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Abstract

In this paper we present a novel discrimi-
native mixture model for statistical machine
translation (SMT). We model the feature space
with a log-linear combination of multiple mix-
ture components. Each component contains a
large set of features trained in a maximum-
entropy framework. All features within the
same mixture component are tied and share
the same mixture weights, where the mixture
weights are trained discriminatively to max-
imize the translation performance. This ap-
proach aims at bridging the gap between the
maximum-likelihood training and the discrim-
inative training for SMT. It is shown that the
feature space can be partitioned in a vari-
ety of ways, such as based on feature types,
word alignments, or domains, for various ap-
plications. The proposed approach improves
the translation performance significantly on a
large-scale Arabic-to-English MT task.

1 Introduction

Significant progress has been made in statisti-
cal machine translation (SMT) in recent years.
Among all the proposed approaches, the phrase-
based method (Koehn et al., 2003) has become the
widely adopted one in SMT due to its capability
of capturing local context information from adja-
cent words. There exists significant amount of work
focused on the improvement of translation perfor-
mance with better features. The feature set could be
either small (at the order of 10), or large (up to mil-
lions). For example, the system described in (Koehn

et al., 2003) is a widely known one using small num-
ber of features in a maximum-entropy (log-linear)
model (Och and Ney, 2002). The features include
phrase translation probabilities, lexical probabilities,
number of phrases, and language model scores, etc.
The feature weights are usually optimized with min-
imum error rate training (MERT) as in (Och, 2003).

Besides the MERT-based feature weight opti-
mization, there exist other alternative discriminative
training methods for MT, such as in (Tillmann and
Zhang, 2006; Liang et al., 2006; Blunsom et al.,
2008). However, scalability is a challenge for these
approaches, where all possible translations of each
training example need to be searched, which is com-
putationally expensive.

In (Chiang et al., 2009), there are 11K syntac-
tic features proposed for a hierarchical phrase-based
system. The feature weights are trained with the
Margin Infused Relaxed Algorithm (MIRA) effi-
ciently on a forest of translations from a develop-
ment set. Even though significant improvement has
been obtained compared to the baseline that has
small number of features, it is hard to apply the
same approach to millions of features due to the data
sparseness issue, since the development set is usu-
ally small.

In (Ittycheriah and Roukos, 2007), a maximum
entropy (ME) model is proposed, which utilizes mil-
lions of features. All the feature weights are trained
with a maximum-likelihood (ML) approach on the
full training corpus. It achieves significantly bet-
ter performance than a normal phrase-based system.
However, the estimation of feature weights has no
direct connection with the final translation perfor-
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mance.
In this paper, we propose a hybrid framework, a

discriminative mixture model, to bridge the gap be-
tween the ML training and the discriminative train-
ing for SMT. In Section 2, we briefly review the ME
baseline of this work. In Section 3, we introduce the
discriminative mixture model that combines various
types of features. In Section 4, we present experi-
mental results on a large-scale Arabic-English MT
task with focuses on feature combination, alignment
combination, and domain adaptation, respectively.
Section 5 concludes the paper.

2 Maximum-Entropy Model for MT

In this section we give a brief review of a special
maximum-entropy (ME) model as introduced in (It-
tycheriah and Roukos, 2007). The model has the
following form,

p(t, j|s) =
p0(t, j|s)

Z(s)
exp

∑

i

λiφi(t, j, s), (1)

wheres is a source phrase, andt is a target phrase.
j is the jump distance from the previously translated
source word to the current source word. During
training j can vary widely due to automatic word
alignment in the parallel corpus. To limit the sparse-
ness created by long jumps,j is capped to a win-
dow of source words (-5 to 5 words) around the last
translated source word. Jumps outside the window
are treated as being to the edge of the window. In
Eq. (1), p0 is a prior distribution,Z is a normal-
izing term, andφi(t, j, s) are the features of the
model, each being a binary question asked about the
source, distortion, and target information. The fea-
ture weightsλi can be estimated with the Improved
Iterative Scaling (IIS) algorithm (Della Pietra et al.,
1997), a maximum-likelihood-based approach.

3 Discriminative Mixture Model

3.1 Mixture Model

Now we introduce the discriminative mixture model.
Suppose we partition the feature space into multiple
clusters (details in Section 3.2). Let the probabil-
ity of target phrase and jump given certain source
phrase for clusterk be

pk(t, j|s) =
1

Zk(s)
exp

∑

i

λkiφki(t, j, s), (2)

whereZk is a normalizing factor for clusterk.
We propose a log-linear mixture model as shown

in Eq. (3).

p(t, j|s) =
p0(t, j|s)

Z(s)

∏

k

pk(t, j|s)
wk . (3)

It can be rewritten in thelog domain as

log p(t, j|s) = log
p0(t, j|s)

Z(s)

+
∑

k

wk log pk(t, j|s)

= log
p0(t, j|s)

Z(s)
−

∑

k

wk log Zk(s)

+
∑

k

wk

∑

i

λkiφki(t, j, s). (4)

The individual feature weightsλki for the i-th
feature in clusterk are estimated in the maximum-
entropy framework as in the baseline model. How-
ever, the mixture weightswk can be optimized di-
rectly towards the translation evaluation metric, such
as BLEU (Papineni et al., 2002), along with other
usual costs (e.g. language model scores) on a devel-
opment set. Note that the number of mixture com-
ponents is relatively small (less than 10) compared
to millions of features in baseline. Hence the opti-
mization can be conducted easily to generate reliable
mixture weights for decoding with MERT (Och,
2003) or other optimization algorithms, such as
the Simplex Armijo Downhill algorithm proposed
in (Zhao and Chen, 2009).

3.2 Partition of Feature Space

Given the proposed mixture model, how to split the
feature space into multiple regions becomes crucial.
In order to surpass the baseline model, where all
features can be viewed as existing in a single mix-
ture component, the separated mixture components
should be complementary to each other. In this
work, we explore three different ways of partitions,
based on either feature types, word alignment types,
or the domain of training data.

In the feature-type-based partition, we split the
ME features into 8 categories:

• F1: Lexical features that examine source word,
target word and jump;
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• F2: Lexical context features that examine
source word, target word, the previous source
word, the next source word and jump;

• F3: Lexical context features that examine
source word, target word, the previous source
word, the previous target word and jump;

• F4: Lexical context features that examine
source word, target word, the previous or next
source word and jump;

• F5: Segmentation features based on mor-
phological analysis that examine source mor-
phemes, target word and jump;

• F6: Part-of-speech (POS) features that examine
the source and target POS tags and their neigh-
bors, along with target word and jump;

• F7: Source parse tree features that collect the
information from the parse labels of the source
words and their siblings in the parse trees,
along with target word and jump;

• F8: Coverage features that examine the cover-
age status of the source words to the left and
to the right. They fire only if the left source
is open (untranslated) or the right source is
closed.

All the features falling in the same feature cate-
gory/cluster are tied to each other to share the same
mixture weights at the upper level as in Eq. (3).

Besides the feature-type-based clustering, we can
also divide the feature space based on word align-
ment types, such as supervised alignment versus un-
supervised alignment (to be described in the exper-
iment section). For each type of word alignment,
we build a mixture component with millions of ME
features. On the task of domain adaptation, we
can also split the training data based on their do-
main/resources, with each mixture component rep-
resenting a specific domain.

4 Experiments

4.1 Data and Baseline

We conduct a set of experiments on an Arabic-to-
English MT task. The training data includes the UN
parallel corpus and LDC-released parallel corpora,

with about 10M sentence pairs and 300M words in
total (counted at the English side). For each sentence
in the training, three types of word alignments are
created: maximum entropy alignment (Ittycheriah
and Roukos, 2005), GIZA++ alignment (Och and
Ney, 2000), and HMM alignment (Vogel et al.,
1996). Our tuning and test sets are extracted from
the GALE DEV10 Newswire set, with no overlap
between tuning and test. There are 1063 sentences
(168 documents) in the tuning set, and 1089 sen-
tences (168 documents) in the test set. Both sets
have one reference translation for each sentence. In-
stead of using all the training data, we sample the
training corpus based on the tuning/test set to train
the systems more efficiently. In the end, about 1.5M
sentence pairs are selected for the sampled training.
A 5-gram language model is trained from the En-
glish Gigaword corpus and the English portion of the
parallel corpus used in the translation model train-
ing. In this work, the decoding weights for both
the baseline and the mixture model are tuned with
the Simplex Armijo Downhill algorithm (Zhao and
Chen, 2009) towards the maximum BLEU.

System Features BLEU

F1 685K 37.11
F2 5516K 38.43
F3 4457K 37.75
F4 3884K 37.56
F5 103K 36.03
F6 325K 37.89
F7 1584K 38.56
F8 1605K 37.49
Baseline 18159K 39.36
Mixture 18159K 39.97

Table 1: MT results with individual mixture component
(F1 to F8), baseline, or mixture model.

4.2 Feature Combination

We first experiment with the feature-type-based
clustering as described in Section 3.2. The trans-
lation results on the test set from the baseline and
the mixture model are listed in Table 1. The MT
performance is measured with the widely adopted
BLEU metric. We also evaluate the systems that uti-
lize only one of the mixture components (F1 to F8).
The number of features used in each system is also
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listed in the table. As we can see, when using all
18M features in the baseline model, without mixture
weighting, the baseline achieved 3.3 points higher
BLEU score than F5 (the worst component), and 0.8
higher BLEU score than F7 (the best component).
With the log-linear mixture model, we obtained 0.6
gain compared to the baseline. Since there are ex-
actly the same number of features in the baseline
and mixture model, the better performance is due
to two facts: separate training of the feature weights
λ within each mixture component; the discrimina-
tive training of mixture weightsw. The first one al-
lows better parameter estimation given the number
of features in each mixture component is much less
than that in the baseline. The second factor connects
the mixture weighting to the final translation perfor-
mance directly. In the baseline, all feature weights
are trained together solely under the maximum like-
lihood criterion, with no differentiation of the vari-
ous types of features in terms of their contribution to
the translation performance.

System Features BLEU

ME 5687K 39.04
GIZA 5716K 38.75
HMM 5589K 38.65
Baseline 18159K 39.36
Mixture 16992K 39.86

Table 2: MT results with different alignments, baseline,
or mixture model.

4.3 Alignment Combination

In the baseline mentioned above, three types of word
alignments are used (via corpus concatenation) for
phrase extraction and feature training. Given the
mixture model structure, we can apply it to an align-
ment combination problem. With the phrase table
extracted from all the alignments, we train three
feature mixture components, each on one type of
alignments. Each mixture component contains mil-
lions of features from all feature types described in
Section 3.2. Again, the mixture weights are op-
timized towards the maximum BLEU. The results
are shown in Table 2. The baseline system only
achieved 0.3 minor gain compared to extracting fea-
tures from ME alignment only (note that phrases are
from all the alignments). With the mixture model,

we can achieve another 0.5 gain compared to the
baseline, especially with less number of features.
This presents a new way of doing alignment com-
bination in the feature space instead of in the usual
phrase space.

System Features BLEU

Newswire 8898K 38.82
Weblog 1990K 38.20
UN 4700K 38.21
Baseline 18159K 39.36
Mixture 15588K 39.81

Table 3: MT results with different training sub-corpora,
baseline, or mixture model.

4.4 Domain Adaptation

Another popular task in SMT is domain adapta-
tion (Foster et al., 2010). It tries to take advantage of
any out-of-domain training data by combining them
with the in-domain data in an appropriate way. In
our sub-sampled training corpus, there exist three
subsets: newswire (1M sentences), weblog (200K),
and UN data (300K). We train three mixture com-
ponents, each on one of the training subsets. All re-
sults are compared in Table 3. The baseline that was
trained on all the data achieved 0.5 gain compared to
using the newswire training data alone (understand-
ably it is the best component given the newswire test
data). Note that since the baseline is trained on sub-
sampled training data, there is already certain do-
main adaptation effect involved. On top of that, the
mixture model results in another 0.45 gain in BLEU.
All the improvements in the mixture models above
against the baseline are statistically significant with
p-value< 0.0001 by using the confidence tool de-
scribed in (Zhang and Vogel, 2004).

5 Conclusion

In this paper we presented a novel discriminative
mixture model for bridging the gap between the
maximum-likelihood training and the discriminative
training in SMT. We partition the feature space into
multiple regions. The features in each region are tied
together to share the same mixture weights that are
optimized towards the maximum BLEU scores. It
was shown that the same model structure can be ef-
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fectively applied to feature combination, alignment
combination and domain adaptation. We also point
out that it is straightforward to combine any of these
three. For example, we can cluster the features based
on both feature types and alignments. Further im-
provement may be achieved with other feature space
partition approaches in the future.
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