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Abstract

Unsupervised word segmentation (UWS)
can provide domain-adaptive segmenta-
tion for statistical machine translation
(SMT) without annotated data, and bilin-
gual UWS can even optimize segmenta-
tion for alignment. Monolingual UWS ap-
proaches of explicitly modeling the proba-
bilities of words through Dirichlet process
(DP) models or Pitman-Yor process (PYP)
models have achieved high accuracy, but
their bilingual counterparts have only been
carried out on small corpora such as ba-
sic travel expression corpus (BTEC) due to
the computational complexity. This paper
proposes an efficient unified PYP-based
monolingual and bilingual UWS method.
Experimental results show that the pro-
posed method is comparable to super-
vised segmenters on the in-domain NIST
OpenMT corpus, and yields a 0.96 BLEU
relative increase on NTCIR PatentMT cor-
pus which is out-of-domain.

1 Introduction

Many languages, especially Asian languages such
as Chinese, Japanese and Myanmar, have no ex-
plicit word boundaries, thus word segmentation
(WS), that is, segmenting the continuous texts of
these languages into isolated words, is a prerequi-
site for many natural language processing applica-
tions including SMT.

Though supervised-learning approaches which
involve training segmenters on manually seg-
mented corpora are widely used (Chang et al.,
2008), yet the criteria for manually annotat-
ing words are arbitrary, and the available anno-
tated corpora are limited in both quantity and
genre variety. For example, in machine transla-
tion, there are various parallel corpora such as

BTEC for tourism-related dialogues (Paul, 2008)
and PatentMT in the patent domain (Goto et
al., 2011)1, but researchers working on Chinese-
related tasks often use the Stanford Chinese seg-
menter (Tseng et al., 2005) which is trained on a
small amount of annotated news text.

In contrast, UWS, spurred by the findings that
infants are able to use statistical cues to determine
word boundaries (Saffran et al., 1996), relies on
statistical criteria instead of manually crafted stan-
dards. UWS learns from unsegmented raw text,
which are available in large quantities, and thus
it has the potential to provide more accurate and
adaptive segmentation than supervised approaches
with less development effort being required.

The approaches of explicitly modeling the
probability of words(Brent, 1999; Venkataraman,
2001; Goldwater et al., 2006; Goldwater et al.,
2009; Mochihashi et al., 2009) significantly out-
performed a heuristic approach (Zhao and Kit,
2008) on the monolingual Chinese SIGHAN-MSR
corpus (Emerson, 2005), which inspired the work
of this paper.

However, bilingual approaches that model word
probabilities suffer from computational complex-
ity. Xu et al. (2008) proposed a bilingual method
by adding alignment into the generative model, but
was only able to test it on small-scale BTEC data.
Nguyen et al. (2010) used the local best alignment
to increase the speed of the Gibbs sampling in
training but the impact on accuracy was not ex-
plored.

This paper is dedicated to bilingual UWS on
large-scale corpora to support SMT. To this end,
we model bilingual UWS under a similar frame-
work with monolingual UWS in order to improve
efficiency, and replace Gibbs sampling with ex-
pectation maximization (EM) in training.

We aware that variational bayes (VB) may be
used for speeding up the training of DP-based

1http://ntcir.nii.ac.jp/PatentMT
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or PYP-based bilingual UWS. However, VB re-
quires formulating them expectations of(m−1)-
dimensional marginal distributions, wherem is
the number of hidden variables. For UWS, the
hidden variables are indicators that identify sub-
strings of sentences in the corpus as words. These
variables are large in number and it is not clear
how to apply VB to UWS, and as far the authors
aware there is no previous work related to the ap-
plication of VB to monolingual UWS. Therefore,
we have not explored VB methods in this paper,
but we do show that our method is superior to the
existing methods.

The contributions of this paper include,

• state-of-the-art accuracy in monolingual
UWS;

• the first bilingual UWS method practical for
large corpora;

• improvement of BLEU scores compared
to supervised Stanford Chinese word seg-
menter.

2 Methods

This section describes our unified monolingual
and bilingual UWS scheme. Table 1 lists the main
notation. The setF is chosen to represent an un-
segmented foreign language sentence (a sequence
of characters), because an unsegmented sentence
can be seen as the set of all possible segmentations
of the sentence denotedF , i.e. F ∈ F .

Notation Meaning
F an unsegmented foreign sentence
Fk′

k unsegmented substring of the un-
derlying string ofF from k to k′

F a segmented foreign sentence
fj thej-th foreign word
M monolingual segmentation model
PM(x) probability ofx being a word ac-

cording toM
E a tokenized English sentence
ei thei-th English word
(F ,E) a bilingual sentence pair
B bilingual segmentation model
PB(x|ei) probability ofx being a word ac-

cording toB givenei

Table 1: Main Notation.

Monolingual and bilingual WS can be formu-
lated as follows, respectively,

F̂ (F) = argmax
F∈F

P (F |F ,M), (1)

F̂ (F , E) = argmax
F∈F

∑
a

P (F, a|F , E,B), (2)

wherea is an alignment betweenF andE. The
English sentenceE is used in the generation of a
segmented sentenceF .

UWS learns models by maximizing the likeli-
hood of the unsegmented corpus, formulated as,

M̂ = argmax
M

∏
F∈F

( ∑
F∈F

P (F |M)
)
, (3)

B̂ = argmax
B

∏
(F ,E)∈B

( ∑
F∈F

∑
a

P (F, a|F , E,B)
)
.

(4)

Our method of learningM andB proceeds in a
similar manner to the EM algorithm. The follow-
ing two operations are performed iteratively for
each sentence (pair).

• Exclude the previous expected counts of the
current sentence (pair) from the model, and
then derive the current sentence in all pos-
sible ways, calculating the new expected
counts for the words (see Section 2.1), that
is, we calculate the expected probabilities of
theFk′

k being words given the data excluding
F , i.e. EF/{F}(P (Fk′

k |F)) = P (Fk′
k |F ,M)

in a similar manner to the marginalization in
the Gibbs sampling process which we are re-
placing;

• Update the respective modelM orB accord-
ing to these expectations (see Section2.2).

2.1 Expectation

2.1.1 Monolingual Expectation

P (Fk′
k |F ,M) is the marginal probability of all

the possibleF ∈ F that containFk′
k as a word,

which can be calculated efficiently through dy-
namic programming (the process is similar to the
foreward-backward algorithm in training a hidden
Markov model (HMM) (Rabiner, 1989)):

Pa(k) =
U∑

u=1

Pa(k − u)PM(Fk
k−u)

Pb(k′) =
U∑

u=1

Pb(k′ + u)PM(Fk′+u
k′ )

P (Fk′
k |F ,M) = Pa(k)PM(Fk′

k )Pb(k′), (5)
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whereU is the predefined maximum length of for-
eign language words,Pa(k) and Pb(k′) are the
forward and backward probabilities, respectively.
This section uses a unigram model for description
convenience, but the method can be extended to
n-gram models.

2.1.2 Bilingual Expectation

P (Fk′
k |F , E,B) is the marginal probability of all

the possibleF ∈ F that containFk′
k as a word and

are aligned withE, formulated as:

P (Fk′
k |F , E,B) =

∑
F∈F
Fk′

k ∈F

∑
a

P (F, a|E,B)

≈
∑
F∈F

Fjk
=Fk′

k

∑
a

J∏
j=1

P (aj |j, I, J)PB(fj |eaj )

=
∑
F∈F

fjk
=Fk′

k

J∏
j=1

∑
a

P (aj |j, I, J)PB(fj |eaj ),

(6)

whereJ andI are the number of foreign and En-
glish words, respectively, andaj is the position of
the English word that is aligned tofj in the align-
menta. For the alignment we employ an approx-
imation to IBM model 2 (Brown et al., 1993; Och
and Ney, 2003) described below.

We define the conditional probability offj

given the corresponding English sentenceE and
the modelB as:

PB(fj |E) =
∑

a

P (aj |j, I, J)PB(fj |eaj ) (7)

Then, the previous dynamic programming
method can be extended to the bilingual expecta-
tion

Pa(k|E) =
U∑

u=1

Pa(k − u|E)PB(Fk
k−u|E)

Pb(k′|E) =
U∑

u=1

Pb(k′ + u|E)PB(Fk′+u
k′ |E)

P (F k′
k |F , E,B) = Pa(k|E)PB(Fk′

k |E)Pb(k′|E).
(8)

Eq. 7 can be rewritten (as in IBM model 2):

PB(fj |E) =
I∑

i=1

P ∗(i|j, I, J)PB(fj |ei) (9)

P ∗(i|j, I, J) =
∑

a:aj=i

P (aj |, j, I, J)

In order to maintain both speed and accuracy, the
following window function is adopted

P ∗(i|j, I, J) ≈ P ∗(i|k, I, K) =
e−|i−kI/K|/σ |i− kI/K| 6 δb/2
λφ ei is empty word
0 otherwise

(10)

whereK is the number of characters inF , and
thek-th character is the start of the wordfj , since
j andJ are unknown during the computation of
dynamic programming.δb is the window size,λφ

is the prior probability of an empty English word,
andσ ensures all the items sum to 1.

2.2 Maximization

Inspired by (Teh, 2006; Mochihashi et al., 2009;
Neubig et al., 2010; Teh and Jordan, 2010), we
employ a Pitman-Yor process model to build the
segmentation modelM or B. The monolingual
modelM is

PM(fj) =

max
(
n(fj)− d, 0

)
+ (θ + d · nM)G0(fj)∑

f ′
j
n(f ′j) + θ

nM =
∣∣{fj |n(fj) > d}∣∣, (11)

wherefj is a foreign language word, andn(fj) is
the observed counts offj , θ is named the strength
parameter,G0(fj) is named the base distribution
of fj , andd is the discount.

The bilingual model is

PB(fj |ei) =

max
(
n(fj , ei)− d, 0

)
+ (θ + d · nei)G0(fj |ei)∑

f ′
j
n(f ′j , ei) + θ

nei =
∣∣{x |n(x, ei) > d}∣∣. (12)

In Eqs. 11 and 12,

n(fj) =
∑
F∈F

P (fj |F ,M) (13)

n(fj , ei) =∑
(F ,E)∈B

P (fj |F , E,B)
P ∗(i|j, I, J)PB(fj |ei)∑I

i′=1 P ∗(i′|j, I, J)PB(fj |ei′)
.

(14)
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3 Complexity Analysis

The computational complexity of our method is
linear in the number of iterations, the size of the
corpus, and the complexity of calculating the ex-
pectations on each sentence or sentence pair. In
practical applications, the size of the corpus is
fixed, and we found empirically that the number
of iterations required by the proposed method for
convergence is usually small (less than five itera-
tions). We now look in more detail at the complex-
ity of the expectation calculation in monolingual
and bilingual models.

The monolingual expectation is calculated ac-
cording to Eq. 5; the complexity is linear in the
length of sentences and the square of the prede-
fined maximum length of words. Thus its overall
complexity is

O
unigram
monoling = O(Ni |F|KU2), (15)

whereNi is the number of iterations,K is the av-
erage number of characters per sentence, andU is
the predefined maximum length of words.

For the monolingual bigram model, the number
of states in the HMM isU times more than that
of the monolingual unigram model, as the states at
specific position ofF are not only related to the
length of the current word, but also related to the
length of the word before it. Thus its complexity
is U2 times the unigram model’s complexity:

O
bigram
monoling = O(Ni |F|KU4). (16)

The bilingual expectation is given by Eq. 8,
whose complexity is the same as the monolingual
case. However, the complexity of calculating the
transition probability, in Eqs. 9 and 10, isO(δb).
Thus its overall complexity is:

O
unigram
biling = O(Ni |F|KU2δb). (17)

4 Experiments

In this section, the proposed method is first val-
idated on monolingual segmentation tasks, and
then evaluated in the context of SMT to study
whether the translation quality, measured by
BLEU, can be improved.

4.1 Experimental Settings

4.1.1 Experimental Corpora

Two monolingual corpora and two bilingual cor-
pora are used (Table 2). CHILDES (MacWhin-
ney and Snow, 1985) is the most common test

Corpus Type # Sentences # Characters
CHILDES Mono. 9,790 95,809
SIGHAN-MSR Mono. 90,903 4,234,824
OpenMT06 Biling. 437,004 19,692,605
PatentMT9 Biling. 1,004,000 63,130,757

Table 2: Experimental Corpora

corpus for UWS methods. The SIGHAN-MSR
corpus (Emerson, 2005) consists of manually seg-
mented simplified Chinese news text, released in
the SIGHAN bakeoff 2005 shared tasks.

The first bilingual corpus: OpenMT06 was used
in the NIST open machine translation 2006 Eval-
uation 2. We removed the United Nations cor-
pus and the traditional Chinese data sets from the
constraint training resources. The data sets of
NIST Eval 2002 to 2005 were used as the develop-
ment for MERT tuning (Och, 2003). This data set
mainly consists of news text3. PatentMT9 is from
the shared task of NTCIR-9 patent machine trans-
lation . The training set consists of 1 million par-
allel sentences extracted from patent documents,
and the development set and test set both consist
of 2000 sentences.

4.1.2 Performance Measurement and
Baseline Methods

For the monolingual tasks, the F1 score against
the gold annotation is adopted to measure the ac-
curacy. The results reported in related papers are
listed for comparison.

For the bilingual tasks, the publicly available
system of Moses (Koehn et al., 2007) with default
settings is employed to perform machine transla-
tion, and BLEU (Papineni et al., 2002) was used
to evaluate the quality. Character-based segmen-
tation, LDC segmenter and Stanford Chinese seg-
menters were used as the baseline methods.

4.1.3 Parameter settings

The parameters are tuned on held-out data sets.
The maximum length of foreign language words
is set to 4. For the PYP model, the base distri-
bution adopts the formula in (Chung and Gildea,
2009), and the strength parameter is set to1.0, and
the discount is set to1.0× 10−6.

For bilingual segmentation,the size of the align-
ment window is set to6; the probabilityλφ of for-
eign language words being generated by an empty

2http://www.itl.nist.gov/iad/mig/
/tests/mt/2006/

3It also contains a small number of web blogs
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Method Accuracy Time
CHILD. MSR CHILD. MSR

NPY(bigram)a 0.750 0.802 17 m –
NPY(trigram)a 0.757 0.807 – –
HDP(bigram)b 0.723 – 10 h –
Fitnessc – 0.667 – –
Prop.(unigram) 0.729 0.804 3 s 50 s
Prop.(bigram) 0.774 0.806 15 s 2530 s
a by (Mochihashi et al.,2009);
b by (Goldwater et al.,2009);
c by (Zhao and Kit, 2008).

Table 3: Results on Monolingual Corpora.

English word, was set to0.3.
The training was started from assuming that

there was no previous segmentations on each sen-
tence (pair), and the number of iterations was
fixed. It was set to 3 for the monolingual unigram
model, and 2 for the bilingual unigram model,
which provided slightly higher BLEU scores on
the development set than the other settings. The
monolingual bigram model, however, was slower
to converge, so we started it from the segmenta-
tions of the unigram model, and using 10 itera-
tions.

4.2 Monolingual Segmentation Results

In monolingual segmentation, the proposed meth-
ods with both unigram and bigram models were
tested. Experimental results show that they are
competitive to state-of-the-art baselines in both ac-
curacy and speed (Table 3). Note that the com-
parison of speed is only for reference because the
times are obtained from their respective papers.

4.3 Bilingual Segmentation Results

Table 4 presents the BLEU scores for Moses using
different segmentation methods. Each experiment
was performed three times. The proposed method
with monolingual bigram model performed poorly
on the Chinese monolingual segmentation task;
thus, it was not tested. We intended to test (Mochi-
hashi et al., 2009), but found it impracticable on
large-scale corpora.

The experimental results show that the proposed
UWS methods are comparable to the Stanford seg-
menters on the OpenMT06 corpus, while achieves
a 0.96 BLEU increase on the PatentMT9 corpus.
This is because this corpus is out-of-domain for
the supervised segmenters. The CTB and PKU
Stanford segmenter were both trained on anno-
tated news text, which was the major domain of
OpenMT06.

Method BLEU
OpenMT06 PatentMT9

Character 29.50± 0.03 28.36± 0.09
LDC 31.33± 0.10 30.22± 0.14
Stanford(CTB) 31.68 ± 0.25 30.77± 0.13
Stanford(PKU) 31.54± 0.13 30.86± 0.04
Prop.(mono.) 31.47± 0.18 31.62± 0.06
Prop.(biling.) 31.61± 0.14 31.73 ± 0.05

Table 4: Results on Bilingual Corpora.

Method Time
OpenMT06 PatentMT9

Prop.(mono.) 28 m 1 h 01 m
Prop.(biling.) 2 h 25 m 5 h 02 m

Table 5: Time Costs on Bilingual Corpora.

Table 5 presents the run times of the proposed
methods on the bilingual corpora. The program
is single threaded and implemented in C++. The
time cost of the bilingual models is about 5 times
that of the monolingual model, which is consistent
with the complexity analysis in Section 3.

5 Conclusion

This paper is devoted to large-scale Chinese UWS
for SMT. An efficient unified monolingual and
bilingual UWS method is proposed and applied to
large-scale bilingual corpora.

Complexity analysis shows that our method is
capable of scaling to large-scale corpora. This was
verified by experiments on a corpus of 1-million
sentence pairs on which traditional MCMC ap-
proaches would struggle (Xu et al., 2008).

The proposed method does not require any
annotated data, but the SMT system with it
can achieve comparable performance compared
to state-of-the-art supervised word segmenters
trained on precious annotated data. Moreover,
the proposed method yields 0.96 BLEU improve-
ment relative to supervised word segmenters on
an out-of-domain corpus. Thus, we believe that
the proposed method would benefit SMT related to
low-resource languages where annotated data are
scare, and would also find application in domains
that differ too greatly from the domains on which
supervised word segmenters were trained.

In future research, we plan to improve the bilin-
gual UWS through applying VB and integrating
more accurate alignment models such as HMM
models and IBM model 4.
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