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Abstract 

This paper tackles the sparsity problem in 

estimating phrase translation probabilities 

by learning continuous phrase representa-

tions, whose distributed nature enables the 

sharing of related phrases in their represen-

tations. A pair of source and target phrases 

are projected into continuous-valued vec-

tor representations in a low-dimensional 

latent space, where their translation score 

is computed by the distance between the 

pair in this new space. The projection is 

performed by a neural network whose 

weights are learned on parallel training 

data. Experimental evaluation has been 

performed on two WMT translation tasks. 

Our best result improves the performance 

of a state-of-the-art phrase-based statistical 

machine translation system trained on 

WMT 2012 French-English data by up to 

1.3 BLEU points. 

1 Introduction 

The phrase translation model, also known as the 

phrase table, is one of the core components of 

phrase-based statistical machine translation (SMT) 

systems. The most common method of construct-

ing the phrase table takes a two-phase approach 

(Koehn et al. 2003). First, the bilingual phrase 

pairs are extracted heuristically from an automat-

ically word-aligned training data. The second 

phase, which is the focus of this paper, is parame-

ter estimation where each phrase pair is assigned 

with some scores that are estimated based on 

counting these phrases or their words using the 

same word-aligned training data. 

Phrase-based SMT systems have achieved 

state-of-the-art performance largely due to the fact 

that long phrases, rather than single words, are 

used as translation units so that useful context in-

formation can be captured in selecting translations. 

However, longer phrases occur less often in train-

ing data, leading to a severe data sparseness prob-

lem in parameter estimation. There has been a 

plethora of research reported in the literature on 

improving parameter estimation for the phrase 

translation model (e.g., DeNero et al. 2006; 

Wuebker et al. 2010; He and Deng 2012; Gao and 

He 2013).  

This paper revisits the problem of scoring a 

phrase translation pair by developing a Continu-

ous-space Phrase Translation Model (CPTM). 

The translation score of a phrase pair in this model 

is computed as follows. First, we represent each 

phrase as a bag-of-words vector, called word vec-

tor henceforth. We then project the word vector, 

in either the source language or the target lan-

guage, into a respective continuous feature vector 

in a common low-dimensional space that is lan-

guage independent. The projection is performed 

by a multi-layer neural network. The projected 

feature vector forms the continuous representa-

tion of a phrase. Finally, the translation score of a 

source-target phrase pair is computed by the dis-

tance between their feature vectors.  

The main motivation behind the CPTM is to 

alleviate the data sparseness problem associated 

with the traditional counting-based methods by 

grouping phrases with a similar meaning across 

different languages. This style of grouping is 

made possible because of the distributed nature of 

the continuous-space representations for phrases. 

No such sharing was possible in the original sym-

bolic space for representing words or phrases.  In 

this model, semantically or grammatically related 

phrases, in both the source and the target lan-

guages, would tend to have similar (close) feature 

vectors in the continuous space, guided by the 

training objective. Since the translation score is a 

smooth function of these feature vectors, a small 
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change in the features should only lead to a small 

change in the translation score. 

The primary research task in developing the 

CPTM is learning the continuous representation 

of a phrase that is effective for SMT. Motivated 

by recent studies on continuous-space language 

models (e.g., Bengio et al. 2003; Mikolov et al. 

2011; Schwenk et al., 2012), we use a neural net-

work to project a word vector to a feature vector. 

Ideally, the projection would discover those latent 

features that are useful to differentiate good trans-

lations from bad ones, for a given source phrase. 

However, there is no training data with explicit 

annotation on the quality of phrase translations. 

The phrase translation pairs are hidden in the par-

allel source-target sentence pairs, which are used 

to train the traditional translation models. The 

quality of a phrase translation can only be judged 

implicitly through the translation quality of the 

sentences, as measured by BLEU, which contain 

the phrase pair. In order to overcome this chal-

lenge and let the BLEU metric guide the projec-

tion learning, we propose a new method to learn 

the parameters of a neural network. This new 

method, via the choice of an appropriate objective 

function in training, automatically forces the fea-

ture vector of a source phrase to be closer to the 

feature vectors of its candidate translations. As a 

result, the BLEU score is improved when these 

translations are selected by an SMT decoder to 

produce final, sentence-level translations. The 

new learning method makes use of the L-BFGS 

algorithm and the expected BLEU as the objective 

function defined on N-best lists. 

To the best of our knowledge, the CPTM pro-

posed in this paper is the first continuous-space 

phrase translation model that makes use of joint 

representations of a phrase in the source language 

and its translation in the target language (to be de-

tailed in Section 4) and that is shown to lead to 

significant improvement over a standard phrase-

based SMT system (to be detailed in Section 6).  

Like the traditional phrase translation model, 

the translation score of each bilingual phrase pair 

is modeled explicitly in our model. However, in-

stead of estimating the phrase translation score on 

aligned parallel data, our model intends to capture 

the grammatical and semantic similarity between 

a source phrase and its paired target phrase by pro-

jecting them into a common, continuous space 

that is language independent. 

                                                           
1 Niehues et al. (2011) use different translation units in order 

to integrate the n-gram translation model into the phrase-

based approach. However, it is not clear how a continuous 

The rest of the paper is organized as follows. 

Section 2 reviews previous work. Section 3 re-

views the log-linear model for phrase-based SMT 

and Sections 4 presents the CPTM. Section 5 de-

scribes the way the model parameters are esti-

mated, followed by the experimental results in 

Section 6. Finally, Section 7 concludes the paper. 

2 Related Work 

Representations of words or documents as contin-

uous vectors have a long history. Most of the ear-

lier latent semantic models for learning such vec-

tors are designed for information retrieval 

(Deerwester et al. 1990; Hofmann 1999; Blei et al. 

2003). In contrast, recent work on continuous 

space language models, which estimate the prob-

ability of a word sequence in a continuous space 

(Bengio et al. 2003; Mikolov et al. 2010), have ad-

vanced the state of the art in language modeling, 

outperforming the traditional n-gram model on 

speech recognition (Mikolov et al. 2012; Sunder-

meyer et al. 2013) and machine translation 

(Mikolov 2012; Auli et al. 2013). 

Because these models are developed for mono-

lingual settings, word embedding from these mod-

els is not directly applicable to translation. As a 

result, variants of such models for cross-lingual 

scenarios have been proposed so that words in dif-

ferent languages are projected into the shared la-

tent vector space (Dumais et al. 1997; Platt et al. 

2010; Vinokourov et al. 2002; Yih et al. 2011; 

Gao et al. 2011; Huang et al. 2013; Zou et al. 

2013). In principle, a phrase table can be derived 

using any of these cross-lingual models, although 

decoupling the derivation from the SMT training 

often results in suboptimal performance (e.g., 

measured in BLEU), as we will show in Section 6. 

Recently, there is growing interest in applying 

continuous-space models for translation. The 

most related to this study is the work of continu-

ous space n-gram translation models (Schwenk et 

al. 2007; Schwenk 2012; Son et al. 2012), where 

the feed-forward neural network language model 

is extended to represent translation probabilities. 

However, these earlier studies focused on the n-

gram translation models, where the translation 

probability of a phrase or a sentence is decom-

posed as a product of n-gram probabilities as in a 

standard n-gram language model. Therefore, it is 

not clear how their approaches can be applied to 

the phrase translation model1, which is much more 

version of such a model can be trained efficiently because the 

factor models used by Son et al. cannot be applied directly. 
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widely used in modern SMT systems. In contrast, 

our model learns jointly the representations of a 

phrase in the source language as well as its trans-

lation in the target language. The recurrent contin-

uous translation models proposed by Kalchbren-

ner and Blunsom (2013) also adopt the recurrent 

language model (Mikolov et al. 2010). But unlike 

the n-gram translation models above, they make 

no Markov assumptions about the dependency of 

the words in the target sentence. Continuous space 

models have also been used for generating trans-

lations for new words (Mikolov et al. 2013a) and 

ITG reordering (Li et al. 2013). 

There has been a lot of research on improving 

the phrase table in phrase-based SMT (Marcu and 

Wong 2002; Lamber and Banchs 2005; Denero et 

al. 2006; Wuebker et al. 2010; Zhang et al., 2011; 

He and Deng 2012; Gao and He 2013). Among 

them, (Gao and He 2013) is most relevant to the 

work described in this paper. They estimate 

phrase translation probabilities using a discrimi-

native training method under the N-best reranking 

framework of SMT. In this study we use the same 

objective function to learn the continuous repre-

sentations of phrases, integrating the strengths as-

sociated with these earlier studies. 

3 The Log-Linear Model for SMT 

Phrase-based SMT is based on a log-linear model 

which requires learning a mapping between input 

𝐹 ∈ ℱ to output 𝐸 ∈ ℰ. We are given 

 Training samples (𝐹𝑖 , 𝐸𝑖)  for 𝑖 = 1 … 𝑁,  
where each source sentence 𝐹𝑖 is paired with 

a reference translation in target language 𝐸𝑖; 

 A procedure GEN to generate a list of N-best 

candidates GEN(𝐹𝑖) for an input 𝐹𝑖 , where 

GEN  in this study is the baseline phrase-

based SMT system, i.e., an in-house 

implementation of the Moses system (Koehn 

et al. 2007) that does not use the CPTM, and 

each 𝐸 ∈ GEN(𝐹𝑖)  is labeled by the 

sentence-level BLEU score (He and Deng 

2012), denoted by sBleu(𝐸𝑖, 𝐸) , which 

measures the quality of 𝐸 with respect to its 

reference translation 𝐸𝑖; 

 A vector of features 𝐡 ∈ ℝ𝑀 that maps each 

(𝐹𝑖, 𝐸) to a vector of feature values2; and 

 A parameter vector 𝛌 ∈ ℝ𝑀, which assigns a 

real-valued weight to each feature. 

                                                           
2 Our baseline system uses a set of standard features sug-

gested in Koehn et al. (2007), which is also detailed in Sec-

tion 6. 

The components GEN(. ), 𝐡 and 𝛌  define a log-

linear model that maps 𝐹𝑖 to an output sentence as 

follows: 

𝐸∗ = argmax
(𝐸,𝐴)∈GEN(𝐹𝑖)

𝛌T𝐡(𝐹𝑖, 𝐸, 𝐴) (1) 

which states that given 𝛌 and 𝐡, argmax returns 

the highest scoring translation 𝐸∗,  maximizing 

over  correspondences 𝐴. In phrase-based SMT, 𝐴 

consists of a segmentation of the source and target 

sentences into phrases and an alignment between 

source and target phrases. Since computing the 

argmax  exactly is intractable, it is commonly 

performed approximatedly by beam search (Och 

and Ney 2004). Following Liang et al. (2006), we 

assume that every translation candidate is always 

coupled with a corresponding 𝐴, called the Viterbi 

derivation, generated by (1). 

4 A Continuous-Space Phrase Transla-

tion Model (CPTM) 

The architecture of the CPTM is shown in Figures 

1 and 2, where for each pair of source and target 

phrases (𝑓𝑖, 𝑒𝑗)  in a source-target sentence pair, 

we first project them into feature vectors 𝐲𝑓𝑖
 and 

𝐲𝑒𝑗
 in a latent, continuous space via a neural net-

work with one hidden layer (as shown in Figure 

2), and then compute the translation score, 

score(𝑓𝑖, 𝑒𝑗), by the distance of their feature vec-

tors in that space. 

We start with a bag-of-words representation of 

a phrase 𝐱 ∈ ℝ𝑑, where 𝐱 is a word vector and 𝑑 

is the size of the vocabulary consisting of words 

in both source and target languages, which is set 

to 200K in our experiments. We then learn to pro-

ject 𝐱 to a low-dimensional continuous space ℝ𝑘: 

𝜙(𝐱): ℝ𝑑 → ℝ𝑘  

The projection is performed using a fully con-

nected neural network with one hidden layer and 

tanh activation functions. Let 𝐖1 be the projec-

tion matrix from the input layer to the hidden layer 

and 𝐖2  the projection matrix from the hidden 

layer to the output layer, we have 

𝐲 ≡ 𝜙(𝐱) = tanh (𝐖2
T(tanh(𝐖1

T𝐱))) (2) 
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Figure 2. A neural network model for phrases 

giving rise to their continuous representations. 

The model with the same form is used for both 

source and target languages. 

 

  

The translation score of a source phrase f and a 

target phrase e can be measured as the similarity   

(or distance) between their feature vectors. We 

choose the dot product as the similarity function3: 

score(𝑓, 𝑒) ≡ sim𝛉(𝐱𝑓 , 𝐱𝑒) = 𝐲𝑓
T𝐲𝑒 (3) 

According to (2), we see that the value of the scor-

ing function is determined by the projection ma-

trices 𝛉 = {𝐖1, 𝐖2}. 

The CPTM of (2) and (3) can be incorporated 

into the log-linear model for SMT (1) by 

                                                           
3 In our experiments, we compare dot product and the cosine 

similarity functions and find that the former works better for 

nonlinear multi-layer neural networks, and the latter works 

better for linear neural networks. For the sake of clarity, we 

choose dot product when we describe the CPTM and its train-

ing in Sections 4 and 5, respectively. 
4 The baseline SMT needs to be reasonably good in the 

sense that the oracle BLEU score on the generated n-best 

introducing a new feature ℎ𝑀+1  and a new feature 

weight 𝜆𝑀+1. The new feature is defined as 

ℎ𝑀+1(𝐹𝑖, 𝐸, 𝐴) = ∑ sim𝛉(𝐱𝑓 , 𝐱𝑒)(𝑓,𝑒 )∈𝐴   (4) 

Thus, the phrase-based SMT system, into which 

the CPTM is incorporated, is parameterized by 

(𝛌, 𝛉), where 𝛌 is a vector of a handful of param-

eters used in the log-linear model of (1), with one 

weight for each feature; and 𝛉 is the projection 

matrices used in the CPTM defined by (2) and (3). 

In our experiments we take three steps to learn 

(𝛌, 𝛉): 

1. We use a baseline phrase-based SMT sys-

tem to generate for each source sentence in 

training data an N-best list of translation hy-

potheses4. 

2. We set 𝛌 to that of the baseline system and 

let 𝜆𝑀+1 = 1, and optimize 𝛉 w.r.t. a loss 

function on training data5. 

3. We fix 𝛉 , and optimize 𝛌  using MERT 

(Och 2003) to maximize BLEU on dev data. 

In the next section, we will describe Step 2 in de-

tail as it is directly related to the CPTM training. 

 

lists needs to be significantly higher than that of the top-1 

translations so that the CPTM can be effectively trained. 
5 The initial value of 𝜆𝑀+1 can also be tuned using the dev 

set. However, we find in a pilot study that it is good enough 

to set it to 1 when the values of all the baseline feature 

weights, used in the log-linear model of (1), are properly nor-

malized, such as by setting 𝜆𝑚 = 𝜆𝑚/𝐶  for 𝑚 = 1 … 𝑀 , 

where 𝐶 is the unnormalized weight value of the target lan-

guage model. 

 

Figure 1. The architecture of the CPTM, where the mapping from a phrase to its continuous repre-

sentation is shown in Figure 2. 
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702



5 Training CPTM 

This section describes the loss function we em-

ploy with the CPTM and the algorithm to train the 

neural network weights. 

We define the loss function ℒ(𝛉) as the nega-

tive of the N-best list based expected BLEU, de-

noted by xBleu(𝛉). In the reranking framework of 

SMT outlined in Section 3, xBleu(𝛉) over one 

training sample (𝐹𝑖, 𝐸𝑖) is defined as 

xBleu(𝛉) = ∑ 𝑃(𝐸|𝐹𝑖)sBleu(𝐸𝑖, 𝐸)𝐸∈GEN(𝐹𝑖)  (5) 

where sBleu(𝐸𝑖, 𝐸)  is the sentence-level BLEU 

score, and  𝑃(𝐸|𝐹𝑖) is the translation probability 

from 𝐹𝑖 to 𝐸 computed using softmax as  

𝑃(𝐸|𝐹𝑖) =
exp(𝛾𝛌T𝐡(𝐹𝑖,𝐸,𝐴))

∑ exp(𝛾𝛌T𝐡(𝐹𝑖,𝐸′,𝐴))𝐸′∈GEN(𝐹𝑖)

  (6) 

where 𝛌T𝐡 is the log-linear model of (1), which 

also includes the feature derived from the CPTM 

as defined by (4), and 𝛾 is a tuned smoothing fac-

tor. 

Let ℒ(𝛉) be a loss function which is differen-

tiable w.r.t. the parameters of the CPTM, 𝛉. We 

can compute the gradient of the loss and learn 𝛉 

using gradient-based numerical optimization al-

gorithms, such as L-BFGS or stochastic gradient 

descent (SGD).  

5.1 Computing the Gradient 

Since the loss does not explicitly depend on 𝛉, we 

use the chain rule for differentiation: 

𝜕ℒ(𝛉)

𝜕𝛉
= ∑

𝜕ℒ(𝛉)

𝜕sim𝛉(𝐱𝑓 , 𝐱𝑒)

𝜕sim𝛉(𝐱𝑓 , 𝐱𝑒)

𝜕𝛉
(𝑓,𝑒 )

 

= ∑ −𝛿(𝑓,𝑒)

𝜕sim𝛉(𝐱𝑓 , 𝐱𝑒)

𝜕𝛉
(𝑓,𝑒 )

 (7) 

which takes the form of summation over all phrase 

pairs occurring either in a training sample (sto-

chastic mode) or in the entire training data (batch 

mode). 𝛿(𝑓,𝑒) in (7) is known as the error term of 

the phrase pair (𝑓, 𝑒), and is defined as   

𝛿(𝑓,𝑒) = −
𝜕ℒ(𝛉)

𝜕sim𝛉(𝐱𝑓,𝐱𝑒)
  (8) 

It describes how the overall loss changes with the 

translation score of the phrase pair (𝑓, 𝑒). We will 

leave the derivation of 𝛿(𝑓,𝑒) to Section 5.1.2, and 

will first describe how the gradient of 

sim𝛉(𝐱𝑓 , 𝐱𝑒) w.r.t. 𝛉 is computed. 

5.1.1 Computing 𝝏𝐬𝐢𝐦𝛉(𝐱𝒇, 𝐱𝒆)/𝝏𝛉 

Without loss of generality, we use the following 

notations to describe a neural network: 

 𝐖𝑙 is the projection matrix for the l-th layer 

of the neural network; 

 𝐱 is the input word vector of a phrase; 

 𝐳𝑙 is the sum vector of the l-th layer; and  

 𝐲𝑙 = 𝜎(𝐳𝑙) is the output vector of the l-th 

layer, where 𝜎 is an activation function; 

Thus, the CPTM defined by (2) and (3) can be rep-

resented as  

𝐳1 = 𝐖1
T𝐱  

𝐲1 = 𝜎(𝐳1)  

𝐳2 = 𝐖2
T𝐲1  

𝐲2 = 𝜎(𝐳2)  

sim𝛉(𝐱𝑓 , 𝐱𝑒) = (𝐲𝑓
2)

T
𝐲𝑒

2  

The gradient of the matrix 𝐖2 which projects the 

hidden vector to the output vector is computed as: 

∂sim𝛉(𝐱𝑓 , 𝐱𝑒)

∂𝐖2
=

∂(𝐲𝑓
2)

T

∂𝐖2
𝐲𝑒

2 + (𝐲𝑓
2)

T ∂𝐲𝑒
2

∂𝐖2
 

= 𝐲𝑓
1 (𝐲𝑒

2 ∘ 𝜎′(𝐳𝑓
2))

T
+ 𝐲𝑒

1 (𝐲𝑓
2 ∘ 𝜎′(𝐳𝑒

2))
T

 (9) 

where ∘ is the element-wise multiplication (Hada-

mard product). Applying the back propagation 

principle, the gradient of the projection matrix 

mapping the input vector to the hidden vector 𝐖1 

is computed as 

∂sim𝛉(𝐱𝑓 , 𝐱𝑒)

∂𝐖1
 

= 𝐱𝑓 (𝐖2 (𝐲𝑒
2 ∘ 𝜎′(𝐳𝑓

2)) ∘ 𝜎′(𝐳𝑓
1))

T

  

+𝐱𝑒 (𝐖2 (𝐲𝑓
2 ∘ 𝜎′(𝐳𝑒

2)) ∘ 𝜎′(𝐳𝑒
1))

T

  (10) 

The derivation can be easily extended to a neural 

network with multiple hidden layers.  

5.1.2 Computing 𝜹(𝒇,𝒆) 

To simplify the notation, we rewrite our loss func-

tion of (5) and (6) over one training sample as  
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ℒ(𝛉) = −xBleu(𝛉) = −
G(𝛉)

Z(𝛉)
 (11) 

where 

G(𝛉) = ∑ sBleu(𝐸, 𝐸𝑖) exp(𝛌T𝐡(𝐹𝑖, 𝐸, 𝐴))𝐸   

Z(𝛉) = ∑ exp(𝛌T𝐡(𝐹𝑖, 𝐸, 𝐴))𝐸   

Combining (8) and (11), we have 

𝛿(𝑓,𝑒) =
𝜕xBleu(𝛉)

𝜕sim𝛉(𝐱𝑓 , 𝐱𝑒)
 (12) 

=
1

Z(𝛉)
(

𝜕G(𝛉)

𝜕sim𝛉(𝐱𝑓 , 𝐱𝑒)
−

𝜕Z(𝛉)

𝜕sim𝛉(𝐱𝑓 , 𝐱𝑒)
xBleu(𝛉)) 

Because 𝛉 is only relevant to ℎ𝑀+1 which is de-

fined in (4), we have 

𝜕𝛌T𝐡(𝐹𝑖, 𝐸, 𝐴)

𝜕sim𝛉(𝐱𝑓 , 𝐱𝑒)
= 𝜆𝑀+1

𝜕ℎ𝑀+1(𝐹𝑖, 𝐸, 𝐴)

𝜕sim𝛉(𝐱𝑓 , 𝐱𝑒)
  

= 𝜆𝑀+1𝑁(𝑓, 𝑒; 𝐴) (13) 

where 𝑁(𝑓, 𝑒; 𝐴)  is the number of times the 

phrase pair (𝑓, 𝑒)  occurs in 𝐴 . Combining (12) 

and (13), we end up with the following equation 

𝛿(𝑓,𝑒)

= ∑ U(𝛉, 𝐸)𝑃(𝐸|𝐹𝑖)𝜆𝑀+1𝑁(𝑓, 𝑒; 𝐴)
(𝐸,𝐴)∈𝐺𝐸𝑁(𝐹𝑖)

 

where  (14) 

U(𝛉, 𝐸) = sBleu(𝐸𝑖, 𝐸) − xBleu(𝛉).  

5.2 The Training Algorithm 

In our experiments we train the parameters of the 

CPTM, 𝛉, using the L-BFGS optimizer described 

in Andrew and Gao (2007), together with the loss 

function described in (5). The gradient is com-

puted as described in Sections 5.1. Although SGD 

has been advocated for neural network training 

due to its simplicity and its robustness to local 

minima (Bengio 2009), we find that in our task 

that the L-BFGS minimizes the loss in a desirable 

fashion empirically when iterating over the com-

plete training data (batch mode). For example, the 

convergence of the algorithm was found to be 

smooth, despite the non-convexity in our loss. An-

other merit of batch training is that the gradient 

over all training data can be computed efficiently. 

As shown in Section 5.1, computing 

𝜕simθ(x𝑓 , x𝑒)/𝜕θ  requires large-scale matrix 

multiplications, and is expensive for multi-layer 

neural networks. Eq. (7) suggests that 

𝜕simθ(x𝑓 , x𝑒)/𝜕θ  and 𝛿(𝑓,𝑒)  can be computed 

separately, thus making the computation cost of 

the former term only depends on the number of 

phrase pairs in the phrase table, but not the size of 

training data. Therefore, the training method de-

scribed here can be used on larger amounts of 

training data with little difficulty.  

As described in Section 4, we take three steps 

to learn the parameters for both the log-linear 

model of SMT and the CPTM. While steps 1 and 

3 can be easily parallelized on a computer cluster, 

the CPTM training is performed on a single ma-

chine. For example, given a phrase table contain-

ing 16M pairs and a 1M-sentence training set, it 

takes a couple of hours to generate the N-best lists 

on a cluster, and about 10 hours to train the CPTM 

on a Xeon E5-2670 2.60GHz machine.   

For a non-convex problem, model initialization 

is important. In our experiments we always initial-

ize 𝐖1 using a bilingual topic model trained on 

parallel data (see detail in Section 6.2), and 𝐖2 as 

an identity matrix. In principle, the loss function 

of (5) can be further regularized (e.g. by adding a 

term of 𝐿2 norm) to deal with overfitting. How-

ever, we did not find clear empirical advantage 

over the simpler early stop approach in a pilot 

study, which is adopted in the experiments in this 

paper.   

6 Experiments 

This section evaluates the CPTM presented on 

two translation tasks using WMT data sets. We 

first describe the data sets and baseline setup. 

Then we present experiments where we compare 

different versions of the CPTM and previous 

models. 

6.1 Experimental Setup 

Baseline. We experiment with an in-house 

phrase-based system similar to Moses (Koehn et 

al. 2007), where the translation candidates are 

scored by a set of common features including 

maximum likelihood estimates of source given 

target phrase mappings 𝑃𝑀𝐿𝐸(𝑒|𝑓) and vice versa 

𝑃𝑀𝐿𝐸(𝑓|𝑒), as well as lexical weighting estimates 

𝑃𝐿𝑊(𝑒|𝑓) and 𝑃𝐿𝑊(𝑓|𝑒), word and phrase penal-

ties, a linear distortion feature, and a lexicalized 

reordering feature. The baseline includes a stand-

ard 5-gram modified Kneser-Ney language model 

trained on the target side of the parallel corpora 

described below. Log-linear weights are estimated 

with the MERT algorithm (Och 2003). 
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Evaluation. We test our models on two different 

data sets. First, we train an English to French sys-

tem based on the data of WMT 2006 shared task 

(Koehn and Monz 2006). The parallel corpus in-

cludes 688K sentence pairs of parliamentary pro-

ceedings for training. The development set con-

tains 2000 sentences, and the test set contains 

other 2000 sentences, all from the official WMT 

2006 shared task. 

Second, we experiment with a French to Eng-

lish system developed using 2.1M sentence pairs 

of training data, which amounts to 102M words, 

from the WMT 2012 campaign. The majority of 

the training data set is parliamentary proceedings 

except for 5M words which are newswire. We use 

the 2009 newswire data set, comprising 2525 sen-

tences, as the development set. We evaluate on 

four newswire domain test sets from 2008, 2010 

and 2011 as well as the 2010 system combination 

test set, containing 2034 to 3003 sentences. 

In this study we perform a detailed empirical 

comparison using the WMT 2006 data set, and 

verify our best models and results using the larger 

WMT 2012 data set. 

The metric used for evaluation is case insensi-

tive BLEU score (Papineni et al. 2002). We also 

perform a significance test using the Wilcoxon 

signed rank test. Differences are considered statis-

tically significant when the p-value is less than 

0.05. 

6.2 Results of the CPTM 

Table 1 shows the results measured in BLEU eval-

uated on the WMT 2006 data set, where Row 1 is 

the baseline system. Rows 2 to 4 are the systems 

enhanced by integrating different versions of the 

CPTM. Rows 5 to 7 present the results of previous 

models. Row 8 is our best system. Table 2 shows 

the main results on the WMT 2012 data set. 

CPTM is the model described in Sections 4. 

As illustrated in Figure 2, the number of the nodes 

in the input layer is the vocabulary size 𝑑. Both 

the hidden layer and the output layer have 100 

nodes6. That is, 𝐖1 is a 𝑑 × 100 matrix and 𝐖2 

a 100 × 100  matrix. The result shows that 

CPTM leads to a substantial improvement over 

the baseline system with a statistically significant 

margin of 1.0 BLEU points as in Table 1.  

We have developed a set of variants of CPTM 

to investigate two design choices we made in de-

veloping the CPTM: (1) whether to use a linear 
                                                           
6 We can achieve slightly better results using more nodes in 

the hidden and output layers, say 500 nodes. But the model 

projection or a multi-layer nonlinear projection; 

and (2) whether to compute the phrase similarity 

using word-word similarities as suggested by e.g., 

the lexical weighting model (Koehn et al. 2003). 

We compare these variants on the WMT 2006 

data set, as shown in Table 1. 

CPTML (Row 3 in Table 1) uses a linear neural 

network to project a word vector of a phrase 𝐱 to 

a feature vector 𝐲: 𝐲 ≡ 𝜙(𝐱) = 𝐖T𝐱, where 𝐖 is 

a 𝑑 × 100  projection matrix. The translation 

score of a source phrase f and a target phrase e is 

measured as the similarity of their feature vectors. 

We choose cosine similarity because it works bet-

ter than dot product for linear projection. 

CPTMW (Row 4 in Table 1) computes the phrase 

similarity using word-word similarity scores. This 

follows the common smoothing strategy of ad-

dressing the data sparseness problem in modeling 

phrase translations, such as the lexical weighting 

model (Koehn et al. 2003) and the word factored 

n-gram translation model (Son et al. 2012). Let 𝑤 

denote a word, and 𝑓 and 𝑒 the source and target 

phrases, respectively. We define 

sim(𝑓, 𝑒) =
1

|𝑓|
∑ sim𝜏(𝑤, 𝑒) +𝑤∈𝑓

1

|𝑒|
∑ sim𝜏(𝑤, 𝑓)𝑤∈𝑒   

where sim𝜏(𝑤, 𝑒)  (or sim𝜏(𝑤, 𝑓) ) is the word-

phrase similarity, and is defined as a smooth ap-

proximation of the maximum function  

sim𝜏(𝑤, 𝑒)

=
∑ sim(𝑤, 𝑤′) exp(𝜏sim(𝑤, 𝑤′))𝑤′∈𝑒

∑ exp(𝜏sim(𝑤, 𝑤′))𝑤′∈𝑒

 

 

training is too slow to perform a detailed study within a rea-

sonable time. Therefore, all the models reported in this paper 

use 100 nodes.   

# Systems WMT test2006 

1 Baseline 33.06 

2 CPTM 34.10α 

3 CPTML 33.60αβ 

4 CPTMW 33.25β 

5 BLTMPR 33.15β 

6 DPM 33.29β 

7 MRFP 33.91α 

8 Comb (2 + 7) 34.39αβ 

Table 1: BLEU results for the English to French 

task using translation models and systems built 

on the WMT 2006 data set. The superscripts α 

and β indicate statistically significant difference 

(p < 0.05) from Baseline and CPTM, respec-

tively. 
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where sim𝜏(𝑤, 𝑒)  (or sim𝜏(𝑤, 𝑓) ) is the word-

phrase similarity, and is defined as a smooth ap-

proximation of the maximum function  

where 𝜏 is the tuned smoothing parameter.  

Similar to CPTM, CPTMW also uses a nonlin-

ear projection to map each word (not a phrase vec-

tor as in CPTM) to a feature vector. 

Two observations can be made by comparing 

CPTM in Row 2 to its variants in Table 1. First of 

all, it is more effective to model the phrase trans-

lation directly than decomposing it into word-

word translations in the CPTMs. Second, we see 

that the nonlinear projection is able to generate 

more effective features, leading to better results 

than the linear projection. 

We  also compare the best version of the CPTM 

i.e., CPTM, with three related models proposed 

previously. We start the discussion with the re-

sults on the WMT 2006 data set in Table 1. 

Rows 5 and 6 in Table 1 are two state-of-the-

art latent semantic models that are originally 

trained on clicked query-document pairs (i.e., 

clickthrough data extracted from search logs) for 

query-document matching (Gao et al. 2011). To 

adopt these models for SMT, we view source-tar-

get sentence pairs as clicked query-document 

pairs, and trained both models using the same 

methods as in Gao et al. (2011) on the parallel bi-

lingual training data described earlier. Specifi-

cally, BTLMPR is an extension to PLSA, and is 

the best performer among different versions of the 

Bi-Lingual Topic Model (BLTM) described in 

Gao et al. (2011). BLTM with Posterior Regular-

ization (BLTMPR) is trained on parallel training 

data using the EM algorithm with a constraint en-

forcing a source sentence and its paralleled target 

sentence to not only share the same prior topic dis-

tribution, but to also have similar fractions of 

words assigned to each topic. We incorporated the 

model into the log-linear model for SMT (1) as 
                                                           
7 Gao and He (2013) reported results of MRF models with 

different feature sets. We picked the MRF using phrase fea-

tures only (MRFP) for comparison since we are mainly inter-

ested in phrase representation. 

follows. First of all, the topic distribution of a 

source sentence 𝐹𝑖 , denoted by 𝑃(𝑧|𝐹𝑖) , is in-

duced from the learned topic-word distributions 

using EM. Then, each translation candidate 𝐸 in 

the N-best list GEN(𝐹𝑖) is scored as 

𝑃(𝐸|𝐹𝑖) = ∏ ∑ 𝑃(𝑤|𝑧)𝑃(𝑧|𝐹𝑖)𝑧𝑤∈𝐸    

𝑃(𝐹𝑖|𝐸) can be similarly computed. Finally, the 

logarithms of the two probabilities are incorpo-

rated into the log-linear model of (1) as two addi-

tional features. DPM is the Discriminative Projec-

tion Model described in Gao et al. (2011), which 

is an extension of LSA. DPM uses a matrix to pro-

ject a word vector of a sentence to a feature vector. 

The projection matrix is learned on parallel train-

ing data using the S2Net algorithm (Yih et al. 

2011). DPM can be incorporated into the log-lin-

ear model for SMT (1) by introducing a new fea-

ture ℎ𝑀+1 for each phrase pair, which is defined 

as the cosine similarity of the phrases in the pro-

ject space.  

As we see from Table 1, both latent semantic 

models, although leading to some slight improve-

ment over Baseline, are much less effective than 

CPTM. 

Finally, we compare the CPTM with the Mar-

kov Random Field model using phrase features 

(MRFP in Tables 1 and 2), proposed by Gao and 

He (2013)7, on both the WMT 2006 and WMT 

2012 datasets. MRFp is a state-of-the-art large 

scale discriminative training model that uses the 

same expected BLEU training criterion, which 

has proven to give superior performance across a 

range of MT tasks recently (He and Deng 2012, 

Setiawan and Zhou 2013, Gao and He 2013).  

Unlike CPTM, MRFp is a linear model that 

simply treats each phrase pair as a single feature. 

Therefore, although both are trained using the 

# Systems dev news2011 news2010 news2008 newssyscomb2010 

1 Baseline 23.58 25.24 24.35 20.36 24.14 

2 MRFP 24.07α 26.00α 24.90 20.84α 25.05α 

3 CPTM 24.12α 26.25α 25.05α 21.15αβ 24.91α 

4 Comb (2 + 3) 24.46αβ 26.56αβ 25.52αβ 21.64αβ 25.22α 

Table 2:   BLEU results for the French to English task using translation models and systems built on 

the WMT 2012 data set. The superscripts α and β indicate statistically significant difference (p < 

0.05) from Baseline and MRFp, respectively. 
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same expected BLEU based objective function, 

CPTM and MRFp model the translation relation-

ship between two phrases from different angles. 

MRFp estimates one translation score for each 

phrase pair explicitly without parameter sharing, 

while in CPTM, all phrases share the same neural 

network that projects raw phrases to the continu-

ous space, providing a more smoothed estimation 

of the translation score for each phrase pair.  

The results in Tables 1 and 2 show that CPTM 

outperforms MRFP on most of the test sets across 

the two WMT data sets, but the difference be-

tween them is often not significant. Our interpre-

tation is that although CPTM provides a better 

smoothed estimation for low-frequent phrase 

pairs, which otherwise suffer the data sparsity is-

sue, MRFp provides a more precise estimation for 

those high-frequent phrase pairs. That is, CPTM 

and MRFp capture complementary information 

for translation. We thus combine CPTM and 

MRFP (Comb in Tables 1 and 2) by incorporating 

two features, each for one model, into the log-lin-

ear model of SMT (1). We observe that for both 

translation tasks, accuracy improves by up to 0.8 

BLEU over MRFP alone (e.g., on the news2008 

test set in Table 2). The results confirm that 

CPTM captures complementary translation infor-

mation to MRFp. Overall, we improve accuracy 

by up to 1.3 BLEU over the baseline on both 

WMT data sets. 

7 Conclusions 

The work presented in this paper makes two major 

contributions. First, we develop a novel phrase 

translation model for SMT, where joint represen-

tations are exploited of a phrase in the source lan-

guage and of its translation in the target language, 

and where the translation score of the pair of 

source-target phrases are represented as the dis-

tance between their feature vectors in a low-di-

mensional, continuous space. The space is derived 

from the representations generated using a multi-

layer neural network. Second, we present a new 

learning method to train the weights in the multi-

layer neural network for the end-to-end BLEU 

metric directly. The training method is based on 

L-BFGS. We describe in detail how the gradient 

in closed form, as required for efficient optimiza-

tion, is derived. The objective function, which 

takes the form of the expected BLEU computed 

from N-best lists, is very different from the usual 

objective functions used in most existing architec-

tures of neural networks, e.g., cross entropy (Hin-

ton et al. 2012) or mean square error (Deng et al. 

2012). We hence have provided details in the der-

ivation of the gradient, which can serve as an ex-

ample to guide the derivation of neural network 

learning with other non-standard objective func-

tions in the future. 

Our evaluation on two WMT data sets show 

that incorporating the continuous-space phrase 

translation model into the log-linear framework 

significantly improves the accuracy of a state-of-

the-art phrase-based SMT system, leading to a 

gain up to 1.3 BLEU. Careful implementation of 

the L-BFGS optimization based on the BLEU-

centric objective function, together with the asso-

ciated closed-form gradient, is a key to the suc-

cess.  

A natural extension of this work is to expand 

the model and learning algorithm from shallow to 

deep neural networks. The deep models are ex-

pected to produce more powerful and flexible se-

mantic representations (e.g., Tur et al., 2012), and 

thus greater performance gain than what is pre-

sented in this paper. 
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