Choosing the best machine translation system to translate a sentence by using only source-language information

Felipe Sánchez-Martínez

Departament de Llenguatges i Sistemes Informàtics, Universitat d'Alacant, E-03071 Alacant, Spain

fsanchez@dlsi.ua.es

15th Annual Conference of the European Association for Machine Translation

May 30, 2011

- 2 System selection approach
- 3 Experimental settings
- Results and discussion
- 5 Concluding remarks and future work

- 2 System selection approach
- 3 Experimental settings
- 4 Results and discussion
- 5 Concluding remarks and future work

Multi-engine MT systems

- combine the output of N MT systems
 - alternatively they may first select a reduce set of translations *M* < *N*
- or select just one translation from the N computed ones

2/21

Multi-engine MT systems

- combine the output of N MT systems
 - alternatively they may first select a reduce set of translations *M* < *N*
- or select just one translation from the N computed ones

Drawbacks:

- N different translations must always be computed
- response time and amount of resources
- N needs to be kept to a minimum

Goal

To select the MT system or subset of MT systems to use in advance, without translating and without access to the inner workings of the MT systems

3/21

Goal

To select the MT system or subset of MT systems to use in advance, without translating and without access to the inner workings of the MT systems

Advantages:

- number of translations is drastically reduced
 ⇒ computing resources are saved
- focus on the combination of the best translations
- the number of MT systems N could be increased

3/21

3 Experimental settings

- 4 Results and discussion
- 5 Concluding remarks and future work

The problem is faced as a classification approach that uses a set of source language (SL) features

- use of maximum entropy classifiers
- train a binary classifier per MT system
- use of parallel corpora and sentence-level MT evaluation metrics for training

Features obtained from the parse tree

Try to describe the sentence in terms of the complexity of its syntactic structure

- maximum number of child nodes
- mean number of child nodes
- number of internal nodes
- p(t|w): likelihood of the parse tree given the words

• ...

Features related to the shift of the words and their fertilities

Try to describe the sentence in terms of the complexity of its words

- shift : shift(i) = abs(j i)
 - *i*: position of a SL word
 - *j*: position of the first TL word to which *i* is aligned

fertility : number of TL words to which a SL word is aligned

Several features. Number of words whose ...

- ... mean shift is above threshold Θ_1
- ... variance over the shift is above threshold Θ_2
- ... mean fertility is above threshold Θ_3
- ... variance over the fertility is above threshold Θ₄

Other features

Try to discriminate between the rule-based MT systems and the corpus-based ones

- sentence length (in words)
- number of words not appearing in the corpora used to train the corpus-based systems
- likelihood of the sentence to translate as provided by a 5-gram language model trained on the corpora used to to train the corpus-based systems

System selection approach: training /1

System selection approach: training /2

Preprocessing

- translate each SL sentence into the TL through all the MT systems
- evaluate each translation against the reference translation in the training parallel corpus
- Output the MT systems producing the best translation
 - several MT systems may produce the same translation, or several translations may be assigned the same score

Training instances per MT

- one instance per parallel sentence in the training corpus
- if the MT is one of those producing the best translation(s)
 that instance is classified as belonging to the class represented by that system

Training instances per MT

- one instance per parallel sentence in the training corpus
- if the MT is one of those producing the best translation(s)
 that instance is classified as belonging to the class represented by that system

Training procedure

- rank for each system all the features according to their chi-squared statistic with respect to the classes
- Itrain the different binary maximum entropy classifiers for the first *F* features in the ranking
- Output determine the optimum value of F on a development corpus

System selection approach: selection /1

System selection approach: selection /2

System selection

- compute the probability of each MT system being the best system to translate that sentence
- elect the subset of MT systems with the highest probabilities
 - in the experiments we select only one system, the one with the highest probability

Motivation

- 2 System selection approach
- 3 Experimental settings
- 4 Results and discussion
- 5 Concluding remarks and future work

Translation of English and French texts into Spanish

MT systems

- Apertium (Forcada et al., 2011) rule-based MT
- Moses (Koehn et al., 2007) phrase-based statistical MT
- Moses hierarchical phrase-based statistical MT (Chiang, 2007)
- Cunei (Phillips and Brown, 2009) hybrid example-based statistical MT
- Yahoo! Babelfish (systran) rule-based MT

Experimental settings /2

Corpora

- corpus-based systems trained on the Europarl and News Commentary corpora released for WMT10
- training, development and test corpora: UN corpus released for WMT10

Pair	Corpus	Num. sent.	Num. words
en-es	Train	98,480	en: 2,996,310; es: 3,420,636
	Dev	1,984	en: 49,003 ; es: 57,162
	Test	1,985	en: 55,168 ; es: 65,396
fr-es	Train	99,022	fr: 3,513,404; es: 3,449,999
	Dev	1,987	fr: 60,352; es: 59,551
	Test	1,982	fr: 64,392;es: 64,440

Other resources

- Berkeley Parser (Petrov et al., 2006)
- IRSTLM language modelling toolkit (Federico et al., 2008)
 - 5-gram language model trained on the SL Europarl and News Commentary corpora
- Asiya evaluation toolkit (Giménez and Màrquez, 2010)
 - Evaluation metrics: BLEU, PER, TER, METEOR
- WEKA machine learning toolkit (Witten and Frank, 2005)

Motivation

- 2 System selection approach
- 3 Experimental settings
- 4 Results and discussion
 - 5 Concluding remarks and future work

Results and discussion /1

Pair	Configuration	BLEU TER		METEOR	
en-es	Best system	0.3481	0.4851	0.2745	
	System selection	0.3529	0.4838	0.2762	
	Oracle	0.3905	0.4409	0.2965	
fr-es	Best system	0.3146	0.5880	0.2281	
	System selection	0.3192	0.5861	0.2286	
	Oracle	0.3467	0.5548	0.2389	

Oracle translation: for each sentence, the translation with the highest score (at the sentence level) is chosen Best system: System performing best at the document level

- 95% confidence intervals computed by 1,000 iterations of bootstrap resampling show a large overlapping between "System selection" and "Best system"
- No overlapping between "System selection" and "Oracle"
- Results are statistically significant according to pair bootstrap resampling (except for fr-es and METEOR)

Percentage of times each systems is chosen when translating the test corpora

Pair	Measure	PMos	HMos	CUNE	Aper	Syst
	BLEU	32.9%	51.1%	2.6%	0.1%	13.3%
	TER	53.6%	36.0%	5.5%	0.0%	4.9%
en-es	METEOR	28.8%	18.5%	41.8%	0.0%	10.9%
	BLEU	0.2%	42.5%	38.1%	0.0%	19.2%
£	TER	0.2%	36.7%	53.7%	0.0%	9.4%
ir-es	METEOR	0.0%	26.6%	63.2%	0.0%	10.2%

Results and discussion /4

Inspection of the first 500 sentences in the ${\tt en-es}$ test corpus

- most of the times the MT systems produce translations of similar quality
- manual ranking of the automatic translations without access to the reference translations

Configuration	BLEU			
Best system	0.3926			
Manual selection	0.3928			

Possible reason

 the three corpus-based systems were trained on the same parallel corpora Trying with additional corpus-based systems trained on different corpora \implies 12 systems in total

- EMEA (medical domain)
- JRC-Acquis (legal domain)
- OpenSubtitles (open domain)

Preliminary evaluation results

in-domain The improvement with respect to the MT performing best at the document level is larger

out-of-domain No improvement is obtained as compared to the MT performing best at the document level

Motivation

- 2 System selection approach
- 3 Experimental settings
- 4 Results and discussion
- 5 Concluding remarks and future work

Concluding remarks and future work

Remarks

- Novel approach aimed to select the subset of MT systems to use by multi-engine MT systems in advance, without translating
- Only SL information is used
- Preliminary experiments on two language pairs show a small improvement when evaluated with in-domain data

Concluding remarks and future work

Remarks

- Novel approach aimed to select the subset of MT systems to use by multi-engine MT systems in advance, without translating
- Only SL information is used
- Preliminary experiments on two language pairs show a small improvement when evaluated with in-domain data

Future work

- try other classification approaches
- think of additional features
- select a subset of systems (instead of just one) and combine their translations using MANY (Barrault, 2010)

Choosing the best machine translation system to translate a sentence by using only source-language information

Felipe Sánchez-Martínez

Work funded by the EAMT through its 2010 sponsorship of activities program

Thank you very much for your attention! Dank u zeer voor uw aandacht!

May 30, 2011