actual choice of a confidence esti-
mation function. The only observed phenomenon,
as illustrated by fig. 3, is the slower convergence
rate when setting the parameter B to lower values.
The symmetry constraint alone seems to be sufficient
to prevent semantic drift, but it might also be a too
strong and a too conservative assumption, since only
a small portion of all possible translation pairs is
used to span the bilingual vector space (for instance,
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when starting with 600 entries for ES-EN, the final
bilingual vector space consists of only 1554 pairs,
while the total number of ES nouns is 9439). One
line of future work will address the construction of
bootstrapping algorithms that also enable the usage
of highly reliable asymmetric pairs as dimensions,
and the confidence estimation functions might have
a more important role in that setting.

5 Conclusion

We have presented a new bootstrapping approach to
inducing bilingual vector spaces from non-parallel
data, and have shown the utility of the induced space
in the BLE task. The approach is fully corpus-based
and, unlike previous work, it does not rely on the
availability of machine-readable translation dictio-
naries or predefined concept categories. We have
systematically described, analyzed and evaluated all
key components of the bootstrapping approach. Re-
sults reveal that, contrary to conclusions from prior
work, the initialization of the bilingual vector space
is especially important. We have presented a novel
approach to initializing the bootstrapping procedure,
and have shown that better results in the BLE task
are obtained by starting from seed lexicons that com-
prise highly reliable high-frequent translation pairs.
The bootstrapping framework presented in the pa-
per is completely language pair independent, which
makes it effectively applicable to any language pair.

In future work, we will investigate other models
of similarity besides TopicBC and ResponseBC (e.g,
the method from (Haghighi et al., 2008)) that could
be used as preliminary models for constructing an
initial bilingual vector space. Furthermore, we plan

to study other confidence functions and explore if
asymmetric translation candidates could also con-
tribute to the bootstrapping method. Finally, we also
plan to test the robustness of our fully corpus-based
bootstrapping approach by porting it to more lan-
guage pairs.
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