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Abstract 

Coreference resolution, which aims at 
correctly linking meaningful expressions in 
text, is a much challenging problem in 
Natural Language Processing community. 
This paper describes the multilingual 
coreference modeling system of Web 
Information Processing Group, Henan 
University of Technology, China, for the 
CoNLL-2012 shared task (closed track). 
The system takes a supervised learning 
strategy, and consists of two cascaded 
components: one for detecting mentions, 
and the other for clustering mentions. To 
make the system applicable for multiple 
languages, generic syntactic and semantic 
features are used to model coreference in 
text. The system obtained combined 
official score 41.88 over three languages 
(Arabic, Chinese, and English) and ranked 
7th among the 15 systems in the closed 
track. 

1 Introduction 

Coreference resolution, which aims at correctly 
linking meaningful expressions in text, has become 
a central research problem in natural language 
processing community with the advent of various 
supporting resources (e.g. corpora and different 
kinds of knowledge bases). OntoNotes (Pradhan et 

al. 2007), compared to MUC (Chinchor, 2001; 
Chinchor and Sundheim, 2003) and ACE 
(Doddington et al. 2000) corpora, is a large-scale, 
multilingual corpus for general anaphoric 
coreference that covers entities and events not 
limited to noun phrases or a limited set of entity 
types. It greatly stimulates the research on this 
challenging problem – Coreference Resolution. 
Moreover, resources like WordNet (Miller, 1995) 
and the advancement of different kinds of syntactic 
and semantic analysis technologies, make it 
possible to do in-depth research on this topic, 
which is demanded in most of natural language 
processing applications, such as information 
extraction, machine translation, question answering, 
summarization, and so on. 

Our group is exploring how to extract 
information from grain/cereal related Chinese text 
for business intelligence. This shared task provides 
a good platform for advancing our research on IE 
related topics. We experiment with a machine 
learning strategy to model multilingual coreference 
for the CoNLL-2012 shared task (Pradhan et al. 
2012). Two steps are taken to detect coreference in 
text: mention detection and mention clustering. We 
consider mentions that correspond to a word or an 
internal node in a syntactic tree and ignore the rest 
mentions, as we think a mention should be a valid 
meaningful unit of a sentence. Maximal entropy 
algorithm is used to model what a mention is and 
how two mentions link to each other. Generic 
features are designed to facilitate these modeling.  
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Our official submission obtained combined 
official score 41.88 over three languages (Arabic, 
Chinese, and English), which ranked the system 7th 
among 15 systems participating the closed track. 
Our system performs poor on the Arabic data, and 
has relatively high precision but low recall. 

The rest of this paper is organized as follows. 
Section 2 gives the overview of our system, while 
Section 3 discusses the first component of our 
system for mention detection. Section 4 explains 
how our system links mentions. We present our 
experiments and analyses in Section 5, and 
conclude in Section 6.  
 

Pre-processing

Mention Detection

Mention Clustering

Post-processing

Pipelined Processing Modules

 
Figure 1. System Architecture. 

2 System Description 

Figure 1 gives the architecture of our CoNLL-2012 
system, which consists of four pipelined 
processing modules: pre-processing, mention 
detection, mention clustering, and post-processing. 

Pre-processing: this module reads in the data 
files in CoNLL format and re-builds the syntactic 
and semantic analysis trees in memory. 

Mention Detection: this module chooses 
potential sub-structures on the syntactic parsing 
trees and determines whether they are real 
mentions. 

Mention Clustering: this module compares 
pairs of mentions and links them together. 

Post-processing: this module removes singleton 
mentions and produces the final results. 

To facilitate the processing, the data files of the 
same languages are combined together to form big 
files for training, development, and test 
respectively. 

Compared to the CoNLL-2011 shared task, the 
task of this year focuses on the multilingual 
capacity of a corefernece resolution system. We 
plan to take a generic solution for different 
languages rather than customized approach to 
some languages with special resources. In other 
words, our official system didn’t take any special 
processing for data of different languages but used 
the same strategy and feature sets for all three 
languages. 

Stanford’s Rule-based method succeeded in 
resolving the coreferences in English text last year 
(Pradhan et al. 2011; Lee et al. 2011). Therefore, 
we planed to incorporate the results of a rule-based 
system (simple or complex as the Stanford’s 
system) if available and derive some relevant 
features for our machine learning engine. However, 
due to limited time and resources, we failed to 
implement in our official system such a solution 
integrating rules within the overall statistical model. 

Intuitively, mentions are meaningful sub-
structures of sentences. We thus assume that a 
mention should be a word or a phrasal sub-
structure of a parsing tree. Mention detection 
modules focus on these mentions and ignore others 
that do not correspond to a valid phrasal sub-
structure. 

A widely used machine learning algorithm in 
solving different NLP problems, Maximal Entropy 
(Berger et al.1996), is used to model mentions and 
detect links between them. Compared with Naive 
Bayes algorithm, Maximum entropy does not 
assume statistical independence of the different 
features. In our system, Le Zhang’s maximum 
entropy package (Zhang, 2006) is integrated. 

In the following two sections, we will detail the 
two critical modules: mention detection and 
mention clustering. 

3 Mention Detection 

This module determines all mentions in text. We 
take the assumption that a mention should be a 
valid sub-structure of a sentence. 

3.1 Methods 
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We first choose potential mentions in text and then 
use statistical machine learning method to make 
final decisions. 

From the train and development datasets, we 
could obtain a list of POS and syntactic structure 
tags that a mention usually has. For example, 
below is given such a list for English data: 
 
 POS_TAG     "NP" /*145765*/  
 POS_TAG     "NML" /*910*/  
 POS_TAG     "S" /*207*/  
 POS_TAG     "VP" /*189*/  
 POS_TAG     "ADVP" /*75*/  
 POS_TAG     "FRAG" /*73*/  
 POS_TAG     "WHNP" /*67*/  
 POS_TAG     "ADJP" /*65*/  
 POS_TAG     "QP" /*62*/  
 POS_TAG     "INTJ" /*40*/  
 POS_TAG     "PP" /*16*/  
 POS_TAG     "SBAR" /*10*/  
 POS_TAG     "WHADVP" /*7*/  
 POS_TAG     "UCP" /*5*/  
 //POS_TAG     "SINV" /*1*/  
 //POS_TAG     "SBARQ" /*1*/  
 //POS_TAG     "RRC" /*1*/  
 //POS_TAG     "SQ" /*1*/  
 //POS_TAG     "LST" /*1*/  

SYN_TAG     "PRP$" /*14734*/  
 SYN_TAG     "NNP" /*3642*/  
 SYN_TAG     "VB" /*733*/  
 SYN_TAG     "VBD" /*669*/  
 SYN_TAG     "VBN" /*384*/  
 SYN_TAG     "VBG" /*371*/  
 SYN_TAG     "NN" /*306*/  
 SYN_TAG     "VBZ" /*254*/  
 SYN_TAG     "VBP" /*235*/  
 SYN_TAG     "PRP" /*137*/  
 SYN_TAG     "CD" /*132*/  
 SYN_TAG     "DT" /*77*/  
 SYN_TAG     "IN" /*64*/  
 SYN_TAG     "NNS" /*57*/  
 SYN_TAG     "JJ" /*52*/  
 SYN_TAG     "RB" /*19*/  
 SYN_TAG     "NNPS" /*17*/  
 SYN_TAG     "UH" /*7*/  
 SYN_TAG     "CC" /*7*/  
 SYN_TAG     "NFP" /*5*/  
 SYN_TAG     "XX" /*4*/  
 SYN_TAG     "MD" /*3*/  
 SYN_TAG     "JJR" /*2*/  
 SYN_TAG     "POS" /*2*/  
 //SYN_TAG     "FW" /*1*/  
 //SYN_TAG     "ADD" /*1*/  

 

We remove tags rarely occurring in the datasets, 
such as FW and ADD for English and consider all 
words and syntactic structures of the rest 
categories as potential mentions. 

To make a decision about whether a potential 
mention is a real one or not, we use a maximal 
entropy classifier with a set of generic features 
concerning the word or sub-structure itself and its 
syntactic and semantic contexts. 

3.2 Features 

The features we used in this step for each potential 
word or sub-structure include: 
 

a. Source and Genre of a document; Speaker of a 
sentence; 

b. Level of the Node in the syntactic parsing tree; 
c. Named entity tag of the word or sub-structure; 
d. Its head predicates and types; 
e. Syntactic tag path to the root; 
f. Whether it’s part of a mention, named entity, 

or an argument; 
g. Features from its parent: syntactic tag, named 

entity tag, how many children it has, whether 
the potential word or sub-structure is the left 
most child of it, the right most child, or middle 
child; binary syntactic tag feature; 

h. Features from its direct left and right siblings: 
their syntactic tags, named entity tags, and 
binary syntactic tag features; 

i. Features from its children: its total  token 
length, words, pos tags, lemma, frameset ID, 
and word sense, tag paths to the left and right 
most child; 

j. Features from its direct neighbor (before and 
after) tokens: words, pos tags, lemma, 
frameset ID, and word sense, and binary 
features of  pos tags; 

4 Mention Clustering 

This component clusters the detected mentions into 
group. 

4.1 Methods 

For each pair of detected mentions, we determine 
whether they could be linked together with a 
maximal entropy classifier. The clustering takes a 
best-of-all strategy and works as the following 
algorithm: 
 

INPUT: a list of mentions; 
OUTPUT: a splitting of the mentions into 

groups; 
ALGORIHTM: 
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1. For each detected mention ANAP from the last to 
the first: 
 1.1 Find its most likely linked antecedant 
ANTE before ANAP 

1.2 if FOUND 
1.2.1 link all anaphors of ANAP to ANTE;  

1.2.2 link ANAP to ANTE 
 
Figure 2. Algorithm for Clustering Detected Mentions 

 
We used the probability value of the maximal 

entropy classifier’s output for weighting the links 
between mentions. 

4.2 Features 

The features we used in this step include: 
 

a. Source and Genre of a document; Speaker of a 
sentence; 

b. Sentence distance between the potential 
antecedent and anaphor; 

c. Syntactic tag of them, whether they are leaf 
node or not in the parsing tree; 

d. Syntactic tag bi-grams of them, and whether 
their syntactic tags are identical; 

e. Named entity tags of them, bi-gram of these 
tags, and whether they are identical; 

f. Syntactic tag path to root of them, bi-gram of 
these paths, and whether they are identical; 

g. Whether they are predicates; 
h. Features of anaphor: Its head predicates and 

types, words, pos tags, the words and pos tags 
of the left/right 3 neighbor tokens, and bi-
grams; 

i. Features of antecedent: Its head predicates and 
types, words, pos tags, the words and pos tags 
of the left/right 3 neighbor tokens, and bi-
grams; 

j. The number of identical words of the 
antecedent and the anaphor; 

k. The number of identical words in the 
neighbors (3 tokens before and after) of the 
antecedent and the anaphor. 

 
The above features include not only those 

suggested by Soon et al. (2001), but also some 
context features, such as words within and out of 
the antecedent and the anaphor, and the 
overlapping number of the context words. Features 
about Gender and number agreements are not 
considered in our official system, as we failed to 
work out a generic solution to include them for all 
data of three different languages. 

5 Experiments 

5.1 Datasets  

The datasets of the CoNLL-2012 shared task 
contain three languages: Arabic (ARB), Chinese 
(CHN), and English (ENG). No predicted names 
and propositions are provided in the Arabic data, 
while no predicted names are given in the Chinese 
data. 

Tables 1 and 2 show statistical information of 
both training and development datasets for each 
language. 
 

Language 
# of 
Doc. 

# of 
Sent. 

# of 
Ment. 

# of 
mentions 

that do not 
correspond 
to a valid 

phrasal sub-
structure 

Dev 44 950 3,317 262(7.9%) 
ARB 

Train 359 7,422 27,590 2,176(7.9%) 

Dev 252 6,083 14,183 677(4.8%) 
CHN 

Train 1,810 36,487 102,854 6,345(6.2%) 

Dev 343 9,603 19,156 661(3.5%) 
ENG 

Train 2,802 75,187 155,560 4,639(3.0%) 

Table 1. Statistical information of the three language 
datasets (train and development) (part 1). 
 

# of 
sentences per 

document 

# of tokens 
per sentence Language 

Avg. Max Avg. Max 

Dev 21.59 41 29.82 160 
ARB 

Train 20.67 78 32.70 384 

Dev 24.14 144 18.09 190 
CHN 

Train 20.16 283 20.72 242 

Dev 28.00 127 16.98 186 
ENG 

Train 26.83 188 17.28 210 

Table 2. Statistical information of the three language 
datasets (train and development) (part 2). 
 

The total size of the uncompressed original data 
is about 384MB. The English dataset is the largest 
one containing 3,145 documents (343+2802), 
84,790 sentences, and 174,716 mentions. The 
Arabic dataset is the smallest one containing 403 
documents, 8,372 sentences, and 30,907 mentions. 
In the Arabic datasets, about 7.9% mentions do not 
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correspond to a valid phrasal sub-structure. This 
number of the Chinese dataset is 6%, while that of 
English 3%. These small percentages verify that 
our assumption that a mention is expected to be a 
valid phrasal sub-structure is reasonable. 

The average numbers of sentences in a 
document in the three language datasets are 
roughly 21, 22, and 27 respectively, while the 
longest document that has 283 sentences is found 
in the Chinese train dataset. The average numbers 
of tokens in a sentence in the three language 
datasets are roughly 31, 19, and 17 respectively, 
while the longest sentence with 384 tokens is 
found in the Arabic train dataset. 

5.2 Experimental Results  

For producing the results on the test datasets, we 
combined both train and development datasets for 
training maximal entropy classifiers. 

The official score adopted by CoNLL-2012 is 
the unweighted average of scores on three 
languages, while for each language, the score is 
derived by averaging the three metrics MUC 
(Vilain et al. 1995), B-CUBED (Bagga and 
Baldwin, 1998), and CEAF(E) (Constrained Entity 
Aligned F-measure)(Luo, 2005) as follows: 

MUC + B-CUBED + CEAF (E) 
OFFICIAL SCORE =  ---------------------------------------- 

                                  3 

Our system achieved the combined official score 
42.32 over three languages (Arabic, Chinese, and 
English). On each of the three languages, the 
system obtained scores 33.53, 46.27, and 45.85 
respectively. It performs poor on the Arabic dataset, 
but equally well on the Chinese and English 
datasets. 

Tables 3, 4, and 5 give the detailed results on 
three languages respectively. 

 

Metric Recall Precision F1 

MUC 10.77 55.60 18.05 

B-CUBED 36.17 93.34 52.14 

CEAF (M) 37.03 37.03 37.03 

CEAF (E) 55.45 20.95 30.41 

BLANC1 52.91 73.93 54.12 

OFFICIAL 

SCORE 
NA NA 33.53 

Table 3. Official results of our system on the Arabic test 
dataset. 

                                                           
1 For this metric, please refer to (Recasens and Hovy, 2011). 

 

Metric Recall Precision F1 

MUC 32.48 71.44 44.65 

B-CUBED 45.51 86.06 59.54 

CEAF (M) 45.70 45.70 45.70 

CEAF (E) 55.11 25.24 34.62 

BLANC 64.99 76.63 68.92 

OFFICIAL 

SCORE 
NA NA 46.27 

Table 4. Official results of our system on the Chinese 
test dataset. 
 

Metric Recall Precision F1 

MUC 39.12 72.57 50.84 

B-CUBED 43.03 80.06 55.98 

CEAF (M) 41.97 41.97 41.97 

CEAF (E) 49.44 22.30 30.74 

BLANC 64.01 66.86 65.24 

OFFICIAL 

SCORE 
NA NA 45.85 

Table 5. Official results of our system on the English 
test dataset. 
 

Comparing the detailed scores, we found that 
our submitted system performs much poor on the 
MUC metric on the Arabic data. It can only 
recover 10.77% valid mentions. As a whole, the 
system works well in precision perspective but 
poor in recall perspective. 
 

Language Recall Precision F1 

Arabic 18.17 80.43 29.65 

Chinese 36.60 87.01 51.53 

English 45.78 86.72 59.93 

Table 6. Mention Detection Scores on the test datasets. 

 
Table 6 shows the official mention detection 

scores on the test datasets, which could be 
regarded as the performance upper bounds (MUC 
metric) of the mention clustering component. 
Taking the mention detection results as a basis, the 
mention clustering component could achieve 
roughly 60.88 (18.05/29.65), 86.65 (44.65/51.53), 
and 84.83 (50.84/59.93) for the Arabic, Chinese, 
and English data respectively. It seems that the 
performance of the whole system is highly 
bottlenecked by that of the mention detection 
component. However, it may not be true as the task 
requires removing singleton mentions that do not 
refer to any other mentions. To examine how 
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singleton mentions affect the final scores, we 
conducted additional experiments on the 
development datasets. Table 7 shows the mention 
detection scores on the dev datasets. When we 
include the singletons, the mention detection 
scores become 59, 63.75, and 71.27 from 31.46, 
53.99, and 59.16 for the three language datasets 
respectively. They are reasonable and close to 
those that we can get at the mention clustering 
component. These analyses tell us that the 
requirement of removing singletons for scoring 
may deserve further study. At the same time, we 
realize that to get better performance we may need 
to re-design the feature sets (e.g. including more 
useful features like gender and number) and try 
some more powerful machine learning algorithms 
such as linear classification or Tree CRF (Bradley 
and Guestrin, 2010). 

 

Recall Precision F1 
Language 

-Sing +Sing -Sing +Sing -Sing +Sing 

Arabic 19.42 47.58 82.88 77.61 31.46 59 

Chinese 39.05 53.78 87.43 78.24 53.99 63.75 

English 44.9 65.2 86.67 78.58 59.16 71.27 

Table 7. Mention Detection Scores on the development 
(Dev) datasets. “-Sing” means without singletons, which 
is required by the task specification, while “+Sing” 
means including singletons. 
 

Table 8. F1 scores of the two supplementary 
submissions with additional gold mention boundaries 
and gold mentions respectively. 

 

Besides the official submission for the task with 
predicted data, we also provide two supplementary 
submissions with gold mention boundaries and 
gold mentions respectively. Table 8 summarizes 
the scores of these two submissions. 

With gold mentions, our official system does 
achieve better performance with gain of 8.77 
(50.65-41.88). On Chinese data, we get the highest 
score 61.61. However, the system performs worse 
when the gold mention boundaries are available. 
The F1 score drops 2.62 from 41.88 to 39.26. We 
guess that more candidate mentions bring more 
difficulties for the maximal entropy classifier to 
make decisions. The best-of-all strategy may not 
be a good choice when a large number of 
candidates are available. More efforts are required 
to explore the real reason behind the results. 

6 Conclusions  

In this paper, we describe our system for the 
CoNLL-2012 shared task – Modeling Multilingual 
Unrestricted Coreference in OntoNotes (closed 
track). Our system was built on machine learning 
strategy with a pipeline architecture, which 
integrated two cascaded components: mention 
detection and mention clustering. The system relies 
on successful syntactic analyses, which means that 
only valid sub-structures of sentences are 
considered as potential mentions. 

Due to limited time and resources, we had not 
conducted thorough enough experiments to derive 
optimal solutions, but the system and the 
involvement in this challenge do provide a good 
foundation for further study. It’s a success for us to 
finish all the submissions on time. In the future, we 
plan to focus on those mentions that do not 
correspond to a syntactic structure and consider 
introducing virtual nodes for them. We may also 
explore different strategies when linking an 
anaphor and its antecedent. In addition, maximal 
entropy may not be good enough for this kind of 
task. Therefore, we also plan to explore other 
powerful algorithms like large linear classification 
and tree CRF (Bradley and Guestrin, 2010; Ram 
and Devi, 2012) in the future. 
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With gold mention 
boundaries (39.26) 

With gold mentions 
(50.65)  

ARB CHN ENG ARB CHN ENG 

MUC 11.30 38.70 38.21 33.31 66.13 60.45 

B-CUBED 54.25 59.27 59.51 53.74 66.84 57.18 

 CEAF (M) 33.68 41.06 39.30 42.25 57.50 47.82 

CEAF (E) 28.84 31.86 31.39 34.81 46.83 36.58 

BLANC 51.46 61.47 61.33 57.96 73.47 67.12 

MD Score 29.78 51.90 51.08 52.58 77.73 72.75 

Official 

Score 
31.46 43.28 43.04 40.62 59.93 51.40 
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