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Abstract

Neural network language models are often
trained by optimizing likelihood, but we
would prefer to optimize for a task specific
metric, such as BLEU in machine trans-
lation. We show how a recurrent neural
network language model can be optimized
towards an expected BLEU loss instead
of the usual cross-entropy criterion. Fur-
thermore, we tackle the issue of directly
integrating a recurrent network into first-
pass decoding under an efficient approxi-
mation. Our best results improve a phrase-
based statistical machine translation sys-
tem trained on WMT 2012 French-English
data by up to 2.0 BLEU, and the expected
BLEU objective improves over a cross-
entropy trained model by up to 0.6 BLEU
in a single reference setup.

1 Introduction

Neural network-based language and translation
models have achieved impressive accuracy im-
provements on statistical machine translation tasks
(Allauzen et al., 2011; Le et al., 2012b; Schwenk
et al., 2012; Vaswani et al., 2013; Gao et al., 2014).
In this paper we focus on recurrent neural network
architectures which have recently advanced the
state of the art in language modeling (Mikolov et
al., 2010; Mikolov et al., 2011; Sundermeyer et al.,
2013) with several subsequent applications in ma-
chine translation (Auli et al., 2013; Kalchbrenner
and Blunsom, 2013; Hu et al., 2014). Recurrent
models have the potential to capture long-span de-
pendencies since their predictions are based on an
unbounded history of previous words (§2).

In practice, neural network models for machine
translation are usually trained by maximizing the
likelihood of the training data, either via a cross-
entropy objective (Mikolov et al., 2010; Schwenk

et al., 2012) or more recently, noise-contrastive es-
timation (Vaswani et al., 2013). However, it is
widely appreciated that directly optimizing for a
task-specific metric often leads to better perfor-
mance (Goodman, 1996; Och, 2003; Auli and
Lopez, 2011). The expected BLEU objective pro-
vides an efficient way of achieving this for ma-
chine translation (Rosti et al., 2010; Rosti et al.,
2011; He and Deng, 2012; Gao and He, 2013;
Gao et al., 2014) instead of solely relying on tra-
ditional optimizers such as Minimum Error Rate
Training (MERT) that only adjust the weighting
of entire component models within the log-linear
framework of machine translation (§3).

Most previous work on neural networks for ma-
chine translation is based on a rescoring setup
(Arisoy et al., 2012; Mikolov, 2012; Le et al.,
2012a; Auli et al., 2013), thereby side stepping
the algorithmic and engineering challenges of di-
rect decoder-integration. One recent exception is
Vaswani et al. (2013) who demonstrated that feed-
forward network-based language models are more
accurate in first-pass decoding than in rescoring.
Decoder integration has the advantage for the neu-
ral network to directly influence search, unlike
rescoring which is restricted to an n-best list or lat-
tice. Decoding with feed-forward architectures is
straightforward, since predictions are based on a
fixed size input, similar to n-gram language mod-
els. However, for recurrent networks we have to
deal with the unbounded history, which breaks the
usual dynamic programming assumptions for effi-
cient search. We show how a simple but effective
approximation can side step this issue and we em-
pirically demonstrate its effectiveness (§4).

We test the expected BLEU objective by train-
ing a recurrent neural network language model
and obtain substantial improvements. We also find
that our efficient approximation for decoder inte-
gration is very accurate, clearly outperforming a
rescoring setup (§5).
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Figure 1: Structure of the recurrent neural network
language model.

2 Recurrent Neural Network LMs

Our model has a similar structure to the recurrent
neural network language model of Mikolov et al.
(2010) which is factored into an input layer, a hid-
den layer with recurrent connections, and an out-
put layer (Figure 1). The input layer encodes the
word at position t as a 1-of-N vector wt. The out-
put layer yt represents scores over possible next
words; both the input and output layers are of size
|V |, the size of the vocabulary. The hidden layer
state ht encodes the history of all words observed
in the sequence up to time step t. The state of
the hidden layer is determined by the input layer
and the hidden layer configuration of the previous
time step ht−1. The weights of the connections
between the layers are summarized in a number
of matrices: U represents weights from the in-
put layer to the hidden layer, and W represents
connections from the previous hidden layer to the
current hidden layer. Matrix V contains weights
between the current hidden layer and the output
layer. The activations of the hidden and output
layers are computed by:

ht = tanh(Uwt + Wht−1)
yt = tanh(Vht)

Different to previous work (Mikolov et al., 2010),
we do not use the softmax activation function to
output a probability over the next word, but in-
stead just compute a single unnormalized score.
This is computationally more efficient than sum-
ming over all possible outputs such as required
for the cross-entropy error function (Bengio et al.,
2003; Mikolov et al., 2010; Schwenk et al., 2012).
Training is based on the back propagation through

time algorithm, which unrolls the network and
then computes error gradients over multiple time
steps (Rumelhart et al., 1986); we use the expected
BLEU loss (§3) to obtain the error with respect to
the output activations. After training, the output
layer represents scores s(wt+1|w1 . . . wt,ht) for
the next word given the previous t input words and
the current hidden layer configuration ht.

3 Expected BLEU Training

We integrate the recurrent neural network lan-
guage model as an additional feature into the stan-
dard log-linear framework of translation (Och,
2003). Formally, our phrase-based model is pa-
rameterized by M parameters Λ where each λm ∈
Λ, m = 1 . . .M is the weight of an associated
feature hm(f, e). Function h(f, e) maps foreign
sentences f and English sentences e to the vector
h1(f, e) . . . (f, e), and the model chooses transla-
tions according to the following decision rule:

ê = arg max
e∈E(f)

ΛTh(f, e)

We summarize the weights of the recurrent neural
network language model as θ = {U,W,V} and
add the model as an additional feature to the log-
linear translation model using the simplified nota-
tion sθ(wt) = s(wt|w1 . . . wt−1,ht−1):

hM+1(e) = sθ(e) =
|e|∑
t=1

log sθ(wt) (1)

which computes a sentence-level language model
score as the sum of individual word scores. The
translation model is parameterized by Λ and θ
which are learned as follows (Gao et al., 2014):

1. We generate an n-best list for each foreign
sentence in the training data with the baseline
translation system given Λ where λM+1 = 0
using the settings described in §5. The n-best
lists serve as an approximation to E(f) used
in the next step for expected BLEU training
of the recurrent neural network model (§3.1).

2. Next, we fix Λ, set λM+1 = 1 and opti-
mize θ with respect to the loss function on
the training data using stochastic gradient de-
scent (SGD).1

1We tuned λM+1 on the development set but found that
λM+1 = 1 resulted in faster training and equal accuracy.
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3. We fix θ and re-optimize Λ in the presence
of the recurrent neural network model using
Minimum Error Rate Training (Och, 2003)
on the development set (§5).

3.1 Expected BLEU Objective
Formally, we define our loss function l(θ) as
the negative expected BLEU score, denoted as
xBLEU(θ) for a given foreign sentence f :

l(θ) =− xBLEU(θ)

=
∑
e∈E(f)

pΛ,θ(e|f)sBLEU(e, e(i)) (2)

where sBLEU(e, e(i)) is a smoothed sentence-
level BLEU score with respect to the reference
translation e(i), and E(f) is the generation set
given by an n-best list.2 We use a sentence-level
BLEU approximation similar to He and Deng
(2012).3 The normalized probability pΛ,θ(e|f) of
a particular translation e given f is defined as:

pΛ,θ(e|f) =
exp{γΛTh(f, e)}∑

e′∈E(f) exp{γΛTh(f, e′)} (3)

where ΛTh(f, e) includes the recurrent neural net-
work hM+1(e), and γ ∈ [0, inf) is a scaling factor
that flattens the distribution for γ < 1 and sharp-
ens it for γ > 1 (Tromble et al., 2008).4

Next, we define the gradient of the expected
BLEU loss function l(θ) using the observation that
the loss does not explicitly depend on θ:

∂l(θ)
∂θ

=
∑
e

|e|∑
t=1

∂l(θ)
∂sθ(wt)

∂sθ(wt)
∂θ

=
∑
e

|e|∑
t=1

−δwt
∂sθ(wt)
∂θ

where δwt is the error term for English word wt.5

The error term indicates how the loss changes with
the translation probability which we derive next.6

2Our definitions do not take into account multiple derivations
for the same translation because our n-best lists contain only
unique entries which we obtain by choosing the highest scor-
ing translation among string identical candidates.

3In early experiments we found that the BLEU+1 approxi-
mation used by Liang et al. (2006) and Nakov et. al (2012)
worked equally well in our setting.

4The γ parameter is only used during expected BLEU training
but not for subsequent MERT tuning.

5A sentence may contain the same word multiple times and
we compute the error term for each occurrence separately
since the error depends on the individual history.

6We omit the gradient of the recurrent neural network score
∂sθ(wt)
∂θ

since it follows the standard form (Mikolov, 2012).

3.2 Derivation of the Error Term δwt

We rewrite the loss function (2) using (3) and sep-
arate it into two terms G(θ) and Z(θ) as follows:

l(θ) = −xBLEU(θ) = −G(θ)
Z(θ)

(4)

= −
∑

e∈E(f) exp{γΛTh(f, e)} sBLEU(e, e(i))∑
e∈E(f) exp{γΛTh(f, e)}

Next, we apply the quotient rule of differentiation:

δwt =
∂xBLEU(θ)
∂sθ(wt)

=
∂(G(θ)/Z(θ))
∂sθ(wt)

=
1

Z(θ)

(
∂G(θ)
∂sθ(wt)

− ∂Z(θ)
∂sθ(wt)

xBLEU(θ)
)

Using the observation that θ is only relevant to the
recurrent neural network hM+1(e) (1) we have

∂γΛTh(f, e)
∂sθ(wt)

= γλM+1
∂hM+1(e)
∂sθ(wt)

=
γλM+1

sθ(wt)

which together with the chain rule, (3) and (4) al-
lows us to rewrite δwt as follows:

δwt =
1

Z(θ)

∑
e∈E(f),
s.t.wt∈e

(
∂ exp{γΛTh(f, e)}

∂sθ(wt)
U(θ, e)

)

=
∑

e∈E(f),
s.t.wt∈e

(
pΛ,θ(e|f)U(θ, e)λM+1

γ

sθ(wt)

)

where U(θ, e) = sBLEU(e, ei)− xBLEU(θ).

4 Decoder Integration

Directly integrating our recurrent neural network
language model into first-pass decoding enables us
to search a much larger space than would be pos-
sible in rescoring.

Typically, phrase-based decoders maintain a set
of states representing partial and complete transla-
tion hypothesis that are scored by a set of features.
Most features are local, meaning that all required
information for them to assign a score is available
within the state. One exception is the n-gram lan-
guage model which requires the preceding n − 1
words as well. In order to accommodate this fea-
ture, each state usually keeps these words as con-
text. Unfortunately, a recurrent neural network
makes even weaker independence assumptions so
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that it depends on the entire left prefix of a sen-
tence. Furthermore, the weaker independence as-
sumptions also dramatically reduce the effective-
ness of dynamic programming by allowing much
fewer states to be recombined.7

To solve this problem, we follow previous work
on lattice rescoring with recurrent networks that
maintained the usual n-gram context but kept a
beam of hidden layer configurations at each state
(Auli et al., 2013). In fact, to make decoding as
efficient as possible, we only keep the single best
scoring hidden layer configuration. This approx-
imation has been effective for lattice rescoring,
since the translations represented by each state are
in fact very similar: They share both the same
source words as well as the same n-gram context
which is likely to result in similar recurrent his-
tories that can be safely pruned. As future cost
estimate we score each phrase in isolation, reset-
ting the hidden layer at the beginning of a phrase.
While simple, we found our estimate to be more
accurate than no future cost at all.

5 Experiments

Baseline. We use a phrase-based system simi-
lar to Moses (Koehn et al., 2007) based on a set
of common features including maximum likeli-
hood estimates pML(e|f) and pML(f |e), lexically
weighted estimates pLW (e|f) and pLW (f |e),
word and phrase-penalties, a hierarchical reorder-
ing model (Galley and Manning, 2008), a linear
distortion feature, and a modified Kneser-Ney lan-
guage model trained on the target-side of the paral-
lel data. Log-linear weights are tuned with MERT.
Evaluation. We use training and test data from
the WMT 2012 campaign and report results on
French-English and German-English. Transla-
tion models are estimated on 102M words of par-
allel data for French-English, and 99M words
for German-English; about 6.5M words for each
language pair are newswire, the remainder are
parliamentary proceedings. We evaluate on six
newswire domain test sets from 2008 to 2013 con-
taining between 2034 to 3003 sentences. Log-
linear weights are estimated on the 2009 data set
comprising 2525 sentences. We evaluate accuracy
in terms of BLEU with a single reference.
Rescoring Setup. For rescoring we use ei-

7Recombination only retains the highest scoring state if there
are multiple identical states, that is, they cover the same
source span, the same translation phrase and contexts.

ther lattices or the unique 100-best output of
the phrase-based decoder and re-estimate the log-
linear weights by running a further iteration of
MERT on the n-best list of the development set,
augmented by scores corresponding to the neural
network models. At test time we rescore n-best
lists with the new weights.

Neural Network Training. All neural network
models are trained on the news portion of the
parallel data, corresponding to 136K sentences,
which we found to be most useful in initial exper-
iments. As training data we use unique 100-best
lists generated by the baseline system. We use the
same data both for training the phrase-based sys-
tem as well as the language model but find that
the resulting bias did not hurt end-to-end accu-
racy (Yu et al., 2013). The vocabulary consists of
words that occur in at least two different sentences,
which is 31K words for both language pairs. We
tuned the learning rate µ of our mini-batch SGD
trainer as well as the probability scaling parameter
γ (3) on a held-out set and found simple settings of
µ = 0.1 and γ = 1 to be good choices. To prevent
over-fitting, we experimented with L2 regulariza-
tion, but found no accuracy improvements, prob-
ably because SGD regularizes enough. We evalu-
ate performance on a held-out set during training
and stop whenever the objective changes less than
0.0003. The hidden layer uses 100 neurons unless
otherwise stated.

5.1 Decoder Integration

We compare the effect of direct decoder integra-
tion to rescoring with both lattices and n-best lists
when the model is trained with a cross-entropy ob-
jective (Mikolov et al., 2010). The results (Ta-
ble 1 and Table 2) show that direct integration im-
proves accuracy across all six test sets on both lan-
guage pairs. For French-English we improve over
n-best rescoring by up to 1.1 BLEU and by up to
0.5 BLEU for German-English. We improve over
lattice rescoring by up to 0.4 BLEU on French-
English and by up to 0.3 BLEU on German-
English. Compared to the baseline, we achieve
improvements of up to 2.0 BLEU for French-
English and up to 1.3 BLEU for German-English.
The average improvement across all test sets is
1.5 BLEU for French-English and 1.0 BLEU for
German-English compared to the baseline.

139



dev 2008 2010 syscomb2010 2011 2012 2013 AllTest
Baseline 24.11 20.73 24.68 24.59 25.62 24.85 25.54 24.53
RNN n-best rescore 24.83 21.41 25.17 25.06 26.53 25.74 26.31 25.25
RNN lattice rescore 24.91 21.73 25.56 25.43 27.04 26.43 26.75 25.72
RNN decode 25.14 22.03 25.86 25.74 27.32 26.86 27.15 26.06

Table 1: French-English accuracy of decoder integration of a recurrent neural network language model
(RNN decode) compared to n-best and lattice rescoring as well as the output of a phrase-based system
using an n-gram model (Baseline); Alltest is the corpus-weighted average BLEU across all test sets.

dev 2008 2010 syscomb2010 2011 2012 2013 AllTest
Baseline 19.35 19.96 20.87 20.66 19.60 19.80 22.48 20.58
RNN n-best rescore 20.17 20.29 21.35 21.27 20.51 20.54 23.03 21.21
RNN lattice rescore 20.24 20.38 21.55 21.43 20.77 20.63 23.23 21.38
RNN decode 20.13 20.51 21.79 21.71 20.91 20.93 23.53 21.61

Table 2: German-English results of direct decoder integration (cf. Table 1).

dev 2008 2010 syscomb2010 2011 2012 2013 AllTest
Baseline 24.11 20.73 24.68 24.59 25.62 24.85 25.54 24.53
CE RNN 24.80 21.15 25.14 25.06 26.45 25.83 26.69 25.29
+ xBLEU RNN 25.11 21.74 25.52 25.42 27.06 26.42 26.72 25.71

Table 3: French-English accuracy of a decoder integrated cross-entropy recurrent neural network model
(CE RNN) and a combination with an expected BLEU trained model (xBLEU RNN). Results are not
comparable to Table 1 since a smaller hidden layer was used to keep training times manageable (§5.2).

5.2 Expected BLEU Training

Training with the expected BLEU loss is compu-
tationally more expensive than with cross-entropy
since each training example is an n-best list in-
stead of a single sentence. This increases the num-
ber of words to be processed from 3.5M to 340M.
To keep training times manageable, we reduce the
hidden layer size to 30 neurons, thereby greatly
increasing speed. Despite slower training, the ac-
tual scoring at test time of expected BLEU mod-
els is about 5 times faster than for cross-entropy
models since we do not need to normalize the out-
put layer anymore. The results (Table 3) show
improvements of up to 0.6 BLEU when combin-
ing a cross-entropy model with an expected BLEU
variant. Average gains across all test sets are 0.4
BLEU, demonstrating that the gains from the ex-
pected BLEU loss are additive.

6 Conclusion and Future Work

We introduce an empirically effective approxima-
tion to integrate a recurrent neural network model
into first pass decoding, thereby extending pre-
vious work on decoding with feed-forward neu-

ral networks (Vaswani et al., 2013). Our best re-
sult improves the output of a phrase-based decoder
by up to 2.0 BLEU on French-English translation,
outperforming n-best rescoring by up to 1.1 BLEU
and lattice rescoring by up to 0.4 BLEU. Directly
optimizing a recurrent neural network language
model towards an expected BLEU loss proves ef-
fective, improving a cross-entropy trained variant
by up 0.6 BLEU. Despite higher training complex-
ity, our expected BLEU trained model has five
times faster runtime than a cross-entropy model
since it does not require normalization.

In future work, we would like to scale up to
larger data sets and more complex models through
parallelization. We would also like to experiment
with more elaborate future cost estimates, such as
the average score assigned to all occurrences of a
phrase in a large corpus.
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