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Abstract

We propose a language-independent approach
for improving statistical machine translation
for morphologically rich languages using a
hybrid morpheme-word representation where
the basic unit of translation is the morpheme,
but word boundaries are respected at all stages
of the translation process. Our model extends
the classic phrase-based model by means
of (1) word boundary-aware morpheme-level
phrase extraction, (2) minimum error-rate
training for a morpheme-level translation
model using word-level BLEU, and (3) joint
scoring with morpheme- and word-level lan-
guage models. Further improvements are
achieved by combining our model with the
classic one. The evaluation on English to
Finnish usingEuroparl (714K sentence pairs;
15.5M English words) shows statistically sig-
nificant improvements over the classic model
based on BLEU and human judgments.

1 Introduction

The fast progress of statistical machine translation
(SMT) has boosted translation quality significantly.
While research keeps diversifying,the wordremains
the atomic token-unit of translation. This is fine for
languages with limited morphology like English and
French, or no morphology at all like Chinese, but
it is inadequate for morphologically rich languages
like Arabic, Czech or Finnish (Lee, 2004; Goldwater
and McClosky, 2005; Yang and Kirchhoff, 2006).

∗This research was sponsored in part by CSIDM (grant #
200805) and by a National Research Foundation grant entitled
“Interactive Media Search” (grant # R-252-000-325-279).

There has been a line of recent SMT research
that incorporates morphological analysis as part of
the translation process, thus providing access to the
information within the individual words. Unfortu-
nately, most of this work either relies on language-
specific tools, or only works for very small datasets.

Below we propose a language-independent ap-
proach to SMT of morphologically rich lan-
guages using a hybrid morpheme-word representa-
tion where the basic unit of translation is the mor-
pheme, but word boundaries are respected at all
stages of the translation process. We use unsuper-
vised morphological analysis and we incorporate its
output into the process of translation, as opposed to
relying on pre-processing and post-processing only
as has been done in previous work.

The remainder of the paper is organized as fol-
lows. Section 2 reviews related work. Sections 3
and 4 present our morphological and phrase merging
enhancements. Section 5 describes our experiments,
and Section 6 analyzes the results. Finally, Section 7
concludes and suggests directions for future work.

2 Related Work

Most previous work on morphology-aware ap-
proaches relies heavily on language-specific tools,
e.g., theTreeTagger(Schmid, 1994) or theBuck-
walter Arabic Morphological Analyzer (Buckwal-
ter, 2004), which hampers their portability to
other languages. Moreover, the prevalent method
for incorporating morphological information is by
heuristically-driven pre- or post-processing. For
example, Sadat and Habash (2006) use different
combinations of Arabic pre-processing schemes
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for Arabic-English SMT, whereas Oflazer and El-
Kahlout (2007) post-processes Turkish morpheme-
level translations by re-scoringn-best lists with a
word-based language model. These systems, how-
ever, do not attempt to incorporate their analysis as
part of the decoding process, but rather rely on mod-
els designed for word-token translation.

We should also note the importance of the trans-
lation direction: it is much harder to translate from a
morphologically poor to a morphologically rich lan-
guage, where morphological distinctions not present
in the source need to be generated in the target lan-
guage. Research in translating into morphologically
rich languages, has attracted interest for languages
like Arabic (Badr et al., 2008),Greek (Avramidis
and Koehn, 2008),Hungarian(Novák, 2009; Koehn
and Haddow, 2009),Russian (Toutanova et al.,
2008), andTurkish(Oflazer and El-Kahlout, 2007).
These approaches, however, either only succeed in
enhancing the performance for small bi-texts (Badr
et al., 2008; Oflazer and El-Kahlout, 2007), or im-
prove only modestly for large bi-texts1.

3 Morphological Enhancements

We present a morphologically-enhanced version of
the classic phrase-based SMT model (Koehn et al.,
2003). We use a hybrid morpheme-word representa-
tion where the basic unit of translation is the mor-
pheme, but word boundaries are respected at all
stages of the translation process. This is in con-
trast with previous work, where morphological en-
hancements are typically performed as pre-/post-
processing steps only.

In addition to changing the basic translation token
unit from a word to a morpheme, our model extends
the phrase-based SMT model with the following:

1. word boundary-aware morpheme-level phrase
extraction;

2. minimum error-rate training for a morpheme-
level model using word-level BLEU;

3. joint scoring with morpheme- and word-level
language models.

We first introduce our morpheme-level represen-
tation, and then describe our enhancements.

1Avramidis and Koehn (2008) improved by 0.15 BLEU over
a 18.05 English-Greek baseline; Toutanova et al. (2008) im-
proved by 0.72 BLEU over a 36.00 English-Russian baseline.

3.1 Morphological Representation

Our morphological representation is based on the
output of an unsupervised morphological analyzer.
Following Virpioja et al. (2007), we useMorfessor,
which is trained on raw tokenized text (Creutz and
Lagus, 2007). The tool segments words into mor-
phemes annotated with the following labels:PRE
(prefix),STM(stem),SUF(suffix). Multiple prefixes
and suffixes can be proposed for each word; word
compounding is allowed as well. The output can be
described by the following regular expression:

WORD= ( PRE* STM SUF* )+

For example,uncarefully is analyzed as

un/PRE+ care/STM+ ful/SUF+ ly/SUF

The above token sequence forms the input to our
system. We keep thePRE/STM/SUF tags as part
of the tokens, and distinguish betweencare/STM+
andcare/STM . Note also that the “+” sign is ap-
pended to each nonfinal tag so that we can distin-
guish word-internal from word-final morphemes.

3.2 Word Boundary-aware Phrase Extraction

The core translation structure of a phrase-based
SMT model is thephrase table, which is learned
from a bilingual parallel sentence-aligned corpus,
typically using the alignment template approach
(Och and Ney, 2004). It contains a set of bilingual
phrase pairs, each associated with five scores: for-
ward and backward phrase translation probabilities,
forward and backward lexicalized translation proba-
bilities, and a constant phrase penalty.

The maximum phrase lengthn is normally limited
to seven words; higher values ofn increase the table
size exponentially without actually yielding perfor-
mance benefit (Koehn et al., 2003). However, things
are different when translating with morphemes, for
two reasons: (1) morpheme-token phrases of length
n can span less thann words; and (2) morpheme-
token phrases may only partially span words.

The first point means that morpheme-token
phrase pairs span fewer word tokens, and thus cover
a smaller context, which may result in fewer total
extracted pairs compared to a word-level approach.
Figure 1 shows a case where three Finnish words
consist of nine morphemes. Previously, this issue
was addressed by simply increasing the value ofn

when using morphemes, which is of limited help.
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SRC = theSTM newSTM , unPRE+ democraticSTM immigrationSTM policySTM

TGT = uusiSTM , epäPRE+ demokraatSTM+ tSUF+ iSUF+ sSUF+ enSUF maahanmuuttoPRE+ politiikanSTM

(uusi=new  ,  epädemokraattisen=undemocratic    maahanmuuttopolitiikan=immigration policy)

Figure 1:Example of English-Finnish bilingual fragments morphologically segmented byMorfessor. Solid links
represent IBM Model 4 alignments at the morpheme-token level. Translation glosses for Finnish are given below.

The second point is more interesting: morpheme-
level phrases may span words partially, making them
potentially usable in translating unknown inflected
forms of known source language words, but also
creates the danger of generating sequences of mor-
phemes that are not legal target language words.

For example, let us consider the phrase in Fig-
ure 1: unPRE+ democratic STM. The original
algorithm will extract the spurious phraseepäPRE+
demokraat STM+t SUF+i SUF+sSUF+, beside
the correct one that hasenSUF appended at the
end. Such a spurious phrase does not generally help
in translating unknown inflected forms, especially
for morphologically-rich languages that feature mul-
tiple affixes, but negatively affects the translation
model in terms of complexity and quality.

We solve both problems by modifying the phrase-
pair extraction algorithm so that morpheme-token
phrases can extend longer thann, as long as they
span n words or less. We further require that
word boundaries be respected2, i.e., morpheme-
token phrases span a sequence of whole words. This
is a fair extension of the morpheme-token system
with respect to a word-token one since both are re-
stricted to span up ton word-tokens.

3.3 Morpheme-Token MERT Optimizing
Word-Token BLEU

Modern phrase-based SMT systems use a log-linear
model with the following typical feature functions:
language model probabilities, word penalty, distor-
tion cost, and the five parameters from the phrase ta-
ble. Their weights are set by optimizing BLEU score
(Papineni et al., 2001) directly using minimum error
rate training (MERT), as suggested by Och (2003).

In previous work, phrase-based SMT systems
using morpheme-token input/output naturally per-

2This means that we miss the opportunity to generate new
wordforms for known baseforms, but removes the problem of
proposing nonwords in the target language.

formed MERT at the morpheme-token level as well.
This is not optimal since the final expected system
output is a sequence of words, not morphemes. The
main danger is that optimizing a morpheme-token
BLEU score could lead to a suboptimal weight for
the word penalty feature function: this is because
the brevity penalty of BLEU is calculated with re-
spect to the number of morphemes, which may vary
for sentences with an identical number of words.

This motivates us to perform MERT at the word-
token level, although our input consists of mor-
phemes. In particular, for each iteration of MERT,
as soon as the decoder generates a morpheme-token
translation for a sentence, we convert it into a word-
token sequence, which is used to calculate BLEU.
We thus achieve MERT optimization at the word-
token level while translating a morpheme-token in-
put and generating a morpheme-token output.

3.4 Scoring with Twin Language Models

An SMT system that takes morpheme-token input
and generates morpheme-token output should natu-
rally use a morpheme-token language model (LM).
This has the advantage of alleviating the problem of
data sparseness, especially when translating into a
morphologically rich language, since the LM would
be able to handle some new unseen inflected forms
of known words. On the negative side, a morpheme-
token LM spans fewer word-tokens and thus has a
more limited word “horizon” compared to one op-
erating at the word level. As with the maximum
phrase length, mechanically increasing the order of
the morpheme-token LM has a limited impact.

In order to address the issue in a more princi-
pled manner, we enhance our model with a second
LM that works at the word-token level. This LM is
used together with the morpheme-token LM, which
is achieved by using two separate feature functions
in the log-linear SMT model: one for each LM. We
further had to modify the Moses decoder so that
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uusiSTM  , epäPRE+ demokraatSTM+ tSUF+ iSUF+ sSUF+ enSUF maahanmuuttoPRE+ politiikanSTM 

• Score: “sSUF+ enSUF maahanmuuttoPRE+”  ;  “enSUF maahanmuuttoPRE+ politiikanSTM ”

• Concatenate: uusi , epädemokraattisen maahanmuuttopolitiikan

• Score: “, epädemokraattisen maahanmuuttopolitiikan”

Previous hypotheses Current hypothesis

(i)

(ii)

(iii)

Figure 2:Scoring with twin LMs. Shown are: (i) The current state of the decoding process withthe target phrases
covered by the current partial hypotheses. (ii, iii) Scoring with 3-gram morpheme-token and 3-gram word-token LMs,
respectively. For the word-token LM, the morpheme-token sequence is concatenated into word-tokens before scoring.

it can be enhanced with an appropriate word-token
“view” on the partial morpheme-level hypotheses3.

The interaction of the twin LMs is illustrated in
Figure 2. The word-token LM can capture much
longer phrases and more complete contexts such
as “, ep̈ademokraattisen maahanmuuttopolitiikan”
compared to the morpheme-token LM.

Note that scoring with two LMs that see the out-
put sequence as different numbers of tokens is not
readily offered by the existing SMT decoders. For
example, the phrase-based model in Moses (Koehn
et al., 2007) allows scoring with multiple LMs, but
assumes they use the same token granularity, which
is useful for LMs trained on different monolingual
corpora, but cannot handle our case. While the fac-
tored translation model (Koehn and Hoang, 2007) in
Moses does allow scoring with models of different
granularity, e.g., lemma-token and word-token LMs,
it requires a 1:1 correspondence between the tokens
in the different factors, which clearly is not our case.

Note that scoring with twin LMs is conceptu-
ally superior ton-best re-scoring with a word-token
LM, e.g., (Oflazer and El-Kahlout, 2007), since it is
tightly integrated into decoding: it scores partial hy-
potheses and influenced the search process directly.

4 Enriching the Translation Model

Another general strategy for combining evidence
from the word-token and the morpheme-token rep-
resentations is to build two separate SMT systems
and then combine them. This can be done as a
post-processing system combination step; see (Chen
et al., 2009a) for an overview of such approaches.

3We use the term “hypothesis” to collectively refer to the
following (Koehn, 2003): thesource phrasecovered, the cor-
respondingtarget phrase, and most importantly, areference to
the previous hypothesisthat it extends.

However, for phrase-based SMT systems, it is theo-
retically more appealing to combine their phrase ta-
bles since this allows the translation models of both
systems to influence the hypothesis search directly.

We now describe our phrase table combination
approach. Note that it is orthogonal to the work pre-
sented in the previous section, which suggests com-
bining the two (which we will do in Section 5).

4.1 Building a Twin Translation Model

Figure 3 shows a general scheme of our twin trans-
lation model. First, we tokenize the input at differ-
ent granularities: (1) morpheme-token and (2) word-
token. We then build separate phrase tables (PT) for
the two inputs: a word-tokenPTw and a morpheme-
token PTm. Second, we re-tokenizePTw at the
morpheme level, thus obtaining a new phrase table
PTw→m, which is of the same granularity asPTm.
Finally, we mergePTw→m andPTm, and we input
the resulting phrase table to the decoder.

GIZA++

Decoding

Word alignment Morpheme alignment 

Word Morpheme

PTm

PTw→m

PTw

Morphological 

segmenta"on 

Phrase Extrac"on

PT merging

Phrase Extrac"on

GIZA++

Figure 3:Building a twin phrase table (PT). First, sep-
arate PTs are generated for different input granularities:
word-token and morpheme-token. Second, the word-
token PT is retokenized at the morpheme-token level. Fi-
nally, the two PTs are merged and used by the decoder.
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4.2 Merging and Normalizing Phrase Tables

Below we first describe the two general phrase ta-
ble combination strategies used in previous work:
(1) direct merging using additional feature func-
tions, and (2) phrase table interpolation. We then
introduce our approach.

Add-feature methods. The first line of research
on phrase table merging is exemplified by (Niehues
et al., 2009; Chen et al., 2009b; Do et al., 2009;
Nakov and Ng, 2009). The idea is to select one of
the phrase tables as primary and to add to it all non-
duplicating phrase pairs from the second table to-
gether with their associated scores. For each entry,
features can be added to indicate its origin (whether
from the primary or from the secondary table). Later
in our experiments, we will refer to these baseline
methods asadd-1 and add-2, depending on how
many additional features have been added. The val-
ues we used for these features in the baseline are
given in Section 5.4; their weights in the log-linear
model were set in the standard way using MERT.

Interpolation-based methods. A problem with
the above method is that the scores in the merged
phrase table that correspond to forward and back-
ward phrase translation probabilities, and forward
and backward lexicalized translation probabilities
can no longer be interpreted as probabilities since
they are not normalized any more. Theoretically,
this is not necessarily a problem since the log-linear
model used by the decoder does not assume that the
scores for the feature functions come from a normal-
ized probability distribution. While it is possible to
re-normalize the scores to convert them into prob-
abilities, this is rarely done; it also does not solve
the problem with the dropped scores for the dupli-
cated phrases. Instead, the conditional probabilities
in the two phrase tables are often interpolated di-
rectly, e.g., using linear interpolation. Representa-
tive work adopting this approach is (Wu and Wang,
2007). We refer to this method asinterpolation.

Our method. The above phrase merging ap-
proaches have been proposed for phrase tables de-
rived from different sources. This is in contrast with
our twin translation scenario, where the morpheme-
token phrase tables are built from the same training
dataset; the main difference being that word align-
ments and phrase extraction were performed at the

word-token level forPTw→m and at the morpheme-
token level forPTm. Thus, we propose different
merging approaches for the phrase translation prob-
abilities and for the lexicalized probabilities.

In phrase-based SMT, phrase translation probabil-
ities are computed using maximum likelihood (ML)

estimationφ(f̄ |ē) = #(f̄ ,ē)∑
f̄

#(f̄ ,ē)
, where#(f̄ , ē) is

the number of times the pair(f̄ , ē) is extracted from
the training dataset (Koehn et al., 2003). In order to
preserve the normalized ML estimations as much as
possible, we refrain from interpolation. Instead, we
use the raw counts for the two models#m(f̄ , ē) and
#w→m(f̄ , ē) directly as follows:

φ(f̄ , ē) =
#m(f̄ , ē) + #w→m(f̄ , ē)

∑
f̄ #m(f̄ , ē) +

∑
f̄ #w→m(f̄ , ē)

For lexicalized translation probabilities, we would
like to use simple interpolation. However, we notice
that when a phrase pair belongs to only one of the
phrase tables, the corresponding lexicalized score
for the other table would be zero. This might cause
some good phrases to be penalized just because they
were not extracted in both tables, which we want to
prevent. We thus perform interpolation fromPTm

andPTw according to the following formula:

lex(f̄ |ē) = α× lexm(f̄m|ēm)

+ (1− α)× lexw(f̄w|ēw)

where the concatenation of̄fm and ēm into word-
token sequences yields̄fw andēw, respectively.

If both (f̄m, ēm) and(f̄w, ēw) are present inPTm

andPTw, respectively, we have a simple interpola-
tion of their corresponding lexicalized scores lexm

and lexw. However, if one of them is missing, we
do not use a zero for its corresponding lexicalized
score, but use an estimate as follows.

For example, if only the entry(f̄m, ēm) is present
in PTm, we first convert (̄fm,ēm) into a word-token
pair (f̄m→w,ēm→w), and then induce a correspond-
ing word alignment from the morpheme-token align-
ment of (f̄m,ēm). We then estimate a lexicalized
phrase score using the original formula given in
(Koehn et al., 2003), where we plug this induced
word alignment and word-token lexical translation
probabilities estimated from the word-token dataset
The case when(f̄w, ēw) is present inPTw, but
(f̄m, ēm) is not, is solved similarly.
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5 Experiments and Evaluation

5.1 Datasets

In our experiments, we use the English-Finnish data
from the 2005 shared task (Koehn and Monz, 2005),
which is split into training, development, and test
portions; see Table 1 for details. We further split
the training dataset into four subsets T1, T2, T3, and
T4 of sizes 40K, 80K, 160K, and 320K parallel sen-
tence pairs, which we use for studying the impact of
training data size on translation performance.

Sent.
Avg. words Avg. morph.
en fi en fi

Train 714K 21.62 15.80 24.68 26.15
Dev 2K 29.33 20.99 33.40 34.94
Test 2K 28.98 20.72 33.10 34.47

Table 1: Dataset statistics. Shown are the number of
parallel sentences, and the average number of words and
Morfessormorphemes on the English and Finnish sides
of the training, development and test datasets.

5.2 Baseline Systems

We build two phrase-based baseline SMT systems,
both using Moses (Koehn et al., 2007):

w-system: works at the word-token level, extracts
phrases of up to seven words, and uses a 4-gram
word-token LM (as typical for phrase-based SMT);

m-system: works at the morpheme level, tok-
enized usingMorfessor4 and augmented with “+” as
described in Section 3.1.

Following Oflazer and El-Kahlout (2007) and Vir-
pioja et al. (2007), we use phrases of up to 10
morpheme-tokens and a 5-gram morpheme-token
LM. None of the enhancements described previ-
ously is applied yet. After decoding, morphemes are
concatenated back to words using the “+” markers.

To evaluate the translation quality, we compute
BLEU (Papineni et al., 2001) at the word-token
level. We further introduce a morpheme-token ver-
sion of BLEU, which we call m-BLEU: it first seg-
ments the system output and the reference trans-
lation into morpheme-tokens and then calculates a
BLEU score as usual. Table 2 shows the baseline re-
sults. We can see that them-systemachieves much

4We retrained Morfessor for Finnish/English on the
Finnish/English side of the training dataset.

w-system m-system
BLEU m-BLEU BLEU m-BLEU

T1 11.56 45.57 11.07 49.15
T2 12.95 48.63 12.68 53.78
T3 13.64 50.30 13.32 54.40
T4 14.20 50.85 13.57 54.70
Full 14.58 53.05 14.08 55.26

Table 2: Baseline system performance(on the test
dataset). Shown are word BLEU and morpheme m-
BLEU scores for thew-systemandm-system.

higher m-BLEU scores, indicating that it may have
better morpheme coverage5. However, them-system
is outperformed by thew-systemon the classic word-
token BLEU, which means that it either does not
perform as well as thew-systemor that word-token
BLEU is not capable of measuring the morpheme-
level improvements. We return to this question later.

5.3 Adding Morphological Enhancements

We now add our three morphological enhancements
from Section 3 to the baselinem-system:

phr (training) allow morpheme-token phrases to
get potentially longer than seven morpheme-tokens
as long as they cover no more than seven words;

tune (tuning) MERT for morpheme-token trans-
lations while optimizing word-token BLEU;

lm (decoding) scoring morpheme-token transla-
tion hypotheses with a 5-gram morpheme-token and
a 4-gram word-token LM.

The results are shown in Table 3 (ii). As we can
see, each of the three enhancements yields improve-
ments in BLEU score over them-system, both for
small and for large training corpora. In terms of per-
formance ranking,tune achieves the best absolute
improvement of 0.66 BLEU points onT1 and of 0.47
points on the full dataset, followed bylm andphr.

Table 3 (iii) further shows that usingphr and
lm together yields absolute improvements of 0.70
BLEU points onT1 and 0.50 points on the full train-
ing dataset. Further incorporatingtune, however,
only helps when training onT1.

Overall, the morphological enhancements are on
par with thew-systembaseline, and yield sizable im-

5Note that these morphemes were generated automatically
and thus many of them are erroneous.
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System T1 (40K) Full (714K)

(i)
w-system(w) 11.56 14.58
m-system(m) 11.07 14.08

(ii)
m+phr 11.44+0.37 14.43+0.35

m+tune 11.73+0.66 14.55+0.47

m+lm 11.58+0.51 14.53+0.45

(iii)
m+phr+lm 11.77+0.70 14.58+0.50

m+phr+lm+tune 11.90+0.83 14.39+0.31

Table 3: Impact of the morphological enhancements
(on test dataset). Shown are BLEU scores (in %) for
training onT1 and on the full dataset for (i) baselines,
(ii) enhancements individually, and (iii) combined. Su-
perscripts indicate absolute improvements w.r.tm-system.

provements over them-systembaseline: 0.83 BLEU
points onT1 and 0.50 on the full training dataset.

5.4 Combining Translation Tables

Finally, we investigate the effect of combining
phrase tables derived from a word-token and a
morpheme-token input, as described in Section 4.
We experiment with the following merging methods:

add-1: phrase table merging using one table as
primary and addingoneextra feature6;

add-2: phrase table merging using one table as
primary and addingtwo extra features7;

interpolation : simple linear interpolation with
one parameterα;

ourMethod: our interpolation-like merging
method described in Section 4.2.

Parameter tuning. We tune the parameters of the
above methods on the development dataset.

T1 (40K) Full (714K)

PTm is primary 11.99 13.45
PTw→m is primary 12.26 14.19

Table 4:Effect of selection of primary phrase table for
add-1 (on dev dataset):PTw→m, derived from a word-
token input, vs. PTm, from a morpheme-token input.
Shown is BLEU (in %) onT1 and the full training dataset.

For add-1 and add-2, we need to decide which
(PTw→m or PTm) phrase table should be consid-

6The feature values aree1, e
2/3 or e

1/3 (e=2.71828...);
when the phrase pair comes from both tables, from the primary
table only, and from the secondary table only, respectively.

7The feature values are(e1
, e

1), (e1
, e

0) or (e0
, e

1) when
the phrase pair comes from both tables, from the primary table
only, and from the secondary table only, respectively.

ered the primary table. Table 4 shows the results
when trying both strategies onadd-1. As we can see,
usingPTw→m as primary performs better onT1 and
on the full training dataset; thus, we will use it as
primary on the test dataset foradd-1andadd-2.

For interpolation-based methods, we need to
choose a value for the interpolation parameters. Due
to time constraints, we use the same value for the
phrase translation probabilities and for the lexical-
ized probabilities, and we perform grid search for
α ∈ {0.3, 0.4, 0.5, 0.6, 0.7} usinginterpolateon the
full training dataset. As Table 5 shows,α = 0.6
turns out to work best on the development dataset;
we will use this value in our experiments on the test
dataset both forinterpolateand forourMethod8.

α 0.3 0.4 0.5 0.6 0.7
BLEU 14.17 14.49 14.6 14.73 14.52

Table 5:Trying different values for interpolate (on dev
dataset). BLEU (in %) is for the full training dataset.

Evaluation on the test dataset.We integrate the
morphologically enhanced systemm+phr+lm and
the word-token basedw-systemusing the four merg-
ing methods above. The results for the full train-
ing dataset are shown in Table 6. As we can see,
add-1andadd-2make little difference compared to
them-systembaseline. In contrast,interpolationand
ourMethodyield sizable absolute improvements of
0.55 and 0.74 BLEU points, respectively, over the
m-system; moreover, they outperform thew-system.

Merging methods Full (714K)

(i)
m-system 14.08
w-system 14.58

(ii)
add-1 14.25+0.17

add-2 13.89−0.19

(iii)
interpolation 14.63+0.55

ourMethod 14.82+0.74

Table 6: Merging m+phr+lm and w-system (on test
dataset). BLEU (in %) is for the full training dataset. Su-
perscripts indicate performance gain/loss w.r.tm-system.

6 Discussion

Below we assess the significance of our results based
on micro-analysis and human judgments.

8Note that this might putourMethodat disadvantage.
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6.1 Translation Model Comparison
We first compare the following three phrase ta-
bles:PTm of m-system, maximum phrase length of
10 morpheme-tokens;PTw→m of w-system, maxi-
mum phrase length of 7 word-tokens, re-segmented
into morpheme-tokens; andPTm+phr – morpheme-
token input using word boundary-aware phrase ex-
traction, maximum phrase length of 7 word-tokens.

Full (714K)

(i)
PTm 43.5M
PTw→m 28.9M
PTm+phr 22.5M

(ii)
PTm+phr

⋂
PTm 21.4M

PTm+phr

⋂
PTw→m 10.7M

Table 7: Phrase table statistics.The number of phrase
pairs in (i) individual PTs and (ii) PT overlap, is shown.

PTm+phr versus PTm. Table 7 shows that
PTm+phr is about half the size ofPTm. Still, as
Table 3 shows,m+phr outperforms them-system.
Moreover, 95.07% (21.4M/22.5M) of the phrase
pairs inPTm+phr are also inPTm, which confirms
that boundary-aware phrase extraction selects good
phrase pairs fromPTm to be retained inPTm+phr.

PTm+phr versusPTw→m. These two tables
are comparable in size: 22.5M and 28.9M pairs,
but their overlap is only 47.67% (10.7M/22.5M) of
PTm+phr. Thus, enriching the translation model
with PTw→m helps improve coverage.

6.2 Significance of the Results

Table 8 shows the performance of our system com-
pared to the two baselines:m-systemandw-system.
We achieve an absolute improvement of 0.74 BLEU
points over them-system, from which our system
evolved. This might look modest, but note that
the baseline BLEU is only 14.08, and thus the rel-
ative improvement is 5.6%, which is not trivial.
Furthermore, we outperform thew-systemby 0.24
points (1.56% relative). Both improvements are sta-
tistically significant withp < 0.01, according to
Collins’ sign test (Collins et al., 2005).

In terms of m-BLEU, we achieve an improvement
of 2.59 points over thew-system, which suggest our
system might be performing better than what stan-
dard BLEU suggests. Below we test this hypothesis

BLEU m-BLEU

ourSystem 14.82 55.64
m-system 14.08 55.26
w-system 14.58 53.05

Table 8: Our system vs. the two baselines(on the test
dataset): BLEU and m-BLEU scores (in %).

by means of micro-analysis and human evaluation.
Translation Proximity Match. We performed

automatic comparison based on corresponding
phrases between the translation output (out) and the
reference (ref), using the source (src) test dataset as
a pivot. The decoding log gave us the phrases used
to translatesrc to out, and we only needed to find
correspondences betweensrc andref, which we ac-
complished by appending the test dataset to training
and performing IBM Model 4 word alignments.

We then looked for phrase triples (src, out, ref),
where there was a high character-level similarity be-
tweenout andref, measured usinglongest common
subsequence ratiowith a threshold of 0.7, set ex-
perimentally. We extracted 16,262 triples: for 6,758
of them, the translations matched the references ex-
actly, while in the remaining triples, they were close
wordforms9. These numbers support the hypothesis
that our approach yields translations close to the ref-
erence wordforms but unjustly penalized by BLEU,
which only gives credit for exact word matches10.

Human Evaluation. We asked four native
Finnish speakers to evaluate 50 random test sen-
tences. Following (Callison-Burch et al., 2009), we
provided them with the source sentence, its refer-
ence translation, and the outputs of three SMT sys-
tems (m-system, w-system, andourSystem), which
were shown in different order for each example and
were namedsys1, sys2and sys3(by order of ap-
pearance). We asked for three pairwise judgments:
(i) sys1vs. sys2, (ii) sys1vs. sys3, and (iii) sys2vs.
sys3. For each pair, a winner had to be designated;
ties were allowed. The results are shown in Table 10.
We can see that the judges consistently preferred

9Examples of such triples are (constitutional
structure , perustuslaillinen rakenne, perustuslaillisempi
rakenne) and (economic and social , taloudellisia ja
sosiaalisia, taloudellisten ja sosiaalisten)

10As a reference, thew-systemyielded 15,673 triples, and
6,392 of them were exact matches. Compared to our system,
this means 589 triples and 366 exact matches less.

155



src : as a conservative , i am incredibly thrifty with taxpayers ’money .
ref : maltillisen kokoomuspuolueen edustajana suhtaudunerittain saastavaisesti veronmaksajienrahoihin .
our : konservatiivinen , olenerittain saastavaisesti veronmaksajienrahoja .
w : konservatiivinen , olen aarettoman tarkeaa kanssaveronmaksajienrahoja .
m : kutenkonservatiivinen , olenerittain saastavaisesti veronmaksajienrahoja .
Comment:our � m � w. our uses better paraphrases, from which the correct meaning could be inferred. The part
“aarettoman tarkeaa kanssa” inw does not mention the “thriftiness” and replaces it with “important” (tarkeaa), which
is wrong.m introduces “kuten”, which slightly alters the meaning towards “like a conservative, ...”.
src : we were very constructive and we negotiated until the last minute of these talks in the hague .
ref : olimme erittainrakentavia ja neuvottelimme haagissaviime hetkeen saakka.
our : olemme olleet hyvinrakentavia ja olemme neuvotelleetviime hetkeen saakkanaiden neuvottelujen haagissa .
w : olemme olleet hyvinrakentavia ja olemme neuvotelleetviime tippaan niinnaiden neuvottelujen haagissa .
m : olimme erittainrakentavanja neuvottelimmeviime hetkeen saakkanaiden neuvotteluiden haagissa .
Comment:our � m � w. In our, the meaning is very close toref with only a minor difference in tense at the
beginning. m only gets the case wrong in “rakentavan”, and the correct case is easily guessable. Forw, the “viime
tippaan” is in principle correct but somewhat colloquial, and the “niin” is extra and somewhat confusing.
src : it would be a very dangerous situation if the europeans wereto become logistically reliant on russia .
ref : olisi eritt äin vaarallinen tilanne , joseurooppalaisettulisivat logistisestiriippuvaisiksi ven̈ajäsẗa .
our : olisi eritt äin vaarallinen tilanne , joseurooppalaisettuleelogistisestiriippuvaisia ven̈ajän .
w : seolisi eritt äin vaarallinen tilanne , joseurooppalaistentulisi logistically riippuvaisia ven̈ajän .
m : seolisi hyvinvaarallinen tilanne , joseurooppalaisethaluavattulla logistisestiriippuvaisia ven̈ajän .
Comment:our � w � m. our is almost correct except for the wrong inflections at the end.w is inferior since it
failed to translate “logistically”. “haluavat tulla” inm suggests that the Europeans would “want to become logistically
dependent”, which is not the case. The “se” (it), and “hyvin”(a synonym of “eritẗain”) are minor mistakes/differences.

Table 9:English-Finnish translation examples. Shown are the source (src ), the reference (ref ), and the transla-
tions of three systems (our , w, m). Text in bold indicates matches with respect to theref , while italics show where a
system was judged inferior to the rest, as judged by native Finnish speakers.

(1) ourSystemto them-system, (2) ourSystemto the
w-system, (3) w-systemto them-system. These pref-
erences are statistically significant, as found by the
sign test. Comparing to Table 8, we can see that
BLEU correlates with human judgments better than
m-BLEU; we plan to investigate this in future work.

our vs. m our vs. w w vs. m

Judge 1 25 18 19 12 21 19
Judge 2 24 16 19 15 25 14
Judge 3 27† 12 17 11 27† 15
Judge 4 25 20 26† 12 22 22
Total 101‡ 66 81‡ 50 95† 70

Table 10: Human judgments: ourSystem(our) vs. m-
system(m) vs. w-system(w). For each pair, we show
the number of times each system was judged better than
the other one, ignoring ties. Statistically significant dif-
ferences are marked with† (p < 0.05) and‡ (p < 0.01).

Finally, Table 9 shows some examples demon-
strating how our system improves over thew-system
and them-system.

7 Conclusion and Future Work

In the quest towards a morphology-aware SMT that
only uses unannotated data, there are two key chal-
lenges: (1) to bring the performance of morpheme-
token systems to a level rivaling the standard word-
token ones, and (2) to incorporate morphological
analysis directly into the translation process.

This work satisfies the first challenge: we have
achieved statistically significant improvements in
BLEU for a large training dataset of 714K sentence
pairs and this was confirmed by human evaluation.

We think we have built a solid framework for the
second challenge, and we plan to extend it further.
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