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Abstract

Morphological segmentation is an effec-
tive sparsity reduction strategy for statis-
tical machine translation (SMT) involv-
ing morphologically complex languages.
When translating into a segmented lan-
guage, an extra step is required to deseg-
ment the output; previous studies have de-
segmented the 1-best output from the de-
coder. In this paper, we expand our trans-
lation options by desegmenting n-best lists
or lattices. Our novel lattice desegmenta-
tion algorithm effectively combines both
segmented and desegmented views of the
target language for a large subspace of
possible translation outputs, which allows
for inclusion of features related to the de-
segmentation process, as well as an un-
segmented language model (LM). We in-
vestigate this technique in the context of
English-to-Arabic and English-to-Finnish
translation, showing significant improve-
ments in translation quality over deseg-
mentation of 1-best decoder outputs.

1 Introduction

Morphological segmentation is considered to be
indispensable when translating between English
and morphologically complex languages such as
Arabic. Morphological complexity leads to much
higher type to token ratios than English, which
can create sparsity problems during translation
model estimation. Morphological segmentation
addresses this issue by splitting surface forms into
meaningful morphemes, while also performing or-
thographic transformations to further reduce spar-
sity. For example, the Arabic noun ÈðYÊË lldwl
“to the countries” is segmented as l+ “to” Aldwl
“the countries”. When translating from Arabic,
this segmentation process is performed as input

preprocessing and is otherwise transparent to the
translation system. However, when translating
into Arabic, the decoder produces segmented out-
put, which must be desegmented to produce read-
able text. For example, l+ Aldwl must be con-
verted to lldwl.

Desegmentation is typically performed as a
post-processing step that is independent from the
decoding process. While this division of labor is
useful, the pipeline approach may prevent the de-
segmenter from recovering from errors made by
the decoder. Despite the efforts of the decoder’s
various component models, the system may pro-
duce mismatching segments, such as s+ hzymp,
which pairs the future particle s+ “will” with a
noun hzymp “defeat”, instead of a verb. In this sce-
nario, there is no right desegmentation; the post-
processor has been dealt a losing hand.

In this work, we show that it is possible to
maintain the sparsity-reducing benefit of segmen-
tation while translating directly into unsegmented
text. We desegment a large set of possible de-
coder outputs by processing n-best lists or lat-
tices, which allows us to consider both the seg-
mented and desegmented output before locking in
the decoder’s decision. We demonstrate that sig-
nificant improvements in translation quality can be
achieved by training a linear model to re-rank this
transformed translation space.

2 Related Work

Translating into morphologically complex lan-
guages is a challenging and interesting task that
has received much recent attention. Most tech-
niques approach the problem by transforming the
target language in some manner before training the
translation model. They differ in what transforma-
tions are performed and at what stage they are re-
versed. The transformation might take the form of
a morphological analysis or a morphological seg-
mentation.
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2.1 Morphological Analysis

Many languages have access to morphological an-
alyzers, which annotate surface forms with their
lemmas and morphological features. Bojar (2007)
incorporates such analyses into a factored model,
to either include a language model over target mor-
phological tags, or model the generation of mor-
phological features. Other approaches train an
SMT system to predict lemmas instead of surface
forms, and then inflect the SMT output as a post-
processing step (Minkov et al., 2007; Clifton and
Sarkar, 2011; Fraser et al., 2012; El Kholy and
Habash, 2012b). Alternatively, one can reparame-
terize existing phrase tables as exponential mod-
els, so that translation probabilities account for
source context and morphological features (Jeong
et al., 2010; Subotin, 2011). Of these approaches,
ours is most similar to the translate-then-inflect ap-
proach, except we translate and then desegment.
In particular, Toutanova et al. (2008) inflect and
re-rank n-best lists in a similar manner to how we
desegment and re-rank n-best lists or lattices.

2.2 Morphological Segmentation

Instead of producing an abstract feature layer,
morphological segmentation transforms the tar-
get sentence by segmenting relevant morphemes,
which are then handled as regular tokens during
alignment and translation. This is done to reduce
sparsity and to improve correspondence with the
source language (usually English). Such a seg-
mentation can be produced as a byproduct of anal-
ysis (Oflazer and Durgar El-Kahlout, 2007; Badr
et al., 2008; El Kholy and Habash, 2012a), or may
be produced using an unsupervised morphological
segmenter such as Morfessor (Luong et al., 2010;
Clifton and Sarkar, 2011). Work on target lan-
guage morphological segmentation for SMT can
be divided into three subproblems: segmentation,
desegmentation and integration. Our work is con-
cerned primarily with the integration problem, but
we will discuss each subproblem in turn.

The usefulness of a target segmentation de-
pends on its correspondence to the source lan-
guage. If a morphological feature does not man-
ifest itself as a separate token in the source, then
it may be best to leave its corresponding segment
attached to the stem. A number of studies have
looked into what granularity of segmentation is
best suited for a particular language pair (Oflazer
and Durgar El-Kahlout, 2007; Badr et al., 2008;

Clifton and Sarkar, 2011; El Kholy and Habash,
2012a). Since our focus here is on integrating seg-
mentation into the decoding process, we simply
adopt the segmentation strategies recommended
by previous work: the Penn Arabic Treebank
scheme for English-Arabic (El Kholy and Habash,
2012a), and an unsupervised scheme for English-
Finnish (Clifton and Sarkar, 2011).

Desegmentation is the process of converting
segmented words into their original surface form.
For many segmentations, especially unsupervised
ones, this amounts to simple concatenation. How-
ever, more complex segmentations, such as the
Arabic tokenization provided by MADA (Habash
et al., 2009), require further orthographic adjust-
ments to reverse normalizations performed dur-
ing segmentation. Badr et al. (2008) present
two Arabic desegmentation schemes: table-based
and rule-based. El Kholy and Habash (2012a)
provide an extensive study on the influence of
segmentation and desegmentation on English-to-
Arabic SMT. They introduce an additional deseg-
mentation technique that augments the table-based
approach with an unsegmented language model.
Salameh et al. (2013) replace rule-based deseg-
mentation with a discriminatively-trained char-
acter transducer. In this work, we adopt the
Table+Rules approach of El Kholy and Habash
(2012a) for English-Arabic, while concatenation
is sufficient for English-Finnish.

Work on integration attempts to improve SMT
performance for morphologically complex target
languages by going beyond simple pre- and post-
processing. Oflazer and Durgar El-Kahlout (2007)
desegment 1000-best lists for English-to-Turkish
translation to enable scoring with an unsegmented
language model. Unlike our work, they replace
the segmented language model with the unseg-
mented one, allowing them to tune the linear
model parameters by hand. We use both seg-
mented and unsegmented language models, and
tune automatically to optimize BLEU.

Like us, Luong et al. (2010) tune on un-
segmented references,1 and translate with both
segmented and unsegmented language models
for English-to-Finnish translation. However,
they adopt a scheme of word-boundary-aware

1Tuning on unsegmented references does not require sub-
stantial modifications to the standard SMT pipeline. For ex-
ample, Badr et al. (2008) also tune on unsegmented refer-
ences by simply desegmenting SMT output before MERT
collects sufficient statistics for BLEU.

101



morpheme-level phrase extraction, meaning that
target phrases include only complete words,
though those words are segmented into mor-
phemes. This enables full decoder integration,
where we do n-best and lattice re-ranking. But
it also comes at a substantial cost: when target
phrases include only complete words, the system
can only generate word forms that were seen dur-
ing training. In this setting, the sparsity reduc-
tion from segmentation helps word alignment and
target language modeling, but it does not result
in a more expressive translation model. Further-
more, it becomes substantially more difficult to
have non-adjacent source tokens contribute mor-
phemes to a single target word. For example,
when translating “with his blue car” into the Ara-
bic ZA�̄P 	QË @ é�KPAJ
��. bsyArth AlzrqA’, the target word
bsyArth is composed of three tokens: b+ “with”,
syArp “car” and +h “his”. With word-boundary-
aware phrase extraction, a phrase pair containing
all of “with his blue car” must have been seen in
the parallel data to translate the phrase correctly at
test time. With lattice desegmentation, we need
only to have seen AlzrqA’ “blue” and the three
morphological pieces of bsyArth for the decoder
and desegmenter to assemble the phrase.

3 Methods

Our goal in this work is to benefit from
the sparsity-reducing properties of morphological
segmentation while simultaneously allowing the
system to reason about the final surface forms of
the target language. We approach this problem by
augmenting an SMT system built over target seg-
ments with features that reflect the desegmented
target words. In this section, we describe our vari-
ous strategies for desegmenting the SMT system’s
output space, along with the features that we add
to take advantage of this desegmented view.

3.1 Baselines

The two obvious baseline approaches each decode
using one view of the target language. The un-
segmented approach translates without segment-
ing the target. This trivially allows for an unseg-
mented language model and never makes deseg-
mentation errors. However, it suffers from data
sparsity and poor token-to-token correspondence
with the source language.

The one-best desegmentation approach seg-
ments the target language at training time and

then desegments the one-best output in post-
processing. This resolves the sparsity issue, but
does not allow the decoder to take into account
features of the desegmented target. To the best of
our knowledge, we are the first group to go beyond
one-best desegmentation for English-to-Arabic
translation. In English-to-Finnish, although alter-
native integration strategies have seen some suc-
cess (Luong et al., 2010), the current state-of-
the-art performs one-best-desegmentation (Clifton
and Sarkar, 2011).

3.2 n-best Desegmentation

The one-best approach can be extended easily by
desegmenting n-best lists of segmented decoder
output. Doing so enables the inclusion of an
unsegmented target language model, and with a
small amount of bookkeeping, it also allows the
inclusion of features related to the operations per-
formed during desegmentation (see Section 3.4).
With new features reflecting the desegmented out-
put, we can re-tune our enhanced linear model on
a development set. Following previous work, we
will desegment 1000-best lists (Oflazer and Dur-
gar El-Kahlout, 2007).

Once n-best lists have been desegmented, we
can tune on unsegmented references as a side-
benefit. This could improve translation quality,
as it brings our training scenario closer to our test
scenario (test BLEU is always measured on unseg-
mented references). In particular, it could address
issues with translation length mismatch. Previous
work that has tuned on unsegmented references
has reported mixed results (Badr et al., 2008; Lu-
ong et al., 2010).

3.3 Lattice Desegmentation

An n-best list reflects a tiny portion of a decoder’s
search space, typically fixed at 1000 hypotheses.
Lattices2 can represent an exponential number of
hypotheses in a compact structure. In this section,
we discuss how a lattice from a multi-stack phrase-
based decoder such as Moses (Koehn et al., 2007)
can be desegmented to enable word-level features.

Finite State Analogy
A phrase-based decoder produces its output from
left to right, with each operation appending
the translation of a source phrase to a grow-
ing target hypothesis. Translation continues un-

2Or forests for hierarchical and syntactic decoders.
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Figure 1: The finite state pipeline for a lattice translating the English fragment “with the child’s game”.
The input morpheme lattice (a) is desegmented by composing it with the desegmenting transducer (b) to
produce the word lattice (c). The tokens in (a) are: b+ “with”, lEbp “game”, +hm “their”, +hA “her”,
and AlTfl “the child”.

til each source word has been covered exactly
once (Koehn et al., 2003).

The search graph of a phrase-based decoder can
be interpreted as a lattice, which can be interpreted
as a finite state acceptor over target strings. In its
most natural form, such an acceptor emits target
phrases on each edge, but it can easily be trans-
formed into a form with one edge per token, as
shown in Figure 1a. This is sometimes referred to
as a word graph (Ueffing et al., 2002), although in
our case the segmented phrase table also produces
tokens that correspond to morphemes.

Our goal is to desegment the decoder’s output
lattice, and in doing so, gain access to a compact,
desegmented view of a large portion of the trans-
lation search space. This can be accomplished by
composing the lattice with a desegmenting trans-
ducer that consumes morphemes and outputs de-
segmented words. This transducer must be able
to consume every word in our lattice’s output vo-
cabulary. We define a word using the following
regular expression:

[prefix]* [stem] [suffix]* | [prefix]+ [suffix]+
(1)

where [prefix], [stem] and [suffix] are non-
overlapping sets of morphemes, whose members
are easily determined using the segmenter’s seg-
ment boundary markers.3 The second disjunct of
Equation 1 covers words that have no clear stem,
such as the Arabic éË lh “for him”, segmented as l+
“for” +h “him”. Equation 1 may need to be modi-
fied for other languages or segmentation schemes,
but our techniques generalize to any definition that
can be written as a regular expression.

A desegmenting transducer can be constructed
by first encoding our desegmenter as a table that
maps morpheme sequences to words. Regardless
of whether the original desegmenter was based
on concatenation, rules or table-lookup, it can be
encoded as a lattice-specific table by applying it
to an enumeration of all words found in the lat-
tice. We can then transform that table into a fi-
nite state transducer with one path per table en-
try. Finally, we take the closure of this trans-
ducer, so that the resulting machine can transduce
any sequence of words. The desegmenting trans-

3Throughout this paper, we use “+” to mark morphemes
as prefixes or suffixes, as in w+ or +h. In Equation 1 only,
we overload “+” as the Kleene cross: X+ == XX∗.
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ducer for our running example is shown in Fig-
ure 1b. Note that tokens requiring no desegmen-
tation simply emit themselves. The lattice (Fig-
ure 1a) can then be desegmented by composing it
with the transducer (1b), producing a desegmented
lattice (1c). This is a natural place to introduce
features that describe the desegmentation process,
such as scores provided by a desegmentation table,
which can be incorporated into the desegmenting
transducer’s edge weights.

We now have a desegmented lattice, but it has
not been annotated with an unsegmented (word-
level) language model. In order to annotate lattice
edges with an n-gram LM, every path coming into
a node must end with the same sequence of (n−1)
tokens. If this property does not hold, then nodes
must be split until it does.4 This property is main-
tained by the decoder’s recombination rules for the
segmented LM, but it is not guaranteed for the de-
segmented LM. Indeed, the expanded word-level
context is one of the main benefits of incorporating
a word-level LM. Fortunately, LM annotation as
well as any necessary lattice modifications can be
performed simultaneously by composing the de-
segmented lattice with a finite state acceptor en-
coding the LM (Roark et al., 2011).

In summary, we are given a segmented lattice,
which encodes the decoder’s translation space as
an acceptor over morphemes. We compose this
acceptor with a desegmenting transducer, and then
with an unsegmented LM acceptor, producing a
fully annotated, desegmented lattice. Instead of
using a tool kit such as OpenFst (Allauzen et
al., 2007), we implement both the desegmenting
transducer and the LM acceptor programmatically.
This eliminates the need to construct intermediate
machines, such as the lattice-specific desegmenter
in Figure 1b, and facilitates working with edges
annotated with feature vectors as opposed to sin-
gle weights.

Programmatic Desegmentation
Lattice desegmentation is a non-local lattice trans-
formation. That is, the morphemes forming a word
might span several edges, making desegmentation
non-trivial. Luong et al. (2010) address this prob-
lem by forcing the decoder’s phrase table to re-
spect word boundaries, guaranteeing that each de-
segmentable token sequence is local to an edge.

4Or the LM composition can be done dynamically, ef-
fectively decoding the lattice with a beam or cube-pruned
search (Huang and Chiang, 2007).

Inspired by the use of non-local features in forest
decoding (Huang, 2008), we present an algorithm
to find chains of edges that correspond to deseg-
mentable token sequences, allowing lattice deseg-
mentation with no phrase-table restrictions. This
algorithm can be seen as implicitly constructing a
customized desegmenting transducer and compos-
ing it with the input lattice on the fly.

Before describing the algorithm, we define
some notation. An input morpheme lattice is a
triple 〈ns,N , E〉, where N is a set of nodes, E is
a set of edges, and ns ∈ N is the start node that
begins each path through the lattice. Each edge
e ∈ E is a 4-tuple 〈from, to, lex , w〉, where from ,
to ∈ N are head and tail nodes, lex is a single
token accepted by this edge, and w is the (po-
tentially vector-valued) edge weight. Tokens are
drawn from one of three non-overlapping morpho-
syntactic sets: lex ∈ Prefix ∪ Stem ∪ Suffix ,
where tokens that do not require desegmentation,
such as complete words, punctuation and num-
bers, are considered to be in Stem . It is also useful
to consider the set of all outgoing edges for a node
n.out = {e ∈ E|e.from = n}.

With this notation in place, we can define a
chain c to be a sequence of edges [e1 . . . el] such
that for 1 ≤ i < l : ei.to = ei+1.from . We
denote singleton chains with [e], and when unam-
biguous, we abbreviate longer chains with their
start and end node [e1.from → el.to]. A chain
is valid if it emits the beginning of a word as de-
fined by the regular expression in Equation 1. A
valid chain is complete if its edges form an entire
word, and if it is part of a path through the lat-
tice that consists only of words. In Figure 1a, the
complete chains are [0 → 2], [0 → 4], [0 → 5],
and [2 → 3]. The path restriction on complete
chains forces words to be bounded by other words
in order to be complete.5 For example, if we re-
moved the edge 2 → 3 (AlTfl) from Figure 1a,
then [0→ 2] ([b+ lEbp]) would cease to be a com-
plete chain, but it would still be a valid chain. Note
that in the finite-state analogy, the path restriction
is implicit in the composition operation.

Algorithm 1 desegments a lattice by finding all
complete chains and replacing each one with a sin-
gle edge. It maintains a work list of nodes that
lie on the boundary between words, and for each
node on this list, it launches a depth first search

5Sentence-initial suffix morphemes and sentence-final
prefix morphemes represent a special case that we omit for
the sake of brevity. Lacking stems, they are left segmented.
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Algorithm 1 Desegment a lattice 〈ns,N , E〉
{Initialize output lattice and work list WL}
n′s = ns, N ′ = ∅, E ′ = ∅, WL = [ns]
while n = WL.pop() do
{Work on each node only once}
if n ∈ N ′ then continue
N ′ = N ′ ∪ {n}
{Initialize the chain stack C}
C = ∅
for e ∈ n.out do

if [e] is valid then C.push([e])
{Depth-first search for complete chains}
while [e1, . . . , el] = C.pop() do
{Attempt to extend chain}
for e ∈ el.to.out do

if [e1 . . . el, e] is valid then
C.push([e1, . . . , el, e])

else
Mark [e1, . . . , el] as complete

{Desegment complete chains}
if [e1, . . . , el] is complete then

WL.push(el.to)
E ′ = E ′ ∪ {deseg([e1, . . . , el])}

return 〈n′s,N ′, E ′〉

to find all complete chains extending from it. The
search recognizes the valid chain c to be complete
by finding an edge e such that c+ e forms a chain,
but not a valid one. By inspection of Equation 1,
this can only happen when a prefix or stem fol-
lows a stem or suffix, which always marks a word
boundary. The chains found by this search are de-
segmented and then added to the output lattice as
edges. The nodes at end points of these chains are
added to the work list, as they lie at word bound-
aries by definition. Note that although this algo-
rithm creates completely new edges, the resulting
node set N ′ will be a subset of the input node set
N . The complementN −N ′ will consist of nodes
that are word-internal in all paths through the input
lattice, such as node 1 in Figure 1a.

Programmatic LM Integration
Programmatic composition of a lattice with an
n-gram LM acceptor is a well understood prob-
lem. We use a dynamic program to enumerate all
(n − 1)-word contexts leading into a node, and
then split the node into multiple copies, one for
each context. With each node corresponding to a
single LM context, annotation of outgoing edges
with n-gram LM scores is straightforward.

3.4 Desegmentation Features
Our re-ranker has access to all of the features used
by the decoder, in addition to a number of features
enabled by desegmentation.

Desegmentation Score We use a table-based
desegmentation method for Arabic, which is based
on segmenting an Arabic training corpus and
memorizing the observed transformations to re-
verse them later. Finnish does not require a ta-
ble, as all words can be desegmented with sim-
ple concatenation. The Arabic table consists of
X → Y entries, where X is a target morpheme
sequence and Y is a desegmented surface form.
Several entries may share the same X , resulting
in multiple desegmentation options. For the sake
of symmetry with the unambiguous Finnish case,
we augment Arabic n-best lists or lattices with
only the most frequent desegmentation Y .6 We
provide the desegmentation score log p(Y |X)=
log

( count of X → Y
count of X

)
as a feature, to indicate the en-

try’s ambiguity in the training data.7 When an X is
missing from the table, we fall back on a set of de-
segmentation rules (El Kholy and Habash, 2012a)
and this feature is set to 0. This feature is always
0 for English-Finnish.

Contiguity One advantage of our approach is
that it allows discontiguous source words to trans-
late into a single target word. In order to maintain
some control over this powerful capability, we cre-
ate three binary features that indicate the contigu-
ity of a desegmentation. The first feature indicates
that the desegmented morphemes were translated
from contiguous source words. The second indi-
cates that the source words contained a single dis-
contiguity, as in a word-by-word translation of the
“with his blue car” example from Section 2.2. The
third indicates two or more discontiguities.

Unsegmented LM A 5-gram LM trained on un-
segmented target text is used to assess the fluency
of the desegmented word sequence.

4 Experimental Setup

We train our English-to-Arabic system using 1.49
million sentence pairs drawn from the NIST 2012
training set, excluding the UN data. This training
set contains about 40 million Arabic tokens before

6Allowing the re-ranker to choose between multiple Y s is
a natural avenue for future work.

7We also experimented on log p(X|Y ) as an additional
feature, but observed no improvement in translation quality.
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segmentation, and 47 million after segmentation.
We tune on the NIST 2004 evaluation set (1353
sentences) and evaluate on NIST 2005 (1056 sen-
tences). As these evaluation sets are intended for
Arabic-to-English translation, we select the first
English reference to use as our source text.

Our English-to-Finnish system is trained on the
same Europarl corpus as Luong et al. (2010) and
Clifton and Sarkar (2011), which has roughly one
million sentence pairs. We also use their develop-
ment and test sets (2000 sentences each).

4.1 Segmentation

For Arabic, morphological segmentation is per-
formed by MADA 3.2 (Habash et al., 2009), using
the Penn Arabic Treebank (PATB) segmentation
scheme as recommended by El Kholy and Habash
(2012a). For both segmented and unsegmented
Arabic, we further normalize the script by convert-
ing different forms of Alif @


@

�
@ @ and Ya ø ø
 to

bare Alif @ and dotless Ya ø. To generate the de-
segmentation table, we analyze the segmentations
from the Arabic side of the parallel training data
to collect mappings from morpheme sequences to
surface forms.

For Finnish, we adopt the Unsup L-match seg-
mentation technique of Clifton and Sarkar (2011),
which uses Morfessor (Creutz and Lagus, 2005)
to analyze the 5,000 most frequent Finnish words.
The analysis is then applied to the Finnish side of
the parallel text, and a list of segmented suffixes
is collected. To improve coverage, words are fur-
ther segmented according to their longest match-
ing suffix from the list. As Morfessor does not
perform any orthographic normalizations, it can be
desegmented with simple concatenation.

4.2 Systems

We align the parallel data with GIZA++ (Och et
al., 2003) and decode using Moses (Koehn et al.,
2007). The decoder’s log-linear model includes a
standard feature set. Four translation model fea-
tures encode phrase translation probabilities and
lexical scores in both directions. Seven distor-
tion features encode a standard distortion penalty
as well as a bidirectional lexicalized reordering
model. A KN-smoothed 5-gram language model
is trained on the target side of the parallel data with
SRILM (Stolcke, 2002). Finally, we include word
and phrase penalties. The decoder uses the default
parameters for English-to-Arabic, except that the

maximum phrase length is set to 8. For English-
to-Finnish, we follow Clifton and Sarkar (2011) in
setting the hypothesis stack size to 100, distortion
limit to 6, and maximum phrase length to 20.

The decoder’s log-linear model is tuned with
MERT (Och, 2003). Re-ranking models are tuned
using a batch variant of hope-fear MIRA (Chi-
ang et al., 2008; Cherry and Foster, 2012), us-
ing the n-best variant for n-best desegmentation,
and the lattice variant for lattice desegmentation.
MIRA was selected over MERT because we have
an in-house implementation that can tune on lat-
tices very quickly. During development, we con-
firmed that MERT and MIRA perform similarly,
as is expected with fewer than 20 features. Both
the decoder’s log-linear model and the re-ranking
models are trained on the same development set.
Historically, we have not seen improvements from
using different tuning sets for decoding and re-
ranking. Lattices are pruned to a density of 50
edges per word before re-ranking.

We test four different systems. Our first base-
line is Unsegmented, where we train on unseg-
mented target text, requiring no desegmentation
step. Our second baseline is 1-best Deseg, where
we train on segmented target text and desegment
the decoder’s 1-best output. Starting from the sys-
tem that produced 1-best Deseg, we then output ei-
ther 1000-best lists or lattices to create our two ex-
perimental systems. The 1000-best Deseg system
desegments, augments and re-ranks the decoder’s
1000-best list, while Lattice Deseg does the same
in the lattice. We augment n-best lists and lattices
using the features described in Section 3.4.8

We evaluate our system using BLEU (Papineni
et al., 2002) and TER (Snover et al., 2006). Fol-
lowing Clark et al. (2011), we report average
scores over five random tuning replications to ac-
count for optimizer instability. For the baselines,
this means 5 runs of decoder tuning. For the de-
segmenting re-rankers, this means 5 runs of re-
ranker tuning, each working on n-best lists or lat-
tices produced by the same (representative) de-
coder weights. We measure statistical significance
using MultEval (Clark et al., 2011), which imple-
ments a stratified approximate randomization test
to account for multiple tuning replications.

8Development experiments on a small-data English-to-
Arabic scenario indicated that the Desegmentation Score was
not particularly useful, so we exclude it from the main com-
parison, but include it in the ablation experiments.
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5 Results

Tables 1 and 2 report results averaged over 5 tun-
ing replications on English-to-Arabic and English-
to-Finnish, respectively. In all scenarios, both
1000-best Deseg and Lattice Deseg significantly
outperform the 1-best Deseg baseline (p < 0.01).

For English-to-Arabic, 1-best desegmentation
results in a 0.7 BLEU point improvement over
training on unsegmented Arabic. Moving to lat-
tice desegmentation more than doubles that im-
provement, resulting in a BLEU score of 34.4 and
an improvement of 1.0 BLEU point over 1-best
desegmentation. 1000-best desegmentation also
works well, resulting in a 0.6 BLEU point im-
provement over 1-best. Lattice desegmentation is
significantly better (p < 0.01) than 1000-best de-
segmentation.

For English-to-Finnish, the Unsup L-match seg-
mentation with 1-best desegmentation does not
improve over the unsegmented baseline. The seg-
mentation may be addressing issues with model
sparsity, but it is also introducing errors that would
have been impossible had words been left un-
segmented. In fact, even with our lattice deseg-
menter providing a boost, we are unable to see
a significant improvement over the unsegmented
model. As we attempted to replicate the approach
of Clifton and Sarkar (2011) exactly by working
with their segmented data, this difference is likely
due to changes in Moses since the publication of
their result. Nonetheless, the 1000-best and lattice
desegmenters both produce significant improve-
ments over the 1-best desegmentation baseline,
with Lattice Deseg achieving a 1-point improve-
ment in TER. These results match the established
state-of-the-art on this data set, but also indicate
that there is still room for improvement in identi-
fying the best segmentation strategy for English-
to-Finnish translation.

We also tried a similar Morfessor-based seg-
mentation for Arabic, which has an unsegmented
test set BLEU of 32.7. As in Finnish, the 1-best
desegmentation using Morfessor did not surpass
the unsegmented baseline, producing a test BLEU
of only 31.4 (not shown in Table 1). Lattice deseg-
mentation was able to boost this to 32.9, slightly
above 1-best desegmentation, but well below our
best MADA desegmentation result of 34.4. There
appears to be a large advantage to using MADA’s
supervised segmentation in this scenario.

Model Dev Test
BLEU BLEU TER

Unsegmented 24.4 32.7 49.4
1-best Deseg 24.4 33.4 48.6
1000-best Deseg 25.0 34.0 48.0
Lattice Deseg 25.2 34.4 47.7

Table 1: Results for English-to-Arabic translation
using MADA’s PATB segmentation.

Model Dev Test
BLEU BLEU TER

Unsegmented 15.4 15.1 70.8
1-best Deseg 15.3 14.8 71.9
1000-best Deseg 15.4 15.1 71.5
Lattice Deseg 15.5 15.1 70.9

Table 2: Results for English-to-Finnish translation
using unsupervised segmentation.

5.1 Ablation

We conducted an ablation experiment on English-
to-Arabic to measure the impact of the various fea-
tures described in Section 3.4. Table 3 compares
different combinations of features using lattice de-
segmentation. The unsegmented LM alone yields
a 0.4 point improvement over the 1-best deseg-
mentation score. Adding contiguity indicators on
top of the unsegmented LM results in another 0.6
point improvement. As anticipated, the tuner as-
signs negative weights to discontiguous cases, en-
couraging the re-ranker to select a safer transla-
tion path when possible. Judging from the out-
put on the NIST 2005 test set, the system uses
these discontiguous desegmentations very rarely:
only 5% of desegmented tokens align to discon-
tiguous source phrases. Adding the desegmenta-
tion score to these two feature groups does not im-
prove performance, confirming the results we ob-
served during development. The desegmentation
score would likely be useful in a scenario where
we provide multiple desegmentation options to the
re-ranker; for now, it indicates only the ambiguity
of a fixed choice, and is likely redundant with in-
formation provided by the language model.

5.2 Error Analysis

In order to better understand the source of our
improvements in the English-to-Arabic scenario,
we conducted an extensive manual analysis of
the differences between 1-best and lattice deseg-
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Features dev test
1-best Deseg 24.5 33.4

+ Unsegmented LM 24.9 33.8
+ Contiguity 25.2 34.4

+ Desegmentation Score 25.2 34.3

Table 3: The effect of feature ablation on BLEU
score for English-to-Arabic translation with lattice
desegmentation.

mentation on our test set. We compared the
output of the two systems using the Unix tool
wdiff , which transforms a solution to the longest-
common-subsequence problem into a sequence
of multi-word insertions and deletions (Hunt and
McIlroy, 1976). We considered adjacent insertion-
deletion pairs to be (potentially phrasal) substitu-
tions, and collected them into a file, omitting any
unpaired insertions or deletions. We then sampled
650 cases where the two sides of the substitution
were deemed to be related, and divided these cases
into categories based on how the lattice desegmen-
tation differs from the one-best desegmentation.
We consider a phrase to be correct only if it can
be found in the reference.

Table 4 breaks down per-phrase accuracy ac-
cording to four manually-assigned categories: (1)
clitical – the two systems agree on a stem, but at
least one clitic, often a prefix denoting a prepo-
sition or determiner, was dropped, added or re-
placed; (2) lexical – a word was changed to a mor-
phologically unrelated word with a similar mean-
ing; (3) inflectional – the words have the same
stem, but different inflection due to a change in
gender, number or verb tense; (4) part-of-speech
– the two systems agree on the lemma, but have
selected different parts of speech.

For each case covering a single phrasal differ-
ence, we compare the phrases from each system
to the reference. We report the number of in-
stances where each system matched the reference,
as well as cases where they were both incorrect.
The majority of differences correspond to clitics,
whose correction appears to be a major source of
the improvements obtained by lattice desegmen-
tation. This category is challenging for the de-
coder because English prepositions tend to corre-
spond to multiple possible forms when translated
into Arabic. It also includes the frequent cases
involving the nominal determiner prefix Al “the”
(left unsegmented by the PATB scheme), and the

Lattice
Correct

1-best
Correct

Both
Incorrect

Clitical 157 71 79
Lexical 61 39 80
Inflectional 37 32 47
Part-of-speech 19 17 11

Table 4: Error analysis for English-to-Arabic
translation based on 650 sampled instances.

sentence-initial conjunction w+ “and”. The sec-
ond most common category is lexical, where the
unsegmented LM has drastically altered the choice
of translation. The remaining categories show no
major advantage for either system.

6 Conclusion

We have explored deeper integration of morpho-
logical desegmentation into the statistical machine
translation pipeline. We have presented a novel,
finite-state-inspired approach to lattice desegmen-
tation, which allows the system to account for a
desegmented view of many possible translations,
without any modification to the decoder or any
restrictions on phrase extraction. When applied
to English-to-Arabic translation, lattice desegmen-
tation results in a 1.0 BLEU point improvement
over one-best desegmentation, and a 1.7 BLEU
point improvement over unsegmented translation.
We have also applied our approach to English-to-
Finnish translation, and although segmentation in
general does not currently help, we are able to
show significant improvements over a 1-best de-
segmentation baseline.

In the future, we plan to explore introducing
multiple segmentation options into the lattice, and
the application of our method to a full morpho-
logical analysis (as opposed to segmentation) of
the target language. Eventually, we would like
to replace the functionality of factored transla-
tion models (Koehn and Hoang, 2007) with lattice
transformation and augmentation.
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