

Bootstrapping Arabic-Italian SMT through Comparable Texts and Pivoting

Mauro Cettolo, Nicola Bertoldi & Marcello Federico FBK, Trento - Italy

EAMT May 30-31, 2011 Leuven, Belgium

Problem

Parallel data are scarce even for socially and economically relevant language pairs

	Languages	T-Index	Cumulative T-Index	Countries	Internet population	Internet penetration	GDP per capita of the Internet Population
1	English	34.8%	34.762%	57 🗉	468,815,773	25.6%	\$40,221
2	Chinese Simplified (!)	11.3%	46. 0 87%	2 🖽	421,097,520	31.5%	\$14,588
3	Japanese	7.0%	53.050%	1 ⊞	99,143,700	78.4%	\$38,094
4	Spanish	6.8%	59.888%	21 🖽	138,417,311	33.4%	\$26,798
5	German	5.8%	65.726%	4 🖽	75,325,647	79.2%	\$42, 0 41
6	French	4.5%	70.246%	22 🖽	62,2 0 8,669	18.7%	\$39,413
7	Portuguese	3.5%	73.708%	7 🖽	78,630,200	31.1%	\$23,888
8	Russian ^(!)	3.3%	76.993%	5 🖽	72,331,200	40.9%	\$24,632
9	Arabic ^(f)	2.5%	79.541%	19 🖽	65,041,000	18.5%	\$21,248
10	Korean	2.5%	82.050%	2 🖽	39,490,000	53.9%	\$34,473
11	Italian	2.4%	84.488%	4 🖽	30,455,560	49.4%	\$43,423
12	Chinese Traditional	1.9%	86.355%	3 🖽	21,289,613	69.2%	\$47,557
13	Dutch	1.6%	87.944%	3 🖽	19,790,120	83.9%	\$43,563
14	Turkish (!)	1.4%	89.332%	1 🖷	35,000,000	44.4%	\$21,509
15	Farsi (!)	1.1%	90.431%	2 🖽	34,200,000	31.7%	\$17,426
16	Polish	1.1%	91.488%	1 🖽	22,450,600	58.4%	\$25,544
17	Malay ⁽⁾	0.70%	92.186%	2 🖽	17,221,500	59.1%	\$21,981

T-index

a combination of the Internet population and its estimated GDP per capita.

From www. translated.net/ /en/languagesthat-matter

Experimental framework:

- under-resourced language pairs (Arabic-Italian)
- not ready-to-use training data (different nature, comparable texts, ...)

Research directions:

- automatic detection and extraction of parallel texts from the Web
- translation using pivot languages

Outline

- New benchmark developed by extending two Arabic→English NIST evaluation sets with Italian (and French) translations, from the source language by experts
- Many *direct SMT systems* have been developed:
 - from source to target language (Arabic→Italian)
 - from source to pivot languages (Arabic→English)
 - from a pivot to target (English→Italian)

Methods for exploitation of comparable texts have been applied

• The *pivot* method known as *composition*, called *transfer* by Wu and Wang (2009), has been experimentally investigated

Benchmark

- a professional translation company was asked to translate the Arabic side into Italian (and French) of the sets provided for the 2009 MT NIST evaluation campaign - Arabic→English task
- one translation per sentence has been produced (i.e. *single reference*)
- the translation from Arabic avoided any bias towards English

Some statistics (word counts are given in thousands):

cot	#sent.	Arabic		English		French		Italian	
set		W	V	W	V	W	V	W	V
eval08-NW	813	21.9	7.8	29.1	4.9	33.2	4.9	32.0	5.7
eval09-NW	586	17.5	6.4	23.1	3.9	26.7	4.4	25.1	4.8

$$|W|={
m text\ size}\qquad |V|={
m vocabulary\ size}$$

Comparable corpora for SMT

General Scheme for collecting parallel data from comparable data:

- 1. cluster multilingual documents, by metadata, heuristics, IR ...
- 2. split documents into sentences
- 3. pair sentences across documents, by length, lexical overlap, word alignment ...
- 4. filter sentence or fragment pairs which align very well

Our approach fits this scheme and it is <u>new</u> on some aspects:

- Document pairing
- Mining parallel fragments

Document pairing

Problem: pair documents likely including parallel texts

Assumptions: documents include a title + baseline MT system

- Methods tested share the translation of titles from the language A into the B:
 - $-\theta$: documents paired if titles closer (e.g. wrt PER) than a threshold θ
 - NB: added a constrained translation for feeding a NB classifier
 - IR: indexed B documents are retrieved with translated A titles

Exps on 30K Italian/English docs from EuroNews:

method	%P	%R	$%F_{1}$
$\overline{\theta}$	20.8	16.4	18.4
NB	26.8	25.3	26.0
IR	73.2	73.0	73.1

Mining parallel fragments

Novel method for collecting parallel fragments from comparable documents:

- 1. source document paired to each sentence of the target document
- 2. partial phrase-based alignment between the paired texts
- 3. aligned phrases iteratively merged into blocks on the basis of simple heuristics
- → final aligned blocks are the parallel fragments

Exps on ACL WMT 2010 German→English task (IWSLT 2010):

baseline	addi	%BLEU		
running words	running words	type	/0DLLO	
	-	-	17.6	
2.5M	0.5M	fragments(EN)	18.5	
2.3101	0.5M	sentences(EP)	17.9	
	2.0M	sentences(EP)	18.3	

Direct systems: training data

Arlt-fbk	W		trained
type	ar it		models
web parallel sent.	1.4M	1.4M	
web parallel frag.	1.8M	1.6M	
total		3.0M	LM
total clean	3.0M	2.8M	TM RM
web monol. sent.		1.06G	LM

EnIt-fbk	V	trained	
type	en	it	models
web parallel sent.	24.2M	24.1M	
web parallel frag.	2.7M	2.8M	
total		27.0M	LM
total clean	23.3M	23.5M	TM RM
ep5+acquis clean	70.0M	70.0M	TM RM
web monol. sent.		1.06G	LM

ArEn-fbk system developed on data provided for the NIST 2009 evaluation campaign

Direct systems: performance

Performance on the eval09-NW set of the direct systems developed for the translation from Arabic into Italian via pivoting (eval08-NW used for tuning):

cyctom id	translation	training data	%BLEU	%BLEU
system id	direction	#words (source)	(4 refs)	(1 ref)
Arlt-fbk	ar vit	3.0M	-	13.1
Arlt-ggleTrnslt	ar→it	?	_	19.2
ArEn-fbkNist09	2K \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	147.2M	54.3	35.3
ArEn-ggleTrnslt	ar→en	?	55.5	33.5
Enlt-fbk	en→it	93M	-	21.0
Enlt-ggleTrnslt	EII→IL 	?	_	19.2

suffix ggleTrnslt = Google Translate - as it was in January 2011

Pivot systems: performance

Performance on the eval09-NW set of the pivot-based systems for the translation from Arabic into Italian:

translation direction	paired systems			%BLEU
2K \it	ArEn-fbkNist09	\otimes	Enlt-fbk	19.5
ar→it	ArEn-ggleTrnslt	\otimes	EnIt-ggleTrnsIt	18.2

- our pivoting is effective (19.5 vs. 19.2 by Enlt-ggleTrnslt)
- ggleTrnslt: 19.2 by "direct" vs. 18.2 by "single" composition
 - ⇒ this suggests us to further work on our pivot chain from Arabic to Italian, e.g. by including more pivot languages (French) and by combining multiple systems

Work in progress

- Daily crawling of data from news web sites
- Efficiency in fragment extraction
- Improving direct SMT systems
- Adding French as pivot language for Arabic→Italian
- Synthetic and triangulation (open issue: reordering model) pivot translation