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Abstract

In this paper, we investigate the appli-
cation of recurrent neural network lan-
guage models (RNNLM) and factored
language models (FLM) to the task of
language modeling for Code-Switching
speech. We present a way to integrate part-
of-speech tags (POS) and language in-
formation (LID) into these models which
leads to significant improvements in terms
of perplexity. Furthermore, a comparison
between RNNLMs and FLMs and a de-
tailed analysis of perplexities on the dif-
ferent backoff levels are performed. Fi-
nally, we show that recurrent neural net-
works and factored language models can
be combined using linear interpolation to
achieve the best performance. The final
combined language model provides 37.8%
relative improvement in terms of perplex-
ity on the SEAME development set and
a relative improvement of 32.7% on the
evaluation set compared to the traditional
n-gram language model.

Index Terms: multilingual speech processing,
code switching, language modeling, recurrent
neural networks, factored language models

1 Introduction

Code-Switching (CS) speech is defined as speech
that contains more than one language (’code’). It
is a common phenomenon in multilingual com-
munities (Auer, 1999a). For the automated pro-
cessing of spoken communication in these sce-
narios, a speech recognition system must be able
to handle code switches. However, the compo-
nents of speech recognition systems are usually
trained on monolingual data. Furthermore, there
is a lack of bilingual training data. While there

have been promising research results in the area
of acoustic modeling, only few approaches so far
address Code-Switching in the language model.
Recently, it has been shown that recurrent neu-
ral network language models (RNNLMs) can im-
prove perplexity and error rates in speech recogni-
tion systems in comparison to traditional n-gram
approaches (Mikolov et al., 2010; Mikolov et al.,
2011). One reason for that is their ability to han-
dle longer contexts. Furthermore, the integration
of additional features as input is rather straight-
forward due to their structure. On the other hand,
factored language models (FLMs) have been used
successfully for languages with rich morphology
due to their ability to process syntactical features,
such as word stems or part-of-speech tags (Bilmes
and Kirchhoff, 2003; El-Desoky et al., 2010).
The main contribution of this paper is the appli-
cation of RNNLMs and FLMs to the challenging
task of Code-Switching. Furthermore, the two dif-
ferent models are combined using linear interpo-
lation. In addition, a comparison between them is
provided including a detailed analysis to explain
their results.

2 Related Work

For this work, three different topics are investi-
gated and combined: linguistic investigation of
Code-Switching, recurrent neural network lan-
guage modeling and factored language models.
In (Muysken, 2000; Poplack, 1978; Bokamba,
1989), it is observed that code switches occur at
positions in an utterance where they do not violate
the syntactical rules of the involved languages. On
the one hand, Code-Switching can be regarded as
a speaker dependent phenomenon (Auer, 1999b;
Vu, Adel et al., 2013). On the other hand, par-
ticular Code-Switching patterns are shared across
speakers (Poplack, 1980). It can be observed that
part-of-speech tags may predict Code-Switching
points more reliable than words themselves. The
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authors of (Solorio et al., 2008a) predict Code-
Switching points using several linguistic features,
such as word form, language ID, part-of-speech
tags or the position of the word relative to the
phrase (BIO). The best result is obtained by com-
bining those features. In (Chan et.al., 2006), four
different kinds of n-gram language models are
compared to predict Code-Switching. It is dis-
covered that clustering all foreign words into their
part-of-speech classes leads to the best perfor-
mance.
In the last years, neural networks have been used
for a variety of tasks, including language model-
ing (Mikolov et al., 2010). Recurrent neural net-
works are able to handle long-term contexts since
the input vector does not only contain the cur-
rent word but also the previous hidden layer. It
is shown that these networks outperform tradi-
tional language models, such as n-grams which
only contain very limited histories. In (Mikolov
et al., 2011), the network is extended by factoriz-
ing the output layer into classes to accelerate the
training and testing processes. The input layer
can be augmented to model features, such as part-
of-speech tags (Shi et al., 2011; Adel, Vu et al.,
2013). In (Adel, Vu et al., 2013), recurrent neural
networks are applied to Code-Switching speech. It
is shown that the integration of POS tags into the
neural network, which predicts the next language
as well as the next word, leads to significant per-
plexity reductions.
A factored language model refers to a word as a
vector of features, such as the word itself, morpho-
logical classes, POS tags or word stems. Hence, it
provides another possibility to integrate syntacti-
cal features into the language modeling process.
In (Bilmes and Kirchhoff, 2003), it is shown that
factored language models are able to outperform
standard n-gram techniques in terms of perplexity.
In the same paper, generalized parallel backoff is
introduced. This technique can be used to general-
ize traditional backoff methods and to improve the
performance of factored language models. Due to
the integration of various features, it is possible to
handle rich morphology in languages like Arabic
or Turkish (Duh and Kirchhoff, 2004; El-Desoky
et al., 2010).

3 Code-Switching Language Modeling

3.1 Motivation

Since there is a lack of Code-Switching data, lan-
guage modeling is a challenging task. Traditional
n-gram approaches may not provide reliable esti-
mates. Hence, more general features than words
should be integrated into the language models.
Therefore, we apply recurrent neural networks and
factored language models. As features, we use
part-of-speech tags and language identifiers.

3.2 Using Recurrent Neural Networks As
Language Model

This section describes the structure of the recur-
rent neural network (RNNLM) that we use as
Code-Switching language model. It has been pro-
posed in (Adel, Vu et al., 2013) and is illustrated
in figure 1.
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Figure 1: RNNLM for Code-Switching
(based upon a figure in (Mikolov et al., 2011))

Vectorw(t), which represents the current word us-
ing 1-of-N coding, forms the input of the recur-
rent neural network. Thus, its dimension equals
the size of the vocabulary. Vector s(t) con-
tains the state of the network and is called ’hid-
den layer’. The network is trained using back-
propagation through time (BPTT), an extension of
the back-propagation algorithm for recurrent neu-
ral networks. With BPTT, the error is propagated
through recurrent connections back in time for a
specific number of time steps t. Hence, the net-
work is able to remember information for several
time steps. The matrices U1, U2, V , and W con-
tain the weights for the connections between the
layers. These weights are learned during the train-
ing phase. Moreover, the output layer is factorized
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into classes which provide language information.
In this work, four classes are used: English, Man-
darin, other languages and particles. Vector c(t)
contains the probabilities for each class and vector
y(t) provides the probabilities for each word given
its class. Hence, the probability P (wi|history) is
computed as shown in equation 1.

P (wi|history) = P (ci|s(t))P (wi|ci, s(t)) (1)

It is intended to not only predict the next word but
also the next language. Hence according to equa-
tion 1, the probability of the next language is com-
puted first and then the probability of each word
given the language. Furthermore, a vector f(t)
is added to the input layer. It provides features
(in this work part-of-speech tags) corresponding
to the current word. Thus, not only the current
word is activated but also its features. Since the
POS tags are integrated into the input layer, they
are also propagated into the hidden layer and back-
propagated into its history s(t). Hence, not only
the previous feature is stored in the history but also
features from several time steps in the past.

3.3 Using Factored Language Models
Factored language models (FLM) are another ap-
proach to integrate syntactical features, such as
part-of-speech tags or language identifiers into the
language modeling process. Each word is re-
garded as a sequence of features which are used
for the computation of the n-gram probabilities.
If a particular sequence of features has not been
detected in the training data, backoff techniques
will be applied. For our task of Code-Switching,
we develop two different models: One model with
only part-of-speech tags as features and one model
including also language information tags. Un-
fortunately, the number of possible parameters is
rather high: Different feature combinations from
different time steps can be used to predict the
next word (conditioning factors), different back-
off paths and different smoothing methods may
be applied. To detect useful parameters, the ge-
netic algorithm described in (Duh and Kirchhoff,
2004) is used. It is an evolution-inspired technique
that encodes the parameters of an FLM as binary
strings (genes). First, an initializing set of genes is
generated. Then, a loop follows that evaluates the
fitness of the genes and mutates them until their
average fitness is not improved any more. As fit-
ness value, the inverse perplexity of the FLM cor-
responding to the gene on the development set is
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Figure 2: Backoff graph of the FLM

used. Hence, parameter solutions with lower per-
plexities are preferred in the selection of the genes
for the following iteration. In (Duh and Kirch-
hoff, 2004), it is shown that this genetic method
outperforms both knowledge-based and random-
ized choices. For the case of part-of-speech tags
as features, the method results in three condition-
ing factors: the previous word Wt−1 and the two
previous POS tags Pt−1 and Pt−2. The backoff
graph obtained by the algorithm is illustrated in
figure 2. According to the result of the genetic al-
gorithm, different smoothing methods are used at
different backoff levels: For the backoff from three
factors to two factors, Kneser-Ney discounting is
applied. If the probabilities for the factor combi-
nation Wt−1Pt−2 could not be estimated reliably,
absolute discounting is used. In all other cases,
Witten-Bell discounting is applied. An overview
of the different smoothing methods can be found
in (Rosenfeld, 2000).

4 Experiments and Results

4.1 Data Corpus
SEAME (South East Asia Mandarin-English) is a
conversational Mandarin-English Code-Switching
speech corpus recorded from Singaporean and
Malaysian speakers (D.C. Lyu et al., 2011). It
was used for the research project ’Code-Switch’
jointly performed by Nanyang Technological Uni-
versity (NTU) and Karlsruhe Institute of Technol-
ogy (KIT). The recordings consist of spontanously
spoken interviews and conversations of about 63
hours of audio data. For this task, we deleted all
hesitations and divided the transcribed words into
four categories: English words, Mandarin words,
particles (Singaporean and Malaysian discourse
particles) and others (other languages). These cat-
egories are used as language information in the
language models. The average number of Code-
Switching points between Mandarin and English
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is 2.6 per utterance and the duration of monolin-
gual segments is quite short: The average dura-
tion of English and Mandarin segments is only
0.67 seconds and 0.81 seconds respectively. In to-
tal, the corpus contains 9,210 unique English and
7,471 unique Mandarin vocabulary words. We di-
vided the corpus into three disjoint sets (training,
development and test set) and assigned the data
based on several criteria (gender, speaking style,
ratio of Singaporean and Malaysian speakers, ra-
tio of the four categories, and the duration in each
set). Table 1 lists the statistics of the corpus in
these sets.

Train set Dev set Eval set
# Speakers 139 8 8
Duration(hrs) 59.2 2.1 1.5
# Utterances 48,040 1,943 1,018
# Token 525,168 23,776 11,294

Table 1: Statistics of the SEAME corpus

4.2 POS Tagger for Code-Switching Speech

To be able to assign part-of-speech tags to our
bilingual text corpus, we apply the POS tagger
described in (Schultz et al., 2010) and (Adel, Vu
et al., 2013). It consists of two different mono-
lingual (Stanford log-linear) taggers (Toutanova
et al., 2003; Toutanova et al., 2000) and a com-
bination of their results. While (Solorio et al.,
2008b) passes the whole Code-Switching text to
both monolingual taggers and combines their re-
sults using different heuristics, in this work, the
text is splitted into different languages first. The
tagging process is illustrated in figure 3.
Mandarin is determined as matrix language (the
main language of an utterance) and English as em-
bedded language. If three or more words of the
embedded language are detected, they are passed
to the English tagger. The rest of the text is passed
to the Mandarin tagger, even if it contains foreign
words. The idea is to provide the tagger as much
context as possible. Since most English words in
the Mandarin segments are falsely tagged as nouns
by the Mandarin tagger, a postprocessing step is
applied. It passes all foreign words of the Man-
darin segments to the English tagger in order to
replace the wrong tags with the correct ones.

„Matrix language“ = Mandarin

„Embedded language“ = English

CS-text

Language islands
(> 2 embedded

words)

Remaining
text

POS
tagger for 
Mandarin

POS
tagger for 

English

Output
Output

English
segments

in
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Figure 3: Tagging of Code-Switching speech

4.3 Evaluation

For evaluation, we compute the perplexity of each
language model on the SEAME development and
evaluation set und perform an analysis of the dif-
ferent back-off levels to understand in detail the
behavior of each language model. A traditional 3-
gram LM trained with the SEAME transcriptions
serves as baseline.

4.3.1 LM Performance

The language models are evaluated in terms of per-
plexity. Table 2 presents the results on the devel-
opment and test set.

Model dev set test set
Baseline 3-gram 285.87 285.25
FLM (pos) 263.57 271.57
FLM (pos + lid) 263.84 276.99
RNNLM (pos) 233.50 268.05
RNNLM (pos + lid) 219.85 239.21

Table 2: Perplexity results

It can be noticed that both the RNNLM and the
FLM model outperform the traditional 3-gram
model. Hence, adding syntactical features im-
proves the word prediction. For the FLM, it leads
to no improvement to add the language identifier
as feature. In contrast, clustering the words into
their languages on the output layer of the RNNLM
leads to lower perplexities.
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4.3.2 Backoff Level Analysis
To understand the different results of the RNNLM
and the FLM, an analysis similar to the one de-
scribed in (Oparin et al., 2012) is performed. For
each word, the backoff-level of the n-gram model
is observed. Then, a level-dependent perplexity is
computed for each model as shown in equation 2.

PPLk = 10
− 1

Nk

∑
wk

log10P (wk|hk) (2)

In the equation, k denotes the backoff-level, Nk

the number of words on this level, wk the current
word and hk its history. Table 3 shows how often
each backoff-level is used and presents the level-
dependent perplexities of each model on the de-
velopment set.

1-gram 2-gram 3-gram
# occurences 6894 11628 6226
Baseline 3-gram 5,786.24 165.82 28.28
FLM (pos) 4,950.31 147.70 30.99
RNNLM 3,231.02 151.67 21.24

Table 3: Backoff-level-dependent PPLs

In case of backoff to the 2-gram, the FLM pro-
vides the best perplexity, while for the 3-gram and
backoff to the 1-gram, the RNNLM performs best.
This may be correlated with the better over-all per-
plexity of the RNNLM in comparison to the FLM.
Nevertheless, the backoff to the 2-gram is used
about twice as often as the backoff to the 1-gram
or the 3-gram.

4.4 LM Interpolation
The different results of RNNLM and FLM show
that they provide different estimates of the next
word. Thus, a combination of them may reduce
the perplexities of table 2. Hence, we apply lin-
ear interpolation to the probabilities of each two
models as shown in equation 3.

P (w|h) = λ·PM1(w|h)+(1−λ)·PM2(w|h) (3)

The equation shows the computation of the pob-
ability for word w given its history h. PM1 de-
notes the probability provided by the first model
and PM2 the probability from the second model.
Table 4 shows the results of this experiment. The
weights are optimized on the development set.
The interpolation of RNNLM and FLM leads to
the best results. This may be caused by the supe-
rior backoff-level-dependent PPLs in comparison

PPL PPL
Model weight on dev on eval
FLM + 3-gram 0.7, 0.3 211.13 227.57
RNNLM + 3-gram 0.8, 0.2 206.49 227.08
RNNLM + FLM 0.6, 0.4 177.79 192.08

Table 4: Perplexities after interpolation

to the 3-gram model. While the RNNLM performs
better for the 3-gram and for the backoff to the 1-
gram, the FLM performs the best in case of back-
off to the 2-gram which is used more often than
the other levels (table 3).

5 Conclusions

In this paper, we presented two different methods
for language modeling of Code-Switching speech:
Recurrent neural networks and factored language
models. We integrated part-of-speech tags and
language information to improve the performance
of the language models. In addition, we ana-
lyzed their behavior on the different backoff lev-
els. While the FLM performed better in case of
backoff to the 2-gram, the RNNLM led to a bet-
ter over-all performance. Finally, the models were
combined using linear interpolation. The com-
bined language model provided 37.8% relative im-
provement in terms of perplexity on the SEAME
development set and a relative improvement of
32.7% on the evaluation set compared to the tra-
ditional n-gram LM.
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