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Abstract

We present a simple yet powerful hier-
archical search algorithm for automatic
word alignment. Our algorithm induces
a forest of alignments from which we
can efficiently extract a ranked k-best list.
We score a given alignment within the
forest with a flexible, linear discrimina-
tive model incorporating hundreds of fea-
tures, and trained on a relatively small
amount of annotated data. We report re-
sults on Arabic-English word alignment
and translation tasks. Our model out-
performs a GIZA++ Model-4 baseline by
6.3 points in F-measure, yielding a 1.1
BLEU score increase over a state-of-the-art
syntax-based machine translation system.

1 Introduction

Automatic word alignment is generally accepted
as a first step in training any statistical machine
translation system. It is a vital prerequisite for
generating translation tables, phrase tables, or syn-
tactic transformation rules. Generative alignment
models like IBM Model-4 (Brown et al., 1993)
have been in wide use for over 15 years, and while
not perfect (see Figure 1), they are completely un-
supervised, requiring no annotated training data to
learn alignments that have powered many current
state-of-the-art translation system.

Today, there exist human-annotated alignments
and an abundance of other information for many
language pairs potentially useful for inducing ac-
curate alignments. How can we take advantage
of all of this data at our fingertips? Using fea-
ture functions that encode extra information is one
good way. Unfortunately, as Moore (2005) points
out, it is usually difficult to extend a given genera-
tive model with feature functions without chang-
ing the entire generative story. This difficulty
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Figure 1: Model-4 alignment vs. a gold stan-
dard. Circles represent links in a human-annotated
alignment, and black boxes represent links in the
Model-4 alignment. Bold gray boxes show links
gained after fully connecting the alignment.

has motivated much recent work in discriminative
modeling for word alignment (Moore, 2005; Itty-
cheriah and Roukos, 2005; Liu et al., 2005; Taskar
et al., 2005; Blunsom and Cohn, 2006; Lacoste-
Julien et al., 2006; Moore et al., 2006).

We present in this paper a discriminative align-
ment model trained on relatively little data, with
a simple, yet powerful hierarchical search proce-
dure. We borrow ideas from both k-best pars-
ing (Klein and Manning, 2001; Huang and Chi-
ang, 2005; Huang, 2008) and forest-based, and
hierarchical phrase-based translation (Huang and
Chiang, 2007; Chiang, 2007), and apply them to
word alignment.

Using a foreign string and an English parse
tree as input, we formulate a bottom-up search
on the parse tree, with the structure of the tree
as a backbone for building a hypergraph of pos-
sible alignments. Our algorithm yields a forest of
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Figure 2: Example of approximate search through a hypergraph with beam size = 5. Each black square
implies a partial alignment. Each partial alignment at each node is ranked according to its model score.
In this figure, we see that the partial alignment implied by the 1-best hypothesis at the leftmost NP
node is constructed by composing the best hypothesis at the terminal node labeled “the” and the 2nd-
best hypothesis at the terminal node labeled “man”. (We ignore terminal nodes in this toy example.)
Hypotheses at the root node imply full alignment structures.

word alignments, from which we can efficiently
extract the k-best. We handle an arbitrary number
of features, compute them efficiently, and score
alignments using a linear model. We train the
parameters of the model using averaged percep-
tron (Collins, 2002) modified for structured out-
puts, but can easily fit into a max-margin or related
framework. Finally, we use relatively little train-
ing data to achieve accurate word alignments. Our
model can generate arbitrary alignments and learn
from arbitrary gold alignments.

2 Word Alignment as a Hypergraph

Algorithm input The input to our alignment al-
gorithm is a sentence-pair (en

1, f m
1 ) and a parse tree

over one of the input sentences. In this work,
we parse our English data, and for each sentence
E = en

1, let T be its syntactic parse. To gener-
ate parse trees, we use the Berkeley parser (Petrov
et al., 2006), and use Collins head rules (Collins,
2003) to head-out binarize each tree.

Overview We present a brief overview here and
delve deeper in Section 2.1. Word alignments are
built bottom-up on the parse tree. Each node v in
the tree holds partial alignments sorted by score.
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(a) Score the left corner align-
ment first. Assume it is the 1-
best. Numbers in the rest of the
boxes are hidden at this point.
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(b) Expand the frontier of align-
ments. We are now looking for
the 2nd best.
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u23 3.2 4.5 11.4

(c) Expand the frontier further.
After this step we have our top
k alignments.

Figure 3: Cube pruning with alignment hypotheses to select the top-k alignments at node v with children
〈u1, u2〉. In this example, k = 3. Each box represents the combination of two partial alignments to create
a larger one. The score in each box is the sum of the scores of the child alignments plus a combination
cost.

Each partial alignment comprises the columns of
the alignment matrix for the e-words spanned by
v, and each is scored by a linear combination of
feature functions. See Figure 2 for a small exam-
ple.

Initial partial alignments are enumerated and
scored at preterminal nodes, each spanning a sin-
gle column of the word alignment matrix. To
speed up search, we can prune at each node, keep-
ing a beam of size k. In the diagram depicted in
Figure 2, the beam is size k = 5.

From here, we traverse the tree nodes bottom-
up, combining partial alignments from child nodes
until we have constructed a single full alignment at
the root node of the tree. If we are interested in the
k-best, we continue to populate the root node until
we have k alignments.1

We use one set of feature functions for preter-
minal nodes, and another set for nonterminal
nodes. This is analogous to local and nonlo-
cal feature functions for parse-reranking used by
Huang (2008). Using nonlocal features at a non-
terminal node emits a combination cost for com-
posing a set of child partial alignments.

Because combination costs come into play, we
use cube pruning (Chiang, 2007) to approxi-
mate the k-best combinations at some nonterminal
node v. Inference is exact when only local features
are used.

Assumptions There are certain assumptions re-
lated to our search algorithm that we must make:

1We use approximate dynamic programming to store
alignments, keeping only scored lists of pointers to initial
single-column spans. Each item in the list is a derivation that
implies a partial alignment.

(1) that using the structure of 1-best English syn-
tactic parse trees is a reasonable way to frame and
drive our search, and (2) that F-measure approxi-
mately decomposes over hyperedges.

We perform an oracle experiment to validate
these assumptions. We find the oracle for a given
(T ,e, f ) triple by proceeding through our search al-
gorithm, forcing ourselves to always select correct
links with respect to the gold alignment when pos-
sible, breaking ties arbitrarily. The the F1 score of
our oracle alignment is 98.8%, given this “perfect”
model.

2.1 Hierarchical search

Initial alignments We can construct a word
alignment hierarchically, bottom-up, by making
use of the structure inherent in syntactic parse
trees. We can think of building a word alignment
as filling in an M×N matrix (Figure 1), and we be-
gin by visiting each preterminal node in the tree.
Each of these nodes spans a single e word. (Line
2 in Algorithm 1).

From here we can assign links from each e word
to zero or more f words (Lines 6–14). At this
level of the tree the span size is 1, and the par-
tial alignment we have made spans a single col-
umn of the matrix. We can make many such partial
alignments depending on the links selected. Lines
5 through 9 of Algorithm 1 enumerate either the
null alignment, single-link alignments, or two-link
alignments. Each partial alignment is scored and
stored in a sorted heap (Lines 9 and 13).

In practice enumerating all two-link alignments
can be prohibitive for long sentence pairs; we set
a practical limit and score only pairwise combina-
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Algorithm 1: Hypergraph Alignment
Input:

Source sentence en
1

Target sentence f m
1

Parse tree T over en
1

Set of feature functions h
Weight vector w
Beam size k

Output:
A k-best list of alignments over en

1 and f m
1

1 function A(en
1, f m

1 ,T )
2 for v ∈ T in bottom-up order do
3 αv ← ∅

4 if -PN(v) then
5 i← index-of(v)
6 for j = 0 to m do
7 links← (i, j)
8 score← w · h(links, v, en

1, f m
1 )

9 P(αv, 〈score, links〉, k )
10 for k = j + 1 to m do
11 links← (i, j), (i, k)
12 score← w · h(links, v, en

1, f m
1 )

13 P(αv, 〈score, links〉, k )
14 end
15 end
16 else
17 αv ← GS(children(v), k)
18 end
19 end
20 end
21 function GS(〈u1, u2〉, k)
22 return CP(〈αu1 , αu2〉, k,w,h)
23 end

tions of the top n = max
{
| f |
2 , 10

}
scoring single-

link alignments.
We limit the number of total partial alignments

αv kept at each node to k. If at any time we wish to
push onto the heap a new partial alignment when
the heap is full, we pop the current worst off the
heap and replace it with our new partial alignment
if its score is better than the current worst.

Building the hypergraph We now visit internal
nodes (Line 16) in the tree in bottom-up order. At
each nonterminal node v we wish to combine the
partial alignments of its children u1, . . . , uc. We
use cube pruning (Chiang, 2007; Huang and Chi-
ang, 2007) to select the k-best combinations of the
partial alignments of u1, . . . , uc (Line 19). Note
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Figure 4: Correct version of Figure 1 after hyper-
graph alignment. Subscripts on the nonterminal
labels denote the branch containing the head word
for that span.

that Algorithm 1 assumes a binary tree2, but is not
necessary. In the general case, cube pruning will
operate on a d-dimensional hypercube, where d is
the branching factor of node v.

We cannot enumerate and score every possibil-
ity; without the cube pruning approximation, we
will have kc possible combinations at each node,
exploding the search space exponentially. Figure 3
depicts how we select the top-k alignments at a
node v from its children 〈 u1, u2 〉.

3 Discriminative training

We incorporate all our new features into a linear
model and learn weights for each using the on-
line averaged perceptron algorithm (Collins, 2002)
with a few modifications for structured outputs in-
spired by Chiang et al. (2008). We define:

2We find empirically that using binarized trees reduces
search errors in cube pruning.
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Figure 5: A common problem with GIZA++

Model 4 alignments is a weak distortion model.
The second English “in” is aligned to the wrong
Arabic token. Circles show the gold alignment.

γ(y) = `(yi, y) + w · (h(yi) − h(y)) (1)

where `(yi,y) is a loss function describing how bad
it is to guess y when the correct answer is yi. In our
case, we define `(yi,y) as 1−F1(yi,y). We select the
oracle alignment according to:

y+ = arg min
y∈(x)

γ(y) (2)

where (x) is a set of hypothesis alignments
generated from input x. Instead of the traditional
oracle, which is calculated solely with respect to
the loss `(yi,y), we choose the oracle that jointly
minimizes the loss and the difference in model
score to the true alignment. Note that Equation 2
is equivalent to maximizing the sum of the F-
measure and model score of y:

y+ = arg max
y∈(x)

(F1(yi, y) + w · h(y)) (3)

Let ŷ be the 1-best alignment according to our
model:

ŷ = arg max
y∈(x)

w · h(y) (4)

Then, at each iteration our weight update is:

w← w + η(h(y+) − h(ŷ)) (5)

where η is a learning rate parameter.3 We find
that this more conservative update gives rise to a
much more stable search. After each iteration, we
expect y+ to get closer and closer to the true yi.

4 Features

Our simple, flexible linear model makes it easy to
throw in many features, mapping a given complex

3We set η to 0.05 in our experiments.

alignment structure into a single high-dimensional
feature vector. Our hierarchical search framework
allows us to compute these features when needed,
and affords us extra useful syntactic information.

We use two classes of features: local and non-
local. Huang (2008) defines a feature h to be lo-
cal if and only if it can be factored among the lo-
cal productions in a tree, and non-local otherwise.
Analogously for alignments, our class of local fea-
tures are those that can be factored among the local
partial alignments competing to comprise a larger
span of the matrix, and non-local otherwise. These
features score a set of links and the words con-
nected by them.

Feature development Our features are inspired
by analysis of patterns contained among our gold
alignment data and automatically generated parse
trees. We use both local lexical and nonlocal struc-
tural features as described below.

4.1 Local features
These features fire on single-column spans.

• From the output of GIZA++ Model 4, we
compute lexical probabilities p(e | f ) and
p( f | e), as well as a fertility table φ(e).
From the fertility table, we fire features φ0(e),
φ1(e), and φ2+(e) when a word e is aligned
to zero, one, or two or more words, respec-
tively. Lexical probability features p(e | f )
and p( f | e) fire when a word e is aligned to
a word f .

• Based on these features, we include a binary
lexical-zero feature that fires if both p(e | f )
and p( f | e) are equal to zero for a given word
pair (e, f ). Negative weights essentially pe-
nalize alignments with links never seen be-
fore in the Model 4 alignment, and positive
weights encourage such links. We employ a
separate instance of this feature for each En-
glish part-of-speech tag: p( f | e, t).

We learn a different feature weight for each.
Critically, this feature tells us how much to
trust alignments involving nouns, verbs, ad-
jectives, function words, punctuation, etc.
from the Model 4 alignments from which our
p(e | f ) and p( f | e) tables are built. Ta-
ble 1 shows a sample of learned weights. In-
tuitively, alignments involving English parts-
of-speech more likely to be content words
(e.g. NNPS, NNS, NN) are more trustworthy
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Figure 6: Features PP-NP-head, NP-DT-head, and VP-VP-head fire on these tree-alignment patterns. For
example, PP-NP-head fires exactly when the head of the PP is aligned to exactly the same f words as the
head of it’s sister NP.

Penalty
NNPS −1.11
NNS −1.03
NN −0.80
NNP −0.62
VB −0.54
VBG −0.52
JJ −0.50
JJS −0.46
VBN −0.45

... ...

POS −0.0093
EX −0.0056
RP −0.0037
WP$ −0.0011
TO 0.037

Reward

Table 1: A sampling of learned weights for the lex-
ical zero feature. Negative weights penalize links
never seen before in a baseline alignment used to
initialize lexical p(e | f ) and p( f | e) tables. Posi-
tive weights outright reward such links.

than those likely to be function words (e.g.
TO, RP, EX), where the use of such words is
often radically different across languages.

• We also include a measure of distortion.
This feature returns the distance to the diag-
onal of the matrix for any link in a partial
alignment. If there is more than one link, we
return the distance of the link farthest from
the diagonal.

• As a lexical backoff, we include a tag prob-
ability feature, p(t | f ) that fires for some

link (e, f ) if the part-of-speech tag of e is t.
The conditional probabilities in this table are
computed from our parse trees and the base-
line Model 4 alignments.

• In cases where the lexical probabilities are
too strong for the distortion feature to
overcome (see Figure 5), we develop the
multiple-distortion feature. Although local
features do not know the partial alignments at
other spans, they do have access to the entire
English sentence at every step because our in-
put is constant. If some e exists more than
once in en

1 we fire this feature on all links con-
taining word e, returning again the distance to
the diagonal for that link. We learn a strong
negative weight for this feature.

• We find that binary identity and
punctuation-mismatch features are im-
portant. The binary identity feature fires if
e = f , and proves useful for untranslated
numbers, symbols, names, and punctuation
in the data. Punctuation-mismatch fires on
any link that causes nonpunctuation to be
aligned to punctuation.

Additionally, we include fine-grained versions of
the lexical probability, fertility, and distortion fea-
tures. These fire for for each link (e, f ) and part-
of-speech tag. That is, we learn a separate weight
for each feature for each part-of-speech tag in our
data. Given the tag of e, this affords the model the
ability to pay more or less attention to the features
described above depending on the tag given to e.

Arabic-English specific features We describe
here language specific features we implement to
exploit shallow Arabic morphology.
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Figure 7: This figure depicts the tree/alignment
structure for which the feature PP-from-prep
fires. The English preposition “from” is aligned
to Arabic word 	áÓ. Any aligned words in the span

of the sister NP are aligned to words following 	áÓ.
English preposition structure commonly matches
that of Arabic in our gold data. This family of fea-
tures captures these observations.

• We observe the Arabic prefix ð, transliterated
w- and generally meaning and, to prepend to
most any word in the lexicon, so we define
features p¬w(e | f ) and p¬w( f | e). If f be-
gins with w-, we strip off the prefix and return
the values of p(e | f ) and p( f | e). Otherwise,
these features return 0.

• We also include analogous feature functions
for several functional and pronominal pre-
fixes and suffixes.4

4.2 Nonlocal features
These features comprise the combination cost
component of a partial alignment score and may
fire when concatenating two partial alignments
to create a larger span. Because these features
can look into any two arbitrary subtrees, they
are considered nonlocal features as defined by
Huang (2008).

• Features PP-NP-head, NP-DT-head, and
VP-VP-head (Figure 6) all exploit head-
words on the parse tree. We observe English
prepositions and determiners to often align to
the headword of their sister. Likewise, we ob-
serve the head of a VP to align to the head of
an immediate sister VP.

4Affixes used by our model are currently: �K. , �Ë, �Ë @, �ËAK. ,
ù
 �, Õº�, AÒº�, Ñê�, AÒê�. Others either we did not experiment

with, or seemed to provide no significant benefit, and are not
included.

In Figure 4, when the search arrives at the
left-most NPB node, the NP-DT-head fea-
ture will fire given this structure and links
over the span [the ... tests]. When
search arrives at the second NPB node, it
will fire given the structure and links over the
span [the ... missle], but will not fire at
the right-most NPB node.

• Local lexical preference features compete
with the headword features described above.
However, we also introduce nonlocal lexical-
ized features for the most common types of
English and foreign prepositions to also com-
pete with these general headword features.

PP features PP-of-prep, PP-from-prep, PP-
to-prep, PP-on-prep, and PP-in-prep fire at
any PP whose left child is a preposition and
right child is an NP. The head of the PP is one
of the enumerated English prepositions and is
aligned to any of the three most common for-
eign words to which it has also been observed
aligned in the gold alignments. The last con-
straint on this pattern is that all words un-
der the span of the sister NP, if aligned, must
align to words following the foreign preposi-
tion. Figure 7 illustrates this pattern.

• Finally, we have a tree-distance feature to
avoid making too many many-to-one (from
many English words to a single foreign word)
links. This is a simplified version of and sim-
ilar in spirit to the tree distance metric used
in (DeNero and Klein, 2007). For any pair of
links (ei, f ) and (e j, f ) in which the e words
differ but the f word is the same token in
each, return the tree height of first common
ancestor of ei and e j.

This feature captures the intuition that it is
much worse to align two English words at
different ends of the tree to the same foreign
word, than it is to align two English words
under the same NP to the same foreign word.

To see why a string distance feature that
counts only the flat horizontal distance from
ei to e j is not the best strategy, consider the
following. We wish to align a determiner
to the same f word as its sister head noun
under the same NP. Now suppose there are
several intermediate adjectives separating the
determiner and noun. A string distance met-
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ric, with no knowledge of the relationship be-
tween determiner and noun will levy a much
heavier penalty than its tree distance analog.

5 Related Work

Recent work has shown the potential for syntac-
tic information encoded in various ways to sup-
port inference of superior word alignments. Very
recent work in word alignment has also started to
report downstream effects on BLEU score.

Cherry and Lin (2006) introduce soft syntac-
tic ITG (Wu, 1997) constraints into a discrimi-
native model, and use an ITG parser to constrain
the search for a Viterbi alignment. Haghighi et
al. (2009) confirm and extend these results, show-
ing BLEU improvement for a hierarchical phrase-
based MT system on a small Chinese corpus.
As opposed to ITG, we use a linguistically mo-
tivated phrase-structure tree to drive our search
and inform our model. And, unlike ITG-style ap-
proaches, our model can generate arbitrary align-
ments and learn from arbitrary gold alignments.

DeNero and Klein (2007) refine the distor-
tion model of an HMM aligner to reflect tree
distance instead of string distance. Fossum et
al. (2008) start with the output from GIZA++

Model-4 union, and focus on increasing precision
by deleting links based on a linear discriminative
model exposed to syntactic and lexical informa-
tion.

Fraser and Marcu (2007) take a semi-supervised
approach to word alignment, using a small amount
of gold data to further tune parameters of a
headword-aware generative model. They show
a significant improvement over a Model-4 union
baseline on a very large corpus.

6 Experiments

We evaluate our model and and resulting align-
ments on Arabic-English data against those in-
duced by IBM Model-4 using GIZA++ (Och and
Ney, 2003) with both the union and grow-diag-
final heuristics. We use 1,000 sentence pairs and
gold alignments from LDC2006E86 to train model
parameters: 800 sentences for training, 100 for
testing, and 100 as a second held-out development
set to decide when to stop perceptron training. We
also align the test data using GIZA++5 along with
50 million words of English.

5We use a standard training procedure: 5 iterations of
Model-1, 5 iterations of HMM, 3 iterations of Model-3, and 3
iterations of Model-4.
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Figure 8: Learning curves for 10 random restarts
over time for parallel averaged perceptron train-
ing. These plots show the current F-measure on
the training set as time passes. Perceptron training
here is quite stable, converging to the same general
neighborhood each time.
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Figure 9: Model robustness to the initial align-
ments from which the p(e | f ) and p( f | e) features
are derived. The dotted line indicates the baseline
accuracy of GIZA++ Model 4 alone.

6.1 Alignment Quality

We empirically choose our beam size k from the
results of a series of experiments, setting k=1, 2,
4, 8, 16, 32, and 64. We find setting k = 16 to yield
the highest accuracy on our held-out test data. Us-
ing wider beams results in higher F-measure on
training data, but those gains do not translate into
higher accuracy on held-out data.

The first three columns of Table 2 show the
balanced F-measure, Precision, and Recall of our
alignments versus the two GIZA++ Model-4 base-
lines. We report an F-measure 8.6 points over
Model-4 union, and 6.3 points over Model-4 grow-
diag-final.
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F P R Arabic/English # Unknown
BLEU Words

M4 (union) .665 .636 .696 45.1 2,538
M4 (grow-diag-final) .688 .702 .674 46.4 2,262
Hypergraph alignment .751 .780 .724 47.5 1,610

Table 2: F-measure, Precision, Recall, the resulting BLEU score, and number of unknown words on a
held-out test corpus for three types of alignments. BLEU scores are case-insensitive IBM BLEU. We
show a 1.1 BLEU increase over the strongest baseline, Model-4 grow-diag-final. This is statistically
significant at the p < 0.01 level.

Figure 8 shows the stability of the search proce-
dure over ten random restarts of parallel averaged
perceptron training with 40 CPUs. Training ex-
amples are randomized at each epoch, leading to
slight variations in learning curves over time but
all converge into the same general neighborhood.

Figure 9 shows the robustness of the model to
initial alignments used to derive lexical features
p(e | f ) and p( f | e). In addition to IBM Model 4,
we experiment with alignments from Model 1 and
the HMM model. In each case, we significantly
outperform the baseline GIZA++ Model 4 align-
ments on a heldout test set.

6.2 MT Experiments

We align a corpus of 50 million words with
GIZA++ Model-4, and extract translation rules
from a 5.4 million word core subset. We align
the same core subset with our trained hypergraph
alignment model, and extract a second set of trans-
lation rules. For each set of translation rules, we
train a machine translation system and decode a
held-out test corpus for which we report results be-
low.

We use a syntax-based translation system for
these experiments. This system transforms Arabic
strings into target English syntax trees Translation
rules are extracted from (e-tree, f -string, align-
ment) triples as in (Galley et al., 2004; Galley et
al., 2006).

We use a randomized language model (similar
to that of Talbot and Brants (2008)) of 472 mil-
lion English words. We tune the the parameters
of the MT system on a held-out development cor-
pus of 1,172 parallel sentences, and test on a held-
out parallel corpus of 746 parallel sentences. Both
corpora are drawn from the NIST 2004 and 2006
evaluation data, with no overlap at the document
or segment level with our training data.

Columns 4 and 5 in Table 2 show the results
of our MT experiments. Our hypergraph align-
ment algorithm allows us a 1.1 BLEU increase over
the best baseline system, Model-4 grow-diag-final.
This is statistically significant at the p < 0.01
level. We also report a 2.4 BLEU increase over
a system trained with alignments from Model-4
union.

7 Conclusion

We have opened up the word alignment task to
advances in hypergraph algorithms currently used
in parsing and machine translation decoding. We
treat word alignment as a parsing problem, and
by taking advantage of English syntax and the hy-
pergraph structure of our search algorithm, we re-
port significant increases in both F-measure and
BLEU score over standard baselines in use by most
state-of-the-art MT systems today.
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