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Abstract

We propose Bilingually-constrained Re-
cursive Auto-encoders (BRAE) to learn
semantic phrase embeddings (compact
vector representations for phrases), which
can distinguish the phrases with differ-
ent semantic meanings. The BRAE is
trained in a way that minimizes the seman-
tic distance of translation equivalents and
maximizes the semantic distance of non-
translation pairs simultaneously. After
training, the model learns how to embed
each phrase semantically in two languages
and also learns how to transform semantic
embedding space in one language to the
other. We evaluate our proposed method
on two end-to-end SMT tasks (phrase ta-
ble pruning and decoding with phrasal se-
mantic similarities) which need to mea-
sure semantic similarity between a source
phrase and its translation candidates. Ex-
tensive experiments show that the BRAE
is remarkably effective in these two tasks.

1 Introduction

Due to the powerful capacity of feature learn-
ing and representation, Deep (multi-layer) Neural
Networks (DNN) have achieved a great success in
speech and image processing (Kavukcuoglu et al.,
2010; Krizhevsky et al., 2012; Dahl et al., 2012).

Recently, statistical machine translation (SMT)
community has seen a strong interest in adapting
and applying DNN to many tasks, such as word
alignment (Yang et al., 2013), translation confi-
dence estimation (Mikolov et al., 2010; Liu et al.,
2013; Zou et al., 2013), phrase reordering predic-
tion (Li et al., 2013), translation modelling (Auli et
al., 2013; Kalchbrenner and Blunsom, 2013) and
language modelling (Duh et al., 2013; Vaswani et
al., 2013). Most of these works attempt to im-
prove some components in SMT based on word

embedding, which converts a word into a dense,
low dimensional, real-valued vector representation
(Bengio et al., 2003; Bengio et al., 2006; Collobert
and Weston, 2008; Mikolov et al., 2013).

However, in the conventional (phrase-based)
SMT, phrases are the basic translation units. The
models using word embeddings as the direct in-
puts to DNN cannot make full use of the whole
syntactic and semantic information of the phrasal
translation rules. Therefore, in order to success-
fully apply DNN to model the whole translation
process, such as modelling the decoding process,
learning compact vector representations for the ba-
sic phrasal translation units is the essential and
fundamental work.

In this paper, we explore the phrase embedding,
which represents a phrase (sequence of words)
with a real-valued vector. In some previous works,
phrase embedding has been discussed from differ-
ent views. Socher et al. (2011) make the phrase
embeddings capture the sentiment information.
Socher et al. (2013a) enable the phrase embed-
dings to mainly capture the syntactic knowledge.
Li et al. (2013) attempt to encode the reordering
pattern in the phrase embeddings. Kalchbrenner
and Blunsom (2013) utilize a simple convolution
model to generate phrase embeddings from word
embeddings. Mikolov et al. (2013) consider a
phrase as an indivisible n-gram. Obviously, these
methods of learning phrase embeddings either fo-
cus on some aspects of the phrase (e.g. reordering
pattern), or impose strong assumptions (e.g. bag-
of-words or indivisible n-gram). Therefore, these
phrase embeddings are not suitable to fully repre-
sent the phrasal translation units in SMT due to the
lack of semantic meanings of the phrase.

Instead, we focus on learning phrase embed-
dings from the view of semantic meaning, so
that our phrase embedding can fully represent the
phrase and best fit the phrase-based SMT. As-
suming the phrase is a meaningful composition
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of its internal words, we propose Bilingually-
constrained Recursive Auto-encoders (BRAE) to
learn semantic phrase embeddings. The core idea
behind is that a phrase and its correct translation
should share the same semantic meaning. Thus,
they can supervise each other to learn their seman-
tic phrase embeddings. Similarly, non-translation
pairs should have different semantic meanings,
and this information can also be used to guide
learning semantic phrase embeddings.

In our method, the standard recursive auto-
encoder (RAE) pre-trains the phrase embedding
with an unsupervised algorithm by minimizing the
reconstruction error (Socher et al., 2010), while
the bilingually-constrained model learns to fine-
tune the phrase embedding by minimizing the se-
mantic distance between translation equivalents
and maximizing the semantic distance between
non-translation pairs.

We use an example to explain our model. As
illustrated in Fig. 1, the Chinese phrase on the
left and the English phrase on the right are trans-
lations with each other. If we learn the embedding
of the Chinese phrase correctly, we can regard it
as the gold representation for the English phrase
and use it to guide the process of learning English
phrase embedding. In the other direction, the Chi-
nese phrase embedding can be learned in the same
way. This procedure can be performed with an
co-training style algorithm so as to minimize the
semantic distance between the translation equiva-
lents 1. In this way, the result Chinese and English
phrase embeddings will capture the semantics as
much as possible. Furthermore, a transformation
function between the Chinese and English seman-
tic spaces can be learned as well.

With the learned model, we can accurately mea-
sure the semantic similarity between a source
phrase and a translation candidate. Accordingly,
we evaluate the BRAE model on two end-to-
end SMT tasks (phrase table pruning and decod-
ing with phrasal semantic similarities) which need
to check whether a translation candidate and the
source phrase are in the same meaning. In phrase
table pruning, we discard the phrasal translation
rules with low semantic similarity. In decoding
with phrasal semantic similarities, we apply the
semantic similarities of the phrase pairs as new
features during decoding to guide translation can-

1For simplicity, we do not show non-translation pairs
here.

source phrase 
embedding ps  

法国 和 俄罗斯 France and Russia 

target phrase 
embedding pt  

Figure 1: A motivation example for the BRAE
model.

didate selection. The experiments show that up to
72% of the phrase table can be discarded without
significant decrease on the translation quality, and
in decoding with phrasal semantic similarities up
to 1.7 BLEU score improvement over the state-of-
the-art baseline can be achieved.

In addition, our semantic phrase embeddings
have many other potential applications. For in-
stance, the semantic phrase embeddings can be
directly fed to DNN to model the decoding pro-
cess. Besides SMT, the semantic phrase embed-
dings can be used in other cross-lingual tasks (e.g.
cross-lingual question answering) and monolin-
gual applications such as textual entailment, ques-
tion answering and paraphrase detection.

2 Related Work

Recently, phrase embedding has drawn more and
more attention. There are three main perspectives
handling this task in monolingual languages.

One method considers the phrases as bag-of-
words and employs a convolution model to trans-
form the word embeddings to phrase embeddings
(Collobert et al., 2011; Kalchbrenner and Blun-
som, 2013). Gao et al. (2013) also use bag-of-
words but learn BLEU sensitive phrase embed-
dings. This kind of approaches does not take the
word order into account and loses much informa-
tion. Instead, our bilingually-constrained recur-
sive auto-encoders not only learn the composition
mechanism of generating phrases from words, but
also fine tune the word embeddings during the
model training stage, so that we can induce the full
information of the phrases and internal words.

Another method (Mikolov et al., 2013) deals
with the phrases having a meaning that is not a
simple composition of the meanings of its indi-
vidual words, such as New York Times. They first
find the phrases of this kind. Then, they regard
these phrases as indivisible units, and learn their
embeddings with the context information. How-
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ever, this kind of phrase embedding is hard to cap-
ture full semantics since the context of a phrase
is limited. Furthermore, this method can only ac-
count for a very small part of phrases, since most
of the phrases are compositional. In contrast, our
method attempts to learn the semantic vector rep-
resentation for any phrase.

The third method views any phrase as the mean-
ingful composition of its internal words. The re-
cursive auto-encoder is typically adopted to learn
the way of composition (Socher et al., 2010;
Socher et al., 2011; Socher et al., 2013a; Socher
et al., 2013b; Li et al., 2013). They pre-train the
RAE with an unsupervised algorithm. And then,
they fine-tune the RAE according to the label of
the phrase, such as the syntactic category in pars-
ing (Socher et al., 2013a), the polarity in sentiment
analysis (Socher et al., 2011; Socher et al., 2013b),
and the reordering pattern in SMT (Li et al., 2013).
This kind of semi-supervised phrase embedding is
in fact performing phrase clustering with respect
to the phrase label. For example, in the RAE-
based phrase reordering model for SMT (Li et
al., 2013), the phrases with the similar reorder-
ing tendency (e.g. monotone or swap) are close
to each other in the embedding space, such as the
prepositional phrases. Obviously, this kind meth-
ods of semi-supervised phrase embedding do not
fully address the semantic meaning of the phrases.
Although we also follow the composition-based
phrase embedding, we are the first to focus on
the semantic meanings of the phrases and propose
a bilingually-constrained model to induce the se-
mantic information and learn transformation of the
semantic space in one language to the other.

3 Bilingually-constrained Recursive
Auto-encoders

This section introduces the Bilingually-
constrained Recursive Auto-encoders (BRAE),
that is inspired by two observations. First, the
recursive auto-encoder provides a reasonable
composition mechanism to embed each phrase.
And the semi-supervised phrase embedding
(Socher et al., 2011; Socher et al., 2013a; Li et
al., 2013) further indicates that phrase embedding
can be tuned with respect to the label. Second,
even though we have no correct semantic phrase
representation as the gold label, the phrases
sharing the same meaning provide an indirect but
feasible way.

x1 x2 x3 x4 

y1=f(W(1)[x1; x2]+b) 

y2=f(W(1)[y1; x3]+b) 

y3=f(W(1)[y2; x4]+b) 

Figure 2: A recursive auto-encoder for a four-
word phrase. The empty nodes are the reconstruc-
tions of the input.

We will first briefly present the unsupervised
phrase embedding, and then describe the semi-
supervised framework. After that, we introduce
the BRAE on the network structure, objective
function and parameter inference.

3.1 Unsupervised Phrase Embedding
3.1.1 Word Vector Representations
In phrase embedding using composition, the word
vector representation is the basis and serves as the
input to the neural network. After learning word
embeddings with DNN (Bengio et al., 2003; Col-
lobert and Weston, 2008; Mikolov et al., 2013),
each word in the vocabulary V corresponds to a
vector x ∈ Rn, and all the vectors are stacked into
an embedding matrix L ∈ Rn×|V |.

Given a phrase which is an ordered list of m
words, each word has an index i into the columns
of the embedding matrix L. The index i is used to
retrieve the word’s vector representation using a
simple multiplication with a binary vector e which
is zero in all positions except for the ith index:

xi = Lei ∈ Rn (1)

Note that n is usually set empirically, such as n =
50, 100, 200. Throughout this paper, n = 3 is used
for better illustration as shown in Fig. 1.

3.1.2 RAE-based Phrase Embedding
Assuming we are given a phrase w1w2 · · ·wm,
it is first projected into a list of vectors
(x1, x2, · · · , xm) using Eq. 1. The RAE learns
the vector representation of the phrase by recur-
sively combining two children vectors in a bottom-
up manner (Socher et al., 2011). Fig. 2 illustrates
an instance of a RAE applied to a binary tree, in
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which a standard auto-encoder (in box) is re-used
at each node. The standard auto-encoder aims at
learning an abstract representation of its input. For
two children c1 = x1 and c2 = x2, the auto-
encoder computes the parent vector y1 as follows:

p = f(W (1)[c1; c2] + b(1)) (2)

Where we multiply the parameter matrix W (1) ∈
Rn×2n by the concatenation of two children
[c1; c2] ∈ R2n×1. After adding a bias term b(1),
we apply an element-wise activation function such
as f = tanh(·), which is used in our experiments.
In order to apply this auto-encoder to each pair of
children, the representation of the parent p should
have the same dimensionality as the ci’s.

To assess how well the parent’s vector repre-
sents its children, the standard auto-encoder recon-
structs the children in a reconstruction layer:

[c′1; c
′
2] = f (2)(W (2)p+ b(2)) (3)

Where c′1 and c′2 are reconstructed children, W (2)

and b(2) are parameter matrix and bias term for re-
construction respectively, and f (2) = tanh(·).

To obtain the optimal abstract representation of
the inputs, the standard auto-encoder tries to min-
imize the reconstruction errors between the inputs
and the reconstructed ones during training:

Erec([c1; c2]) =
1
2
||[c1; c2]− [c′1; c

′
2]||2 (4)

Given y1 = p, we can use Eq. 2 again to com-
pute y2 by setting the children to be [c1; c2] =
[y1;x3]. The same auto-encoder is re-used until
the vector of the whole phrase is generated.

For unsupervised phrase embedding, the only
objective is to minimize the sum of reconstruction
errors at each node in the optimal binary tree:

RAEθ(x) = argmin
y∈A(x)

∑
s∈y

Erec([c1; c2]s) (5)

Where x is the list of vectors of a phrase, andA(x)
denotes all the possible binary trees that can be
built from inputs x. A greedy algorithm (Socher
et al., 2011) is used to generate the optimal binary
tree y. The parameters θ = (W, b) are optimized
over all the phrases in the training data.

3.2 Semi-supervised Phrase Embedding
The above RAE is completely unsupervised and
can only induce general representations of the

Reconstruction Error Prediction Error 

W(1) 

W(2) W(label) 

Figure 3: An illustration of a semi-supervised
RAE unit. Red nodes show the label distribution.

multi-word phrases. Several researchers extend
the original RAEs to a semi-supervised setting so
that the induced phrase embedding can predict a
target label, such as polarity in sentiment analysis
(Socher et al., 2011), syntactic category in parsing
(Socher et al., 2013a) and phrase reordering pat-
tern in SMT (Li et al., 2013).

In the semi-supervised RAE for phrase embed-
ding, the objective function over a (phrase, label)
pair (x, t) includes the reconstruction error and the
prediction error, as illustrated in Fig. 3.

E(x, t; θ) = αErec(x, t; θ)+(1−α)Epred(x, t; θ)
(6)

Where the hyper-parameter α is used to balance
the reconstruction and prediction error. For label
prediction, the cross-entropy error is usually used
to calculate Epred. By optimizing the above ob-
jective, the phrases in the vector embedding space
will be grouped according to the labels.

3.3 The BRAE Model

We know from the semi-supervised phrase embed-
ding that the learned vector representation can be
well adapted to the given label. Therefore, we can
imagine that learning semantic phrase embedding
is reasonable if we are given gold vector represen-
tations of the phrases.

However, no gold semantic phrase embedding
exists. Fortunately, we know the fact that the
two phrases should share the same semantic rep-
resentation if they express the same meaning. We
can make inference from this fact that if a model
can learn the same embedding for any phrase pair
sharing the same meaning, the learned embedding
must encode the semantics of the phrases and the
corresponding model is our desire.

As translation equivalents share the same se-
mantic meaning, we employ high-quality phrase
translation pairs as training corpus in this
work. Accordingly, we propose the Bilingually-
constrained Recursive Auto-encoders (BRAE),
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Source Reconstruction Error 

Source Prediction Error 

Ws
(1) 

Ws
(2) 

Ws
(label) 

Target Reconstruction Error 

Wt
(1) 

Wt
(2) 

Wt
(label) Target Prediction Error 

Source Language Phrase Target Language Phrase 

Figure 4: An illustration of the bilingual-
constrained recursive auto-encoders. The two
phrases are translations with each other.

whose basic goal is to minimize the semantic dis-
tance between the phrases and their translations.

3.3.1 The Objective Function
Unlike previous methods, the BRAE model jointly
learns two RAEs (Fig. 4 shows the network struc-
ture): one for source language and the other for
target language. For a phrase pair (s, t), two kinds
of errors are involved:

1. reconstruction errorErec(s, t; θ): how well
the learned vector representations ps and pt repre-
sent the phrase s and t respectively?

Erec(s, t; θ) = Erec(s; θ) + Erec(t; θ) (7)

2. semantic error Esem(s, t; θ): what is the
semantic distance between the learned vector rep-
resentations ps and pt?

Since word embeddings for two languages are
learned separately and locate in different vector
space, we do not enforce the phrase embeddings
in two languages to be in the same semantic vector
space. We suppose there is a transformation be-
tween the two semantic embedding spaces. Thus,
the semantic distance is bidirectional: the distance
between pt and the transformation of ps, and that
between ps and the transformation of pt. As a re-
sult, the overall semantic error becomes:

Esem(s, t; θ) = Esem(s|t, θ) + Esem(t|s, θ) (8)

Where Esem(s|t, θ) = Esem(pt, f(W l
sps + bls))

means the transformation of ps is performed as
follows: we first multiply a parameter matrix W l

s

by ps, and after adding a bias term bls we apply
an element-wise activation function f = tanh(·).
Finally, we calculate their Euclidean distance:

Esem(s|t, θ) =
1
2
||pt − f(W l

sps + bls)||
2

(9)

Esem(t|s, θ) can be calculated in exactly the same

way. For the phrase pair (s, t), the joint error is:

E(s, t; θ) = αErec(s, t; θ) + (1−α)Esem(s, t; θ)
(10)

The hyper-parameter α weights the reconstruction
and semantic error. The final BRAE objective over
the phrase pairs training set (S, T ) becomes:

JBRAE =
1
N

∑
(s,t)∈(S,T )

E(s, t; θ)+
λ

2
||θ||2 (11)

3.3.2 Max-Semantic-Margin Error

Ideally, we want the learned BRAE model can
make sure that the semantic error for the positive
example (a source phrase s and its correct transla-
tion t) is much smaller than that for the negative
example (the source phrase s and a bad translation
t′). However, the current model cannot guarantee
this since the above semantic error Esem(s|t, θ)
only accounts for positive ones.

We thus enhance the semantic error with both
positive and negative examples, and the corre-
sponding max-semantic-margin error becomes:

E∗sem(s|t, θ) = max{0, Esem(s|t, θ)
− Esem(s|t′, θ) + 1} (12)

It tries to minimize the semantic distance between
translation equivalents and maximize the semantic
distance between non-translation pairs simultane-
ously. Using the above error function, we need
to construct a negative example for each positive
example. Suppose we are given a positive exam-
ple (s, t), the correct translation t can be converted
into a bad translation t′ by replacing the words
in t with randomly chosen target language words.
Then, a negative example (s, t′) is available.

3.3.3 Parameter Inference

Like semi-supervised RAE (Li et al., 2013), the
parameters θ in our BRAE model can also be di-
vided into three sets:
θL: word embedding matrix L for two lan-

guages (Section 3.1.1);
θrec: recursive auto-encoder parameter matrices

W (1), W (2), and bias terms b(1), b(2) for two lan-
guages (Section 3.1.2);
θsem: transformation matrix W l and bias term

bl for two directions in semantic distance compu-
tation (Section 3.3.1).
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To have a deep understanding of the parameters,
we rewrite Eq. 10:

E(s, t; θ) = α(Erec(s; θ) + Erec(t; θ))
+ (1− α)(E∗sem(s|t, θ) + E∗sem(t|s, θ))
= (αErec(s; θs) + (1− α)E∗sem(s|t, θs))
+ (αErec(t; θt) + (1− α)E∗sem(t|s, θt))

(13)

We can see that the parameters θ can be divided
into two classes: θs for the source language and θt
for the target language. The above equation also
indicates that the source-side parameters θs can be
optimized independently as long as the semantic
representation pt of the target phrase t is given to
compute Esem(s|t, θ) with Eq. 9. It is similar for
the target-side parameters θt.

Assuming the target phrase representation pt
is available, the optimization of the source-side
parameters is similar to that of semi-supervised
RAE. We apply the Stochastic Gradient Descent
(SGD) algorithm to optimize each parameter:

θs = θs − η∂Js
∂θs

(14)

In order to run SGD algorithm, we need to solve
two problems: one for parameter initialization and
the other for partial gradient calculation.

In parameter initialization, θrec and θsem for the
source language is randomly set according to a
normal distribution. For the word embedding Ls,
there are two choices. First, Ls is initialized ran-
domly like other parameters. Second, the word
embedding matrix Ls is pre-trained with DNN
(Bengio et al., 2003; Collobert and Weston, 2008;
Mikolov et al., 2013) using large-scale unlabeled
monolingual data. We prefer to the second one
since this kind of word embedding has already
encoded some semantics of the words. In this
work, we employ the toolkit Word2Vec (Mikolov
et al., 2013) to pre-train the word embedding for
the source and target languages. The word em-
beddings will be fine-tuned in our BRAE model to
capture much more semantics.

The partial gradient for one instance is com-
puted as follows:

∂Js
∂θs

=
∂E(s|t, θs)

∂θs
+ λθs (15)

Where the source-side error given the target phrase
representation includes reconstruction error and
updated semantic error:

E(s|t, θs) = αErec(s; θs) + (1−α)E∗sem(s|t, θs)
(16)

Given the current θs, we first construct the binary
tree (as illustrated in Fig. 2) for any source-side
phrase using the greedy algorithm (Socher et al.,
2011). Then, the derivatives for the parameters in
the fixed binary tree will be calculated via back-
propagation through structures (Goller and Kuch-
ler, 1996). Finally, the parameters will be updated
using Eq. 14 and a new θs is obtained.

The target-side parameters θt can be optimized
in the same way as long as the source-side phrase
representation ps is available. It seems a para-
dox that updating θs needs pt while updating θt
needs ps. To solve this problem, we propose an
co-training style algorithm which includes three
steps:

1. Pre-training: applying unsupervised phrase
embedding with standard RAE to pre-train the
source- and target-side phrase representations ps
and pt respectively (Section 2.1.2);

2. Fine-tuning: with the BRAE model, us-
ing target-side phrase representation pt to update
the source-side parameters θs and obtain the fine-
tuned source-side phrase representation p′s, and
meanwhile using ps to update θt and get the fine-
tuned p′t, and then calculate the joint error over the
training corpus;

3. Termination Check: if the joint error
reaches a local minima or the iterations reach
the pre-defined number (25 is used in our exper-
iments), we terminate the training procedure, oth-
erwise we set ps = p′s, pt = p′t, and go to step
2.

4 Experiments

With the semantic phrase embeddings and the vec-
tor space transformation function, we apply the
BRAE to measure the semantic similarity between
a source phrase and its translation candidates in
the phrase-based SMT. Two tasks are involved in
the experiments: phrase table pruning that dis-
cards entries whose semantic similarity is very low
and decoding with the phrasal semantic similari-
ties as additional new features.

4.1 Hyper-Parameter Settings

The hyper-parameters in the BRAE model include
the dimensionality of the word embedding n in Eq.
1, the balance weight α in Eq. 10, λs in Eq. 11,
and the learning rate η in Eq. 14.

For the dimensionality n, we have tried three
settings n = 50, 100, 200 in our experiments. We
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empirically set the learning rate η = 0.01. We
draw α from 0.05 to 0.5 with step 0.05, and λs
from {10−6, 10−5, 10−4, 10−3, 10−2}. The over-
all error of the BRAE model is employed to guide
the search procedure. Finally, we choose α =
0.15, λL = 10−2, λrec = 10−3 and λsem = 10−3.

4.2 SMT Setup

We have implemented a phrase-based translation
system with a maximum entropy based reordering
model using the bracketing transduction grammar
(Wu, 1997; Xiong et al., 2006).

The SMT evaluation is conducted on Chinese-
to-English translation. Accordingly, our BRAE
model is trained on Chinese and English. The
bilingual training data from LDC 2 contains 0.96M
sentence pairs and 1.1M entity pairs with 27.7M
Chinese words and 31.9M English words. A 5-
gram language model is trained on the Xinhua por-
tion of the English Gigaword corpus and the En-
glish part of bilingual training data. The NIST
MT03 is used as the development data. NIST
MT04-06 and MT08 (news data) are used as the
test data. Case-insensitive BLEU is employed
as the evaluation metric. The statistical signif-
icance test is performed by the re-sampling ap-
proach (Koehn, 2004).

In addition, we pre-train the word embedding
with toolkit Word2Vec on large-scale monolingual
data including the aforementioned data for SMT.
The monolingual data contains 1.06B words for
Chinese and 1.12B words for English. To ob-
tain high-quality bilingual phrase pairs to train
our BRAE model, we perform forced decoding
for the bilingual training sentences and collect the
phrase pairs used. After removing the duplicates,
the remaining 1.12M bilingual phrase pairs (length
ranging from 1 to 7) are obtained.

4.3 Phrase Table Pruning

Pruning most of the phrase table without much
impact on translation quality is very important
for translation especially in environments where
memory and time constraints are imposed. Many
algorithms have been proposed to deal with this
problem, such as significance pruning (Johnson et
al., 2007; Tomeh et al., 2009), relevance prun-
ing (Eck et al., 2007) and entropy-based pruning

2LDC category numbers: LDC2000T50, LDC2002L27,
LDC2003E07, LDC2003E14, LDC2004T07, LDC2005T06,
LDC2005T10 and LDC2005T34.

(Ling et al., 2012; Zens et al., 2012). These algo-
rithms are based on corpus statistics including co-
occurrence statistics, phrase pair usage and com-
position information. For example, the signifi-
cance pruning, which is proven to be a very ef-
fective algorithm, computes the probability named
p-value, that tests whether a source phrase s and a
target phrase t co-occur more frequently in a bilin-
gual corpus than they happen just by chance. The
higher the p-value, the more likely of the phrase
pair to be spurious.

Our work has the same objective, but instead of
using corpus statistics, we attempt to measure the
quality of the phrase pair from the view of seman-
tic meaning. Given a phrase pair (s, t), the BRAE
model first obtains their semantic phrase represen-
tations (ps, pt), and then transforms ps into target
semantic space ps∗, pt into source semantic space
pt
∗. We finally get two similarities Sim(ps∗, pt)

and Sim(pt∗, ps). Phrase pairs that have a low
similarity are more likely to be noise and more
prone to be pruned. In experiments, we discard
the phrase pair whose similarity in two directions
are smaller than a threshold 3.

Table 1 shows the comparison results between
our BRAE-based pruning method and the signif-
icance pruning algorithm. We can see a common
phenomenon in both of the algorithms: for the first
few thresholds, the phrase table becomes smaller
and smaller while the translation quality is not
much decreased, but the performance jumps a lot
at a certain threshold (16 for Significance pruning,
0.8 for BRAE-based one).

Specifically, the Significance algorithm can
safely discard 64% of the phrase table at its thresh-
old 12 with only 0.1 BLEU loss in the overall
test. In contrast, our BRAE-based algorithm can
remove 72% of the phrase table at its threshold
0.7 with only 0.06 BLEU loss in the overall eval-
uation. When the two algorithms using a similar
portion of the phrase table 4 (35% in BRAE and
36% in Significance), the BRAE-based algorithm
outperforms the Significance algorithm on all the
test sets except for MT04. It indicates that our
BRAE model is a good alternative for phrase table
pruning. Furthermore, our model is much more in-

3To avoid the situation that all the translation candidates
for a source phrase are pruned, we always keep the first 10
best according to the semantic similarity.

4In the future, we will compare the performance by en-
forcing the two algorithms to use the same portion of phrase
table
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Method Threshold PhraseTable MT03 MT04 MT05 MT06 MT08 ALL
Baseline 100% 35.81 36.91 34.69 33.83 27.17 34.82

BRAE

0.4 52% 35.94 36.96 35.00 34.71 27.77 35.16
0.5 44% 35.67 36.59 34.86 33.91 27.25 34.89
0.6 35% 35.86 36.71 34.93 34.63 27.34 35.05
0.7 28% 35.55 36.62 34.57 33.97 27.10 34.76
0.8 20% 35.06 36.01 34.13 33.04 26.66 34.04

Significance

8 48% 35.86 36.99 34.74 34.53 27.59 35.13
12 36% 35.59 36.73 34.65 34.17 27.16 34.72
16 25% 35.19 36.24 34.26 33.32 26.55 34.09
20 18% 35.05 36.09 34.02 32.98 26.37 33.97

Table 1: Comparison between BRAE-based pruning and Significance pruning of phrase table. Threshold
means similarity in BRAE and negative-log-p-value in Significance. ”ALL” combines the development
and test sets. Bold numbers denote that the result is better than or comparable to that of baseline. n = 50
is used for embedding dimensionality.

tuitive because it is directly based on the semantic
similarity.

4.4 Decoding with Phrasal Semantic
Similarities

Besides using the semantic similarities to prune
the phrase table, we also employ them as two in-
formative features like the phrase translation prob-
ability to guide translation hypotheses selection
during decoding. Typically, four translation prob-
abilities are adopted in the phrase-based SMT, in-
cluding phrase translation probability and lexical
weights in both directions. The phrase transla-
tion probability is based on co-occurrence statis-
tics and the lexical weights consider the phrase as
bag-of-words. In contrast, our BRAE model fo-
cuses on compositional semantics from words to
phrases. Therefore, the semantic similarities com-
puted using our BRAE model are complementary
to the existing four translation probabilities.

The semantic similarities in two directions
Sim(ps∗, pt) and Sim(pt∗, ps) are integrated into
our baseline phrase-based model. In order to in-
vestigate the influence of the dimensionality of the
embedding space, we have tried three different set-
tings n = 50, 100, 200.

As shown in Table 2, no matter what n is, the
BRAE model can significantly improve the trans-
lation quality in the overall test data. The largest
improvement can be up to 1.7 BLEU score (MT06
for n = 50). It is interesting that with dimen-
sionality growing, the translation performance is
not consistently improved. We speculate that us-
ing n = 50 or n = 100 can already distinguish
good translation candidates from bad ones.

4.5 Analysis on Semantic Phrase Embedding
To have a better intuition about the power of the
BRAE model at learning semantic phrase embed-
dings, we show some examples in Table 3. Given
the BRAE model and the phrase training set, we
search from the set the most semantically similar
English phrases for any new input English phrase.

The input phrases contain different number of
words. The table shows that the unsupervised
RAE can at most capture the syntactic property
when the phrases are short. For example, the
unsupervised RAE finds do not want for the in-
put phrase do not agree. When the phrase be-
comes longer, the unsupervised RAE cannot even
capture the syntactic property. In contrast, our
BRAE model learns the semantic meaning for
each phrase no matter whether it is short or rel-
atively long. This indicates that the proposed
BRAE model is effective at learning semantic
phrase embeddings.

5 Discussions

5.1 Applications of The BRAE model
As the semantic phrase embedding can fully rep-
resent the phrase, we can go a step further in the
phrase-based SMT and feed the semantic phrase
embeddings to DNN in order to model the whole
translation process (e.g. derivation structure pre-
diction). We will explore this direction in our fu-
ture work. Besides SMT, the semantic phrase em-
beddings can be used in other cross-lingual tasks,
such as cross-lingual question answering, since
the semantic similarity between phrases in differ-
ent languages can be calculated accurately.

In addition to the cross-lingual applications, we
believe the BRAE model can be applied in many
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Method n MT03 MT04 MT05 MT06 MT08 ALL
Baseline 35.81 36.91 34.69 33.83 27.17 34.82

BRAE
50 36.43 37.64 35.35 35.53 28.59 35.84+

100 36.45 37.44 35.58 35.42 28.57 36.03+

200 36.34 37.35 35.78 34.87 27.84 35.62+

Table 2: Experimental results of decoding with phrasal semantic similarities. n is the embedding dimen-
sionality. ”+” means that the model significantly outperforms the baseline with p < 0.01.

New Phrase Unsupervised RAE BRAE

military force
core force military power
main force military strength
labor force armed forces

at a meeting
to a meeting at the meeting
at a rate during the meeting
a meeting , at the conference

do not agree
one can accept do not favor
i can understand will not compromise
do not want not to approve

each people in this nation
each country regards every citizen in this country
each country has its all the people in the country
each other , and people all over the country

Table 3: Semantically similar phrases in the training set for the new phrases.

monolingual NLP tasks which depend on good
phrase representations or semantic similarity be-
tween phrases, such as named entity recognition,
parsing, textual entailment, question answering
and paraphrase detection.

5.2 Model Extensions

In fact, the phrases having the same meaning are
translation equivalents in different languages, but
are paraphrases in one language. Therefore, our
model can be easily adapted to learn semantic
phrase embeddings using paraphrases.

Our BRAE model still has some limitations.
For example, as each node in the recursive auto-
encoder shares the same weight matrix, the BRAE
model would become weak at learning the seman-
tic representations for long sentences with tens of
words. Improving the model to semantically em-
bed sentences is left for our future work.

6 Conclusions and Future Work

This paper has explored the bilingually-
constrained recursive auto-encoders in learning
phrase embeddings, which can distinguish phrases
with different semantic meanings. With the ob-
jective to minimize the semantic distance between
translation equivalents and maximize the semantic
distance between non-translation pairs simultane-
ously, the learned model can semantically embed
any phrase in two languages and can transform

the semantic space in one language to the other.
Two end-to-end SMT tasks are involved to test
the power of the proposed model at learning the
semantic phrase embeddings. The experimental
results show that the BRAE model is remarkably
effective in phrase table pruning and decoding
with phrasal semantic similarities.

We have also discussed many other potential ap-
plications and extensions of our BRAE model. In
the future work, we will explore four directions.
1) we will try to model the decoding process with
DNN based on our semantic embeddings of the
basic translation units. 2) we are going to learn
semantic phrase embeddings with the paraphrase
corpus. 3) we will apply the BRAE model in other
monolingual and cross-lingual tasks. 4) we plan to
learn semantic sentence embeddings by automati-
cally learning different weight matrices for differ-
ent nodes in the BRAE model.
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