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Abstract

We tackle the previously unaddressed
problem of unsupervised determination of
the optimal morphological segmentation
for statistical machine translation (SMT)
and propose a segmentation metric that
takes into account both sides of the SMT
training corpus. We formulate the objec-
tive function as the posterior probability of
the training corpus according to a genera-
tive segmentation-translation model. We
describe how the IBM Model-1 transla-
tion likelihood can be computed incremen-
tally between adjacent segmentation states
for efficient computation. Submerging the
proposed segmentation method in a SMT
task from morphologically-rich Turkish to
English does not exhibit the expected im-
provement in translation BLEU scores and
confirms the robustness of phrase-based
SMT to translation unit combinatorics.
A positive outcome of this work is the
described modification to the sequential
search algorithm of Morfessor (Creutz and
Lagus, 2007) that enables arbitrary-fold
parallelization of the computation, which
unexpectedly improves the translation per-
formance as measured by BLEU.

1 Introduction

In statistical machine translation (SMT), words
are normally considered as the building blocks of
translation models. However, especially for mor-
phologically complex languages such as Finnish,
Turkish, Czech, Arabic etc., it has been shown
that using sub-lexical units obtained after morpho-
logical preprocessing can improve the machine
translation performance over a word-based sys-
tem (Habash and Sadat, 2006; Oflazer and Durgar
El-Kahlout, 2007; Bisazza and Federico, 2009).
However, the effect of segmentation on transla-

tion performance is indirect and difficult to isolate
(Lopez and Resnik, 2006).

The challenge in designing a sub-lexical SMT
system is the decision of what segmentation to use.
Linguistic morphological analysis is intuitive, but
it is language-dependent and could be highly am-
biguous. Furthermore, it is not necessarily opti-
mal in that (i) manually engineered segmentation
schemes can outperform a straightforward linguis-
tic morphological segmentation, e.g., (Habash and
Sadat, 2006), and (ii) it may result in even worse
performance than a word-based system, e.g., (Dur-
gar El-Kahlout and Oflazer, 2006).

A SMT system designer has to decide what
segmentation is optimal for the translation task
at hand. Existing solutions to this problem are
predominantly heuristic, language-dependent, and
as such are not easily portable to other lan-
guages. Another point to consider is that the op-
timal degree of segmentation might decrease as
the amount of training data increases (Lee, 2004;
Habash and Sadat, 2006). This brings into ques-
tion: For the particular language pair and training
corpus at hand, what is the optimal (level of) sub-
word segmentation? Therefore, it is desirable to
learn the optimal segmentation in an unsupervised
manner.

In this work, we extend the method of Creutz
and Lagus (2007) so as to maximize the transla-
tion posterior in unsupervised segmentation. The
learning process is tailored to the particular SMT
task via the same parallel corpus that is used in
training the statistical translation models.

2 Related Work

Most works in SMT-oriented segmentation are su-
pervised in that they consist of manual experimen-
tation to choose the best among a set of segmen-
tation schemes, and are language(pair)-dependent.
For Arabic, Sadat and Habash (2006) present sev-
eral morphological preprocessing schemes that en-
tail varying degrees of decomposition and com-
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pare the resulting translation performances in an
Arabic-to-English task. Shen et al. (2007) use a
subset of the morphology and apply only a few
simple rules in segmenting words. Durgar El-
Kahlout and Oflazer (2006) tackle this problem
when translating from English to Turkish, an ag-
glutinative language. They use a morphologi-
cal analyzer and disambiguation to arrive at mor-
phemes as tokens. However, training the trans-
lation models with morphemes actually degrades
the translation performance. They outperform
the word-based baseline only after some selec-
tive morpheme grouping. Bisazza and Federico
(2009) adopt an approach similar to the Arabic
segmentation studies above, this time in a Turkish-
to-English translation setting.

Unsupervised segmentation by itself has gar-
nered considerable attention in the computational
linguistics literature (Poon et al., 2009; Snyder and
Barzilay, 2008; Dasgupta and Ng, 2007; Creutz
and Lagus, 2007; Brent, 1999). However, few
works report their performance in a translation
task. Virpioja et al. (2007) used Morfessor (Creutz
and Lagus, 2007) to segment both sides of the par-
allel training corpora in translation between Dan-
ish, Finnish, and Swedish, but without a consistent
improvement in results.

Morfessor, which gives state of the art results in
many tests (Kurimo et al., 2009), uses only mono-
lingual information in its objective function. It is
conceivable that we can achieve a better segmenta-
tion for translation by considering not one but both
sides of the parallel corpus. A posssible choice is
the post-segmentation alignment accuracy. How-
ever, Elming et al. (2009) show that optimizing
segmentation with respect to alignment error rate
(AER) does not improve and even degrades ma-
chine translation performance. Snyder and Barzi-
lay (2008) use bilingual information but the seg-
mentation is learned independently from transla-
tion modeling.

In Chang et al. (2008), the granularity of the
Chinese word segmentation is optimized by train-
ing SMT systems for several values of a granular-
ity bias parameter and it is found that the value that
maximizes translation performance (as measured
by BLEU) is different than the value that maxi-
mizes segmentation accuracy (as measured by pre-
cision and recall).

One motivation in morphological preprocess-
ing before translation modeling is “morphology

matching” as in Lee (2004) and in the scheme
“EN” of Habash and Sadat (2006). In Lee (2004),
the goal is to match the lexical granularities of the
two languages by starting with a fine-grained seg-
mentation of the Arabic side of the corpus and
then merging or deleting Arabic morphemes us-
ing alignments with a part-of-speech tagged En-
glish corpus. But this method is not completely
unsupervised since it requires external linguistic
resources in initializing the segmentation with the
output of a morphological analyzer and disam-
biguator. Talbot and Osborne (2006) tackle a spe-
cial case of morphology matching by identifying
redundant distinctions in the morphology of one
language compared to another.

3 Method

Maximizing translation performance directly
would require SMT training and decoding for
each segmentation hypothesis considered, which
is computationally infeasible. So we make some
conditional independence assumptions using a
generative model and decompose the posterior
probability P (Mf |e, f). In this notation e and f
denote the two sides of a parallel corpus and Mf

denotes the segmentation model hypothesized for
f . Our approach is an extension of Morfessor
(Creutz and Lagus, 2007) so as to include the
translation model probability in its cost calcula-
tion. Specifically, the segmentation model takes
into account the likelihood of both sides of the
parallel corpus while searching for the optimal
segmentation. The joint likelihood is decomposed
into a prior, a monolingual likelihood, and a
translation likelihood, as shown in Eq. 1.

P (e, f,Mf ) = P (Mf )P (f |Mf )P (e|f, Mf )
(1)

Assuming conditional independence between
e and Mf given f , the maximum a posteriori
(MAP) objective can be written as:

M̂f = arg max
Mf

P (Mf )P (f |Mf )P (e|f) (2)

The role of the bilingual component P (e|f)
in Eq. 2 can be motivated with a simple exam-
ple as follows. Consider an occurrence of two
phrase pairs in a Turkish-English parallel corpus
and the two hypothesized sets of segmentations
for the Turkish phrases as in Table 1. Without ac-
cess to the English side of the corpus, a monolin-
gual segmenter can quite possibly score Seg. #1
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Phrase #1 Phrase #2
Turkish phrase: anahtar anahtarım
English phrase: key my key

Seg. #1: anahtar anahtarı +m
Seg. #2: anahtar anahtar +ım

Table 1: Example segmentation hypotheses

higher than Seg. #2 (e.g., due to the high fre-
quency of the observed morph “+m”). On the
other hand, a bilingual segmenter is expected to
assign a higher alignment probability P (e|f) to
Seg. #2 than Seg. #1, because of the aligned words
key||anahtar, therefore ranking Seg. #2 higher.

The two monolingual components of Eq. 2 are
computed as in Creutz and Lagus (2007). To sum-
marize briefly, the prior P (Mf ) is assumed to only
depend on the frequencies and lengths of the indi-
vidual morphs, which are also assumed to be in-
dependent. The monolingual likelihood P (f |Mf )
is computed as the product of morph probabilities
estimated from their frequencies in the corpus.

To compute the bilingual (translation) likeli-
hood P (e|f), we use IBM Model 1 (Brown et
al., 1993). Let an aligned sentence pair be rep-
resented by (se, sf ), which consists of word se-
quences se = e1, ..., el and sf = f1, ..., fm. Us-
ing a purely notational switch of the corpus labels
from here on to be consistent with the SMT lit-
erature, where the derivations are in the form of
P (f |e), the desired translation probability is given
by the expression:

P (f |e) =
P (m|e)
(l + 1)m

m∏
j=1

l∑
i=0

t(fj |ei), (3)

The sentence length probability distribution
P (m|e) is assumed to be Poisson with the ex-
pected sentence length equal to m.

3.1 Incremental computation of Model-1
likelihood

During search, the translation likelihood P (e|f)
needs to be calculated according to Eq. 3 for every
hypothesized segmentation.

To compute Eq. 3, we need to have at hand the
individual morph translation probabilities t(fj |ei).
These can be estimated using the EM algorithm
given by (Brown, 1993), which is guaranteed to
converge to a global maximum of the likelihood
for Model 1. However, running the EM algorithm
to optimization for each considered segmentation

model can be computationally expensive, and can
result in overtraining. Therefore, in this work we
used the likelihood computed after the first EM
iteration, which also has the nice property that
P (f |e) can be computed incrementally from one
segmentation hypothesis to the next.

The incremental updates are derived from the
equations for the count collection and probability
estimation steps of the EM algorithm as follows.
In the count collection step, in the first iteration,
we need to compute the fractional counts c(fj |ei)
(Brown et al., 1993):

c(fj |ei) =
1

l + 1
(#fj)(#ei), (4)

where (#fj) and (#ei) denote the number of occur-
rences of fj in sf and ei in se, respectively.

Let fk denote the word hypothesized to be seg-
mented. Let the resulting two sub-words be fp and
fq, any of which may or may not previously exist
in the vocabulary. Then, according to Eq. (4), as a
result of the segmentation no update is needed for
c(fj |ei) for j = 1 . . . N , j 6= p, q, i = 1 . . . M
(note that fk no longer exists); and the necessary
updates ∆c(fj |ei) for c(fj |ei), where j = p, q;
i = 1 . . . M are given by:

∆c(fj |ei) =
1

l + 1
(#fk)(#ei). (5)

Note that Eq. (5) is nothing but the previous
count value for the segmented word, c(fk|ei). So,
all needed in the count collection step is to copy
the set of values c(fk|ei) to c(fp|ei) and c(fq|ei),
adding if they already exist.

Then in the probability estimation step, the nor-
malization is performed including the newly added
fractional counts.

3.2 Parallelization of search
In an iteration of the algorithm, all words are pro-
cessed in random order, computing for each word
the posterior probability of the generative model
after each possible binary segmentation (splitting)
of the word. If the highest-scoring split increases
the posterior probability compared to not splitting,
that split is accepted (for all occurrences of the
word) and the resulting sub-words are explored re-
cursively for further segmentations. The process is
repeated until an iteration no more results in a sig-
nificant increase in the posterior probability.

The search algorithm of Morfessor is a greedy
algorithm where the costs of the next search points
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Figure 1: BLEU scores obtained with different
segmentation methods. Multiple data points for
a system correspond to different random orders in
processing the data (Creutz and Lagus, 2007).

are affected by the decision in the current step.
This leads to a sequential search and does not lend
itself to parallelization.

We propose a slightly modified search proce-
dure, where the segmentation decisions are stored
but not applied until the end of an iteration. In
this way, the cost calculations (which is the most
time-consuming component) can all be performed
independently and in parallel. Since the model is
not updated at every decision, the search path can
differ from that in the sequential greedy search and
hence result in different segmentations.

4 Results

We performed in vivo testing of the segmenta-
tion algorithm on the Turkish side of a Turkish-
to-English task. We compared the segmenta-
tions produced by Morfessor, Morfessor modi-
fied for parallel search (Morfessor-p), and Mor-
fessor with bilingual cost (Morfessor-bi) against
the word-based performance. We used the ATR
Basic Travel Expression Corpus (BTEC) (Kikui
et al., 2006), which contains travel conversa-
tion sentences similar to those in phrase-books
for tourists traveling abroad. The training cor-
pus contained 19,972 sentences with average sen-
tence length 5.6 and 7.7 words for Turkish and
English, respectively. The test corpus consisted
of 1,512 sentences with 16 reference translations.
We used GIZA++ (Och and Ney, 2003) for post-
segmentation token alignments and the Moses
toolkit (Koehn et al., 2007) with default param-
eters for phrase-based translation model genera-
tion and decoding. Target language models were
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Figure 2: Cost-BLEU plots of Morfessor and
Morfessor-bi. Correlation coefficients are -0.005
and -0.279, respectively.

trained on the English side of the training cor-
pus using the SRILM toolkit (Stolcke, 2002). The
BLEU metric (Papineni et al., 2002) was used for
translation evaluation.

Figure 1 compares the translation performance
obtained using the described segmentation meth-
ods. All segmentation methods generally im-
prove the translation performance (Morfessor and
Morfessor-p) compared to the word-based models.
However, Morfessor-bi, which utilizes both sides
of the parallel corpus in segmenting, does not con-
vincingly outperform the monolingual methods.

In order to investigate whether the proposed
bilingual segmentation cost correlates any better
than the monolingual segmentation cost of Mor-
fessor, we show several cost-BLEU pairs obtained
from the final and intermediate segmentations of
Morfessor and Morfessor-bi in Fig. 2. The cor-
relation coefficients show that the proposed bilin-
gual metric is somewhat predictive of the trans-
lation performance as measured by BLEU, while
the monolingual Morfessor cost metric has almost
no correlation. Yet, the strong noise in the BLEU
scores (vertical variation in Fig. 2) diminishes the
effect of this correlation, which explains the incon-
sistency of the results in Fig. 1. Indeed, in our ex-
periments even though the total cost kept decreas-
ing at each iteration of the search algorithm, the
BLEU scores obtained by those intermediate seg-
mentations fluctuated without any consistent im-
provement.

Table 2 displays sample segmentations pro-
duced by both the monolingual and bilingual seg-
mentation algorithms. We can observe that uti-
lizing the English side of the corpus enabled
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Count Morfessor Morfessor-bi English Gloss
7 anahtar anahtar (the) key
6 anahtar + ımı anahtar + ımı my key (ACC.)
5 anahtarla anahtar + la with (the) key
4 anahtarı anahtar + ı 1(the) key (ACC.); 2his/her key
3 anahtarı + m anahtar + ım my key
3 anahtarı + n anahtar + ın 1your key; 2of (the) key
1 anahtarı + nız anahtar + ınız your (pl.) key
1 anahtarı + nı anahtar + ını 1your key (ACC.); 2his/her key (ACC.)
1 anahtar + ınızı anahtar + ınızı your (pl.) key (ACC.)
1 oyun + lar oyunlar (the) games
2 oyun + ları oyunlar + ı 1(the) games (ACC.); 2his/her games; 3their game(s)
1 oyun + ların oyunlar + ı + n 1of (the) games; 2your games
1 oyun + larınızı oyunlar + ı + n + ızı your (pl.) games (ACC.)

Table 2: Sample segmentations produced by Morfessor and Morfessor-bi

Morfessor-bi: (i) to consistently identify the root
word “anahtar” (top portion), and (ii) to match the
English plural word form “games” with the Turk-
ish plural word form “oyunlar” (bottom portion).
Monolingual Morfessor is unaware of the target
segmentation, and hence it is up to the subsequent
translation model training to learn that “oyun” is
sometimes translated as “game” and sometimes as
“games” in the segmented training corpus.

5 Conclusion

We have presented a method for determining opti-
mal sub-word translation units automatically from
a parallel corpus. We have also showed a method
of incrementally computing the first iteration pa-
rameters of IBM Model-1 between segmentation
hypotheses. Being language-independent, the pro-
posed algorithm can be added as a one-time pre-
processing step prior to training in a SMT system
without requiring any additional data/linguistic re-
sources. The initial experiments presented here
show that the translation units learned by the
proposed algorithm improves on the word-based
baseline in both translation directions.

One avenue for future work is to relax some of
the several independence assumptions made in the
generative model. For example, independence of
consecutive morphs could be relaxed by an HMM
model for transitions between morphs (Creutz and
Lagus, 2007). Other future work includes optimiz-
ing the segmentation of both sides of the corpus
and experimenting with other language pairs.

It is also possible that the probability distribu-
tions are not discriminative enough to outweigh

the model prior tendencies since the translation
probabilities are estimated only crudely (single it-
eration of Model-1 EM algorithm). A possible
candidate solution would be to weigh the transla-
tion likelihood more in calculating the overall cost.
In fact, this idea could be generalized into a log-
linear modeling (e.g., (Poon et al., 2009)) of the
various components of the joint corpus likelihood
and possibly other features.

Finally, integration of sub-word segmentation
with the phrasal lexicon learning process in SMT
is desireable (e.g., translation-driven segmenta-
tion in Wu (1997)). Hierarchical models (Chiang,
2007) could cover this gap and provide a means to
seamlessly integrate sub-word segmentation with
statistical machine translation.
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