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Abstract

The automatic estimation of machine
translation (MT) output quality is a hard
task in which the selection of the appro-
priate algorithm and the most predictive
features over reasonably sized training sets
plays a crucial role. When moving from
controlled lab evaluations to real-life sce-
narios the task becomes even harder. For
current MT quality estimation (QE) sys-
tems, additional complexity comes from
the difficulty to model user and domain
changes. Indeed, the instability of the sys-
tems with respect to data coming from dif-
ferent distributions calls for adaptive so-
lutions that react to new operating con-
ditions. To tackle this issue we propose
an online framework for adaptive QE that
targets reactivity and robustness to user
and domain changes. Contrastive exper-
iments in different testing conditions in-
volving user and domain changes demon-
strate the effectiveness of our approach.

1 Introduction

After two decades of steady progress, research
in statistical machine translation (SMT) started to
cross its path with translation industry with tan-
gible mutual benefit. On one side, SMT research
brings to the industry improved output quality and
a number of appealing solutions useful to increase
translators’ productivity. On the other side, the
market needs suggest concrete problems to solve,
providing real-life scenarios to develop and eval-
uate new ideas with rapid turnaround. The evolu-
tion of computer-assisted translation (CAT) envi-
ronments is an evidence of this trend, shown by
the increasing interest towards the integration of
suggestions obtained from MT engines with those
derived from translation memories (TMs).

The possibility to speed up the translation pro-
cess and reduce its costs by post-editing good-
quality MT output raises interesting research chal-
lenges. Among others, these include deciding
what to present as a suggestion, and how to do it
in the most effective way.

In recent years, these issues motivated research
on automatic QE, which addresses the problem
of estimating the quality of a translated sentence
given the source and without access to reference
translations (Blatz et al., 2003; Specia et al., 2009;
Mehdad et al., 2012). Despite the substantial
progress done so far in the field and in success-
ful evaluation campaigns (Callison-Burch et al.,
2012; Bojar et al., 2013), focusing on concrete
market needs makes possible to further define the
scope of research on QE. For instance, moving
from controlled lab testing scenarios to real work-
ing environments poses additional constraints in
terms of adaptability of the QE models to the vari-
able conditions of a translation job. Such variabil-
ity is due to two main reasons:

1. The notion of MT output quality is highly
subjective (Koponen, 2012; Turchi et al.,
2013; Turchi and Negri, 2014). Since the
quality standards of individual users may
vary considerably (e.g. according to their
knowledge of the source and target lan-
guages), the estimates of a static QE model
trained with data collected from a group of
post-editors might not fit with the actual
judgements of a new user;

2. Each translation job has its own specifici-
ties (domain, complexity of the source text,
average target quality). Since data from a
new job may differ from those used to train
the QE model, its estimates on the new in-
stances might result to be biased or uninfor-
mative.

The ability of a system to self-adapt to the be-
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haviour of specific users and domain changes is
a facet of the QE problem that so far has been
disregarded. To cope with these issues and deal
with the erratic conditions of real-world trans-
lation workflows, we propose an adaptive ap-
proach to QE that is sensitive and robust to dif-
ferences between training and test data. Along this
direction, our main contribution is a framework in
which QE models can be trained and can continu-
ously evolve over time accounting for knowledge
acquired from post editors’ work.

Our approach is based on the online learning
paradigm and exploits a key difference between
such framework and the batch learning methods
currently used. On one side, the QE models ob-
tained with batch methods are learned exclusively
from a predefined set of training examples under
the assumption that they have similar characteris-
tics with respect to the test data. This makes them
suitable for controlled evaluation scenarios where
such condition holds. On the other side, online
learning techniques are designed to learn in a step-
wise manner (either from scratch, or by refining an
existing model) from new, unseen test instances
by taking advantage of external feedback. This
makes them suitable for real-life scenarios where
the new instances to be labelled can considerably
differ from the data used to train the QE model.

To develop our approach, different online algo-
rithms have been embedded in the backbone of
a QE system. This required the adaptation of its
standard batch learning workflow to:

1. Perform online feature extraction from a
source–target pair (i.e. one instance at a time
instead of processing an entire training set);

2. Emit a prediction for the input instance;

3. Gather user feedback for the instance (i.e.
calculating a “true label” based on the
amount of user post-editions);

4. Send the true label back to the model to up-
date its predictions for future instances.

Focusing on the adaptability to user and domain
changes, we report the results of comparative ex-
periments with two online algorithms and the stan-
dard batch approach. The evaluation is carried out
by measuring the global error of each algorithm
on test sets featuring different degrees of similar-
ity with the data used for training. Our results

show that the sensitivity of online QE models to
different distributions of training and test instances
makes them more suitable than batch methods for
integration in a CAT framework.

Our adaptive QE infrastructure has been re-
leased as open source. Its C++ implementation is
available at http://hlt.fbk.eu/technologies/
aqet.

2 Related work

QE is generally cast as a supervised machine
learning task, where a model trained from a col-
lection of (source, target, label) instances is used
to predict labels1 for new, unseen test items (Spe-
cia et al., 2010).

In the last couple of years, research in the field
received a strong boost by the shared tasks orga-
nized within the WMT workshop on SMT,2 which
is also the framework of our first experiment in
§5. Current approaches to the tasks proposed at
WMT have mainly focused on three main direc-
tions, namely: i) feature engineering, as in (Hard-
meier et al., 2012; de Souza et al., 2013a; de Souza
et al., 2013b; Rubino et al., 2013b), ii) model
learning with a variety of classification and regres-
sion algorithms, as in (Bicici, 2013; Beck et al.,
2013; Soricut et al., 2012), and iii) feature selec-
tion as a way to overcome sparsity and overfitting
issues, as in (Soricut et al., 2012).

Being optimized to perform well on specific
WMT sub-tasks and datasets, current systems re-
flect variations along these directions but leave im-
portant aspects of the QE problem still partially
investigated or totally unexplored.3 Among these,
the necessity to model the diversity of human qual-
ity judgements and correction strategies (Kopo-
nen, 2012; Koponen et al., 2012) calls for solu-
tions that: i) account for annotator-specific be-
haviour, thus being capable of learning from inher-
ently noisy datasets produced by multiple annota-
tors, and ii) self-adapt to changes in data distribu-
tion, learning from user feedback on new, unseen
test items.

1Possible label types include post-editing effort scores
(e.g. 1-5 Likert scores indicating the estimated percentage
of MT output that has to be corrected), HTER values (Snover
et al., 2006), and post-editing time (e.g. seconds per word).

2http://www.statmt.org/wmt13/
3For a comprehensive overview of the QE approaches

proposed so far we refer the reader to the WMT12 and
WMT13 QE shared task reports (Callison-Burch et al., 2012;
Bojar et al., 2013).
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These interconnected issues are particularly rel-
evant in the CAT framework, where translation
jobs from different domains are routed to pro-
fessional translators with different idiolect, back-
ground and quality standards.

The first aspect, modelling annotators’ individ-
ual behaviour and interdependences, has been ad-
dressed by Cohn and Specia (2013), who explored
multi-task Gaussian Processes as a way to jointly
learn from the output of multiple annotations. This
technique is suitable to cope with the unbalanced
distribution of training instances and yields better
models when heterogeneous training datasets are
available.

The second problem, the adaptability of QE
models, has not been explored yet. A common
trait of all current approaches, in fact, is the re-
liance on batch learning techniques, which assume
a “static” nature of the world where new unseen
instances that will be encountered will be similar
to the training data.4 However, similarly to trans-
lation memories that incrementally store translated
segments and evolve over time incorporating users
style and terminology, all components of a CAT
tool (the MT engine and the mechanisms to assign
quality scores to the suggested translations) should
take advantage of translators feedback.

On the MT system side, research on adaptive
approaches tailored to interactive SMT and CAT
scenarios explored the online learning protocol
(Littlestone, 1988) to improve various aspects of
the decoding process (Cesa-Bianchi et al., 2008;
Ortiz-Martı́nez et al., 2010; Martı́nez-Gómez et
al., 2011; Martı́nez-Gómez et al., 2012; Mathur
et al., 2013; Bertoldi et al., 2013).

As regards QE models, our work represents the
first investigation on incremental adaptation by ex-
ploiting users feedback to provide targeted (sys-
tem, user, or project specific) quality judgements.

3 Online QE for CAT environments

When operating with advanced CAT tools, transla-
tors are presented with suggestions (either match-
ing fragments from a translation memory or auto-
matic translations produced by an MT system) for
each sentence of a source document. Before being
approved and published, translation suggestions
may require different amounts of post-editing op-
erations depending on their quality.

4This assumption holds in the WMT evaluation scenario,
but it is not necessarily valid in real operating conditions.

Each post-edition brings a wealth of dynamic
knowledge about the whole translation process
and the involved actors. For instance, adaptive QE
components could exploit information about the
distance between automatically assigned scores
and the quality standards of individual translators
(inferred from the amount of their corrections) to
“profile” their behaviour.

The online learning paradigm fits well with this
research objective. In the online framework, dif-
ferently from the batch mode, the learning al-
gorithm sequentially processes an unknown se-
quence of instances X = x1, x2, ..., xn, returning
a prediction p(xi) as output at each step. Differ-
ences between p(xi) and the true label p̂(xi) ob-
tained as feedback are used by the learner to refine
the next prediction p(xi+1).

In our experiments on adaptive QE we aim to
predict the quality of the suggested translations
in terms of HTER, which measures the minimum
edit distance between the MT output and its man-
ually post-edited version in the [0,1] interval.5 In
this scenario:

• The set of instances X is represented by
(source, target) pairs;

• The prediction p(xi) is the automatically es-
timated HTER score;

• The true label p̂(xi) is the actual HTER score
calculated over the target and its post-edition.

At each step of the process, the goal of the learner
is to exploit user post-editions to reduce the differ-
ence between the predicted HTER values and the
true labels for the following (source, target) pairs.

As depicted in Figure 1, this is done as follows:

1. At step i, an unlabelled (source, target) pair
xi is sent to a feature extraction component.
To this aim, we used an adapted version
(Shah et al., 2014) of the open-source QuEst6

tool (Specia et al., 2013). The tool, which im-
plements a large number of features proposed
by participants in the WMT QE shared tasks,
has been modified to process one sentence at
a time as requested for integration in a CAT
environment;

5Edit distance is calculated as the number of edits (word
insertions, deletions, substitutions, and shifts) divided by the
number of words in the reference. Lower HTER values indi-
cate better translations.

6http://www.quest.dcs.shef.ac.uk/
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Figure 1: Online QE workflow. <src>, <trg> and <pe> respectively stand for the source sentence, the
target translation and the post-edited target.

2. The extracted features are sent to an on-
line regressor, which returns a QE prediction
score p(xi) in the [0,1] interval (set to 0 at the
first round of the iteration);

3. Based on the post-edition done by the user,
the true HTER label p̂(xi) is calculated by
means of the TERCpp7 open source tool;

4. The true label is sent back to the online al-
gorithm for a stepwise model improvement.
The updated model is then ready to process
the following instance xi+1.

This new paradigm for QE makes it possible
to: i) let the QE system learn from one point at
a time without complete re-training from scratch,
ii) customize the predictions of an existing QE
model with respect to a specific situation (post-
editor or domain), or even iii) build a QE model
from scratch when training data is not available.

For the sake of clarity it is worth observing that,
at least in principle, a model built in a batch fash-
ion could also be adapted to new test data. For in-
stance, this could be done by running periodic re-
training routines once a certain amount of new la-
belled instances has been collected (de facto mim-
icking an online process). Such periodic updates,
however, would not represent a viable solution in
the CAT framework where post-editors’ work can-
not be slowed by time-consuming procedures to
re-train core system components from scratch.

7goo.gl/nkh2rE

4 Evaluation framework

To measure the adaptation capability of different
QE models, we experiment with a range of condi-
tions defined by variable degrees of similarity be-
tween training and test data.

The degree of similarity depends on several fac-
tors: the MT engine used, the domain of the docu-
ments to be translated, and the post-editing style of
individual translators. In our experiments, the de-
gree of similarity is measured in terms of ∆HTER,
which is computed as the absolute value of the dif-
ference between the average HTER of the training
and test sets. Large values indicate a low simi-
larity between training and test data and a more
challenging scenario for the learning algorithms.

4.1 Experimental setup

In the range of possible evaluation scenarios, our
experiments cover:

• One artificial setting (§5) obtained from the
WMT12 QE shared task data, in which train-
ing/test instances are arranged to reflect ho-
mogeneous distributions of the HTER labels.

• Two settings obtained from data collected
with a CAT tool in real working condi-
tions, in which different facets of the adap-
tive QE problem interact with each other.
In the first (user change, §6.1), train-
ing and test data from the same domain are
obtained from different users. In the sec-
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ond (user+domain change, §6.2), train-
ing and test data are obtained from different
users and domains.

For each setting, we compare an adaptive and
an empty model against a system trained in batch
mode. The adaptive model is built on top of an
existing model created from the training data and
exploits the new test instances to refine its predic-
tions in a stepwise manner. The empty model only
learns from the test set, simulating the worst con-
dition where training data is not available. The
batch model is built by learning only from the
training data and is evaluated on the test set with-
out exploiting information from the test instances.

Each model is also compared against a common
baseline for regression tasks, which is particularly
relevant in settings featuring different data distri-
butions between training and test sets. This base-
line (µ henceforth) is calculated by labelling each
instance of the test set with the mean HTER score
of the training set. Previous works (Rubino et al.,
2013a) demonstrated that its results can be partic-
ularly hard to beat.

4.2 Performance indicator and feature set
To measure the adaptability of our model to a
given test set we compute the Mean Absolute Er-
ror (MAE), a metric for regression problems also
used in the WMT QE shared tasks. The MAE is
the average of the absolute errors ei = |fi − yi|,
where fi is the prediction of the model and yi is
the true value for the ith instance.

As our focus is on the algorithmic aspect, in all
experiments we use the same feature set, which
consists of the seventeen features proposed in
(Specia et al., 2009). This feature set, fully de-
scribed in (Callison-Burch et al., 2012), takes into
account the complexity of the source sentence
(e.g. number of tokens, number of translations per
source word) and the fluency of the target trans-
lation (e.g. language model probabilities). The
results of previous WMT QE shared tasks have
shown that these baseline features are particularly
competitive in the regression task (with only few
systems able to beat them at WMT12).

4.3 Online algorithms
In our experiments we evaluate two online algo-
rithms, OnlineSVR (Parrella, 2007)8 and Passive-

8http://www2.imperial.ac.uk/˜gmontana/
onlinesvr.htm

Aggressive Perceptron (Crammer et al., 2006),9 by
comparing their performance with a batch learning
strategy based on the Scikit-learn implementation
of Support Vector Regression (SVR).10

The choice of the OnlineSVR and Passive-
Aggressive (OSVR and PA henceforth) is moti-
vated by different considerations. From a perfor-
mance point of view, as an adaptation of ε-SVR
which proved to be one of the top performing algo-
rithms in the regression QE tasks at WMT, OSVR
seems to be the best candidate. For this reason,
we use the online adaptation of ε-SVR proposed
by (Ma et al., 2003). The goal of OnlineSVR is to
find a way to add each new sample to one of three
sets (support, empty, error) maintaining the con-
sistency of a set of conditions known as Karush-
Kuhn Tucker (KKT) conditions. For each new
point, OSVR starts a cycle where the samples are
moved across the three sets until the KKT condi-
tions are verified and the new point is assigned to
one of the sets. If the point is identified as a sup-
port vector, the parameters of the model are up-
dated. This allows OSVR to benefit from the pre-
diction capability of ε-SVR in an online setting.

From a practical point of view, providing the
best trade off between accuracy and computational
time (He and Wang, 2012), PA represents a good
solution to meet the demand of efficiency posed
by the CAT framework. For each instance i, after
emitting a prediction and receiving the true label,
PA computes the ε-insensitive hinge loss function.
If its value is larger than the tolerance parameter
(ε), the weights of the model are updated as much
as the aggressiveness parameter C allows. In con-
trast with OSVR, which keeps track of the most
important points seen in the past (support vectors),
the update of the weights is done without consid-
ering the previously processed i-1 instances. Al-
though it makes PA faster than OSVR, this is a
riskier strategy because it may lead the algorithm
to change the model to adapt to outlier points.

5 Experiments with WMT12 data

The motivations for experiments with training and
test data featuring homogeneous label distribu-
tions are twofold. First, since in this artificial sce-
nario adaptation capabilities are not required for
the QE component, batch methods operate in the
ideal conditions (as training and test are indepen-

9https://code.google.com/p/sofia-ml/
10http://scikit-learn.org/
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WMT Dataset

Train Test ∆ µ Batch Adaptive Empty
HTER MAE MAE MAE Alg. MAE Alg.

200 754 0.39 13.7 13.2 13.2∗ OSVR 13.5∗ OSVR
600 754 1.32 13.8 12.7 12.9∗ OSVR 13.5∗ OSVR
1500 754 1.22 13.8 12.7 12.8∗ OSVR 13.5∗ OSVR

Table 1: MAE of the best performing batch, adaptive and empty models on WMT12 data. Training sets
of different size and the test set have been arranged to reflect homogeneous label distributions.

dent and identically distributed). This makes pos-
sible to obtain from batch models the best possible
performance to compare with. Second, this sce-
nario provides the fairest conditions for such com-
parison because, in principle, online algorithms
are not favoured by the possibility to learn from
the diversity of the test instances.

For our controlled experiments we use the
WMT12 English-Spanish corpus, which consists
of 2,254 source-target pairs (1,832 for training,
422 for test). The HTER labels for our regression
task are calculated from the post-edited version
and the target sentences provided in the dataset.

To avoid biases in the label distribution, the
WMT12 training and test data have been merged,
shuffled, and eventually separated to generate
three training sets of different size (200, 600, and
1500 instances), and one test set with 754 in-
stances. For each algorithm, the training sets are
used for learning the QE models, optimizing pa-
rameters (i.e. C, ε, the kernel and its parame-
ters for SVR and OSVR; tolerance and aggressive-
ness for PA) through grid search in 10-fold cross-
validation.

Evaluation is carried out by measuring the per-
formance of the batch (learning only from the
training set), the adaptive (learning from the train-
ing set and adapting to the test set), and the empty
(learning from scratch from the test set) models in
terms of global MAE scores on the test set.

Table 1 reports the results achieved by the
best performing algorithm for each type of model
(batch, adaptive, empty). As can be seen, close
MAE values show a similar behaviour for the three
types of models.11 With the same amount of train-
ing data, the performance of the batch and the
adaptive models (in this case always obtained with
OSVR) is almost identical. This demonstrates
that, as expected, the online algorithms do not take

11Results marked with the “∗” symbol are NOT statisti-
cally significant compared to the corresponding batch model.
The others are always statistically significant at p≤0.005, cal-
culated with approximate randomization (Yeh, 2000).

advantage of test data with a label distribution sim-
ilar to the training set. All the models outper-
form the baseline, even if the minimal differences
confirm the competitiveness of such a simple ap-
proach.

Overall, these results bring some interesting in-
dications about the behaviour of the different on-
line algorithms. First, the good results achieved
by the empty models (less than one MAE point
separates them from the best ones built on the
largest training set) suggest their high potential
when training data are not available. Second,
our results show that OSVR is always the best
performing algorithm for the adaptive and empty
models. This suggests a lower capability of PA to
learn from instances similar to the training data.

6 Experiments with CAT data

To experiment with adaptive QE in more realis-
tic conditions we used a CAT tool12 to collect
two datasets of (source, target, post edited tar-
get) English-Italian tuples.The source sentences in
the datasets come from two documents from dif-
ferent domains, respectively legal (L) and infor-
mation technology (IT). The L document, which
was extracted from a European Parliament resolu-
tion published on the EUR-Lex platform,13 con-
tains 164 sentences. The IT document, which was
taken from a software user manual, contains 280
sentences. The source sentences were translated
with two SMT systems built by training the Moses
toolkit (Koehn et al., 2007) on parallel data from
the two domains (about 2M sentences for IT and
1.5M for L). Post-editions were collected from
eight professional translators (four for each docu-
ment) operating with the CAT tool in real working
conditions.

According to the way they are created, the two
datasets allow us to evaluate the adaptability of
different QE models with respect to user changes

12MateCat – http://www.matecat.com/
13http://eur-lex.europa.eu/
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user change

Legal Domain

Train Test ∆ µ Batch Adaptive Empty
HTER MAE MAE MAE Alg. MAE Alg.

rad cons 20.5 21.4 20.6 14.5 PA 12.5 OSVR
cons rad 19.4 21.2 21.3 16.1 PA 11.3 OSVR
sim1 sim2 3.3 14.7 12.2 12.6∗ OSVR 12.9∗ OSVR
sim2 sim1 3.2 13.4 13.3 13.9∗ OSVR 15.2∗ OSVR

IT Domain

Train Test ∆ µ Batch Adaptive Empty
HTER MAE MAE MAE Alg MAE Alg

cons rad 12.8 19.2 19.8 17.5∗ OSVR 16.6 OSVR
rad cons 9.6 16.8 16.6 15.6 PA 15.5 OSVR
sim2 sim1 3.3 14.7 14.4 15∗ OSVR 15.5∗ OSVR
sim1 sim2 1.1 15 13.9 14.4∗ OSVR 16.1∗ OSVR

Table 2: MAE of the best performing batch, adaptive and empty models on CAT data collected from
different users in the same domain.

within the same domain (§6.1), as well as user and
domain changes at the same time (§6.2).

For each document D (L or IT), these two sce-
narios are obtained by dividing D into two parts
of equal size (80 instances for L and 140 for IT).
The result is one training set and one test set for
each post-editor within the same domain. For the
user change experiments, training and test sets
are selected from different post-editors within the
same domain. For the user+domain change
experiments, training and test sets are selected
from different post-editors in different domains.

On each combination of training and test sets,
the batch, adaptive, and empty models are trained
and evaluated in terms of global MAE scores on
the test set.

6.1 Dealing with user changes

Among the possible combinations of training and
test data from different post-editors in the same
domain, Table 2 refers to two opposite scenarios.
For each domain, these respectively involve the
most dissimilar and the most similar post-editors
according to the ∆HTER. Also in this case, for
each model (batch, adaptive and empty) we only
report the MAE of the best performing algorithm.

The first scenario defines a challenging situation
where two post-editors (rad and cons) are charac-
terized by opposite behaviour. As evidenced by
the high ∆HTER values, one of them (rad) is the
most “radical” post-editor (performing more cor-
rections) while the other (cons) is the most “con-
servative” one. As shown in Table 2, global MAE
scores for the online algorithms (both adaptive and
empty) indicate their good adaptation capabilities.

This is evident from the significant improvements
both over the baseline (µ) and the batch models.
Interestingly, the best results are always achieved
by the empty models (with MAE reductions up to
10 points when tested on rad in the L domain,
and 3.2 points when tested on rad in the IT do-
main). These results (MAE reductions are always
statistically significant) suggest that, when deal-
ing with datasets with very different label distri-
butions, the evident limitations of batch methods
are more easily overcome by learning from scratch
from the feedback of a new post-editor. This also
holds when the amount of test points to learn from
is limited, as in the L domain where the test set
contains only 80 instances. From the application-
oriented perspective that motivates our work, con-
sidering the high costs of acquiring large and rep-
resentative QE training data, this is an important
finding.

The second scenario defines a less challeng-
ing situation where the two post-editors (sim1 and
sim2) are characterized by the most similar be-
haviour (small ∆HTER). This scenario is closer to
the situation described in Section §5. Also in this
case MAE results for the adaptive and empty mod-
els are slightly worse, but not significantly, than
those of the batch models and the baseline. How-
ever, considering the very small amount of “unin-
formative” instances to learn from (especially for
the empty models), these lower results are not sur-
prising.

A closer look at the behaviour of the online al-
gorithms in the two domains leads to other obser-
vations. First, OSVR always outperforms PA for
the empty models and when post-editors have sim-
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user+domain change

Train Test ∆ µ Batch Adaptive Empty
HTER MAE MAE MAE Alg MAE Alg

L cons IT rad 24.5 26.4 27 18.2 OSVR 16.6 OSVR
IT rad L cons 24.0 24.9 25.4 19.7 OSVR 12.5 OSVR
L rad L cons 20.5 21.4 20.6 14.5 PA 12.5 OSVR
L cons L rad 19.4 21.2 21.3 16.1 PA 11.3 OSVR
IT cons L cons 13.5 17.3 17.5 15.7 OSVR 12.5 OSVR
IT cons IT rad 12.8 19.2 19.8 17.5 OSVR 16.6 OSVR
L cons IT cons 12.7 17.6 17.6 15.1 OSVR 15.5 OSVR
IT rad IT cons 9.6 16.8 16.6 15.6 PA 15.5 OSVR
IT cons L rad 8.3 12.3 13 10.7 OSVR 11.3 OSVR
L rad IT rad 6.8 17 16.9 16.2 OSVR 16.6 OSVR
L rad IT cons 5.0 15.4 16.2 14.7 OSVR 15.5 OSVR
IT rad L rad 2.2 10.6 10.8 10.5 OSVR 11.3 OSVR

Table 3: MAE of the best performing batch, adaptive and empty models on CAT data collected from
different users and domains.

ilar behaviour, which are situations where the al-
gorithm does not have to quickly adapt or react to
sudden changes.

Second, PA seems to perform better for the
adaptive models when the post-editors have sig-
nificantly different behaviour and a quick adapta-
tion to the incoming points is required. This can
be motivated by the fact that PA relies on a simpler
and less robust learning strategy that does not keep
track of all the information coming from the previ-
ously processed instances, and can easily modify
its weights taking into consideration the last seen
point (see Section §3). For OSVR the addition of
new points to the support set may have a limited
effect on the whole model, in particular if the num-
ber of points in the set is large. This also results
in a different processing time for the two algo-
rithms.14 For instance, in the empty configurations
on IT data, OSVR devotes 6.0 ms per instance to
update the model, while PA devotes 4.8ms, which
comes at the cost of lower performance.

6.2 Dealing with user and domain changes

In the last round of experiments we evaluate the
reactivity of different online models to simultane-
ous user and domain changes. To this aim, our
QE models are created using a training set coming
from one domain (L or IT), and then used to pre-
dict the HTER labels for the test instances coming
from the other domain (e.g. training on L, testing
on IT).

Among the possible combinations of training

14Their complexity depends on the number of features (f )
and the number of previously seen instances (n). While for
PA it is linear in f, i.e. O(f), for OSVR it is quadratic in n, i.e.
O(n2*f).

and test data, Table 3 refers to scenarios involv-
ing the most conservative and radical post-editors
in each domain (previously identified with cons
and rad)15. In the table, results are ordered ac-
cording to the ∆HTER computed between the se-
lected post-editor in the training domain (e.g. L
cons) and the selected post-editor in the test do-
main (e.g. IT rad). For the sake of comparison,
we also report (grey rows) the results of the ex-
periments within the same domain presented in
§6.1. For each type of model (batch, adaptive and
empty) we only show the MAE obtained by the
best performing algorithm.

Intuitively, dealing with simultaneous user and
domain changes represents a more challenging
problem compared to the previous setting where
only post-editors changes were considered. Such
intuition is confirmed by the results of the adaptive
models that outperform both the baseline (µ) and
the batch models even for low ∆HTER values. Al-
though in these cases the distance between train-
ing and test data is comparable to the experiments
with similar post-editors working in the same do-
main (sim1 and sim2), here the predictive power
of the batch models seems in fact to be lower. The
same holds also for the empty models except in
two cases where the ∆HTER is the smallest (2.2
and 5.0). This is a strong evidence of the fact that,
in case of domain changes, online models can still
learn from new test instances even if they have a
label distribution similar to the training set.

When the distance between training and test in-
creases, our results confirm our previous findings

15For brevity, we omit the results for the other post-editors
which, however, show similar trends with respect to the pre-
vious experiments.
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about the potential of the empty models. The ob-
served MAE reductions range in fact from 10.4
to 12.9 points for the two combinations with the
highest ∆HTER.

From the algorithmic point of view, our results
indicate that OSVR achieves the best performance
for all the combinations involving user and domain
changes. This contrasts with the results of most of
the combinations involving only user changes with
post-editors characterized by opposite behaviour
(grey rows in Table 3). However, it has to be re-
marked that in the case of heterogeneous datasets
the difference between the two algorithms is al-
ways very high. In our experiments, when PA out-
performs OSVR, its MAE results are significantly
lower and vice-versa (respectively up to 1.5 and
1.7 MAE points). This suggests that, although PA
is potentially capable of achieving higher results
and better adapt to the new test points, its instabil-
ity makes it less reliable for practical use.

As a final analysis of our results, we investi-
gated how the performance of the different types
of models (batch, adaptive, empty) relates to the
distance between training and test sets. To this
aim, we computed the Pearson correlation be-
tween the ∆HTER (column 3 in Table 3) and the
MAE of each model (columns 5, 6 and 8), which
respectively resulted in 0.9 for the batch, 0.63 for
the adaptive and -0.07 for the empty model. These
values confirm that batch models are heavily af-
fected by the dissimilarity between training and
test data: large differences in the label distribution
imply higher MAE results and vice-versa. This
is in line with our previous findings about batch
models that, learning only from the training set,
cannot leverage possible dissimilarities of the test
set. The lower correlation observed for the adap-
tive models also confirms our intuitions: adapting
to the new test points, these models are in fact
more robust to differences with the training data.
As expected, the results of the empty models are
completely uncorrelated with the ∆HTER since
they only use the test set.

This analysis confirms that, even when dealing
with different domains, the similarity between the
training and test data is one of the main factors that
should drive the choice of the QE model. When
this distance is minimal, batch models can be a
reasonable option, but when the gap between train-
ing and test data increases, adaptive or empty mod-
els are a preferable choice to achieve good results.

7 Conclusion

In the CAT scenario, each translation job can be
seen as a complex situation where the user (his
personal style and background), the source doc-
ument (the language and the domain) and the un-
derlying technology (the translation memory and
the MT engine that generate translation sugges-
tions) contribute to make the task unique. So far,
the adaptability to such specificities (a major chal-
lenge for CAT technology) has been mainly sup-
ported by the evolution of translation memories,
which incrementally store translated segments in-
corporating the user style. The wide adoption of
translation memories demonstrates the importance
of capitalizing on such information to increase
translators productivity.

While this lesson recently motivated research
on adaptive MT decoders that learn from user cor-
rections, nothing has been done to develop adap-
tive QE components. In the first attempt to ad-
dress this problem, we proposed the application
of the online learning protocol to leverage users
feedback and to tailor QE predictions to their qual-
ity standards. Besides highlighting the limitations
of current batch methods to adapt to user and
domain changes, we performed an application-
oriented analysis of different online algorithms fo-
cusing on specific aspects relevant to the CAT sce-
nario. Our results show that the wealth of dynamic
knowledge brought by user corrections can be ex-
ploited to refine in a stepwise fashion the qual-
ity judgements in different testing conditions (user
changes as well as simultaneous user and domain
changes).

As an additional contribution, to spark further
research on this facet of the QE problem, our adap-
tive QE infrastructure (integrating all the compo-
nents and the algorithms described in this paper)
has been released as open source. Its C++ im-
plementation is available at http://hlt.fbk.eu/
technologies/aqet.
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Constantin, and Evan Herbst. 2007. Moses: open
source toolkit for statistical machine translation. In
Proceedings of the 45th Annual Meeting of the ACL
on Interactive Poster and Demonstration Sessions,
ACL ’07, pages 177–180.

Maarit Koponen, Wilker Aziz, Luciana Ramos, and
Lucia Specia. 2012. Post-editing Time as a Mea-
sure of Cognitive Effort. In Proceedings of the
AMTA 2012 Workshop on Post-editing Technology
and Practice (WPTP 2012), San Diego, California.

Maarit Koponen. 2012. Comparing Human Percep-
tions of Post-editing Effort with Post-editing Op-
erations. In Proceedings of the Seventh Workshop
on Statistical Machine Translation, pages 181–190,
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