A New Method for the Study of Correlations between MT Evaluation Metrics

Paula Estrella Andrei Popescu-Belis Margaret King School of Translation and Interpreting University of Geneva

Introduction

- Correlation with human metrics is a desirable property of automatic metrics
 - Typically adequacy and fluency
- Results are difficult to compare across studies
 - Diversity of results
 - "BLEU correlates 95% with humans" (Papineni et al. 2002)
 vs. "BLEU does not correlate well" (Koehn et al. 2006)
- What factors affect correlation coefficients?
 - Compare two situations: texts from different domains and MT qualities (high vs. low quality)

- Proposal for computing correlation
- Resources
- General domain
- Specific domain
- High/low translation quality

- Proposal for computing correlation
- Resources
- General domain
- Specific domain
- High/low translation quality

Computing correlation of metrics

- Usually calculated cross-system
 - Final scores of every evaluated system are correlated with fluency or with adequacy scores
 - Small number of sample points
 - Global result for an evaluation
- Our approach: compute a form of correlation for *each system*
 - Use bootstrapping to generate a large number of sample points
 - Artificially generate several samples for each system
 - Hypothesis
 - Correlation should be visible independently of the system, test set, etc
- Why did we choose this approach?
 - Useful if few systems are tested, unlike other forms of correlation
 - Results can be obtained separately for each system

Bootstrapping algorithm

- Statistical method to infer estimators of a variable
 - in MT used for statistical significance tests (Koehn 2004); in ASR to estimate c.i. (Bisani & Ney 2004)
- Advantages
 - Applicable to one (or more) system(s)
 - Individual results for each system
- Disadvantage
 - direct comparison with standard correlation not possible

Bootstrapping algorithm (II)

- Given a corpus (set of texts) with N segments
 - 1. Generate a new corpus with *N* segments randomly selected
 - Segments can appear 0 or more times
 - 2. Apply metrics on the new (= artificial, bootstrapped) corpus
 - 3. Repeat 1,500 times
 - 4. Calculate correlation over 1,500 scores
 - For consistency of Pearson's R coefficients
 - Metrics applied at system level
 - Random numbers fixed for all metrics
- Output: correlation matrixes per system, for any pair of evaluation metrics

Proposal for computing correlation

- Resources
- General domain
- Specific domain
- High/low translation quality

Resources used

- Corpus from the CESTA MTeval campaign
 5 systems translating EN → FR
- 1st run: general domain texts from the Official Journal of the European Communities
 - 790 segments, ~25 words/segment on average
- 2nd run: systems could adapt to the health domain
 - 288 segments, ~22 words/segment on average

Evaluation metrics

- Human evaluation metrics
 - Fluency and adequacy, average of 2 evaluators
 - 5-point scale, normalized to [0; 1] interval
 - Agreement on 1st run
 - for identical values: fluency 40% | adequacy 37%
 - for 0-1 point difference: fluency 84% | adequacy 78%
 - Agreement on 2nd run
 - for identical values: fluency 41% | adequacy 47%
 - for 0-1 point difference: fluency 84% | adequacy 78%
- Automatic evaluation metrics
 - BLEU, NIST, mWER, mPER, GTM
 - Acceptable cross-system correlations reported by CESTA
 - BLEU/NIST vs. adequacy ≈ 0.63
 - BLEU/NIST vs. fluency ≈ 0.69

- Proposal for computing correlation
- Resources
- General domain
- Specific domain
- High/low translation quality

Texts from general domain

- Correlation calculated on texts from the CESTA "general domain"
- General results
 - Relatively high *R* correlation for metrics of the same family
 - WER *vs.* PER > 0.8, BLEU *vs.* NIST > 0.7, PREC *vs.* REC > 0.76
 - No particular trend between different automatic metrics
 - WER/PER vs. BLEU/NIST decrease as system ranking decreases
 - Correlations with human metrics
 - 0.2–0.35 for systems ranked highest or lowest
 - 0.3–0.5 for systems ranked in the middle
 - 0.67–0.71 for adequacy *vs.* fluency
 - NIST has overall lowest correlation scores
- NB: CESTA reports only on adequacy/fluency correlation
 → values are not directly comparable

- Proposal for computing correlation
- Resources
- General domain
- Specific domain
- High/low translation quality

Texts from specific domain (health)

- Previously found some low values
 - Specially with human metrics
 - Depends on the system
- Performed experiment on a corpus from a specific domain
 - CESTA corpus for health domain 288 segments
 - Hypothesis: correlations should improve since systems were specially adapted
- Comparison to previous results
 - NB: slight change in evaluation protocol for humans
 - Majority of systems participating in both campaigns

Results (1/2)

- Values do not change a lot for specific domain
 - Decreased for correlations of adequacy vs. fluency
 - E.g. adequacy vs. fluency 0.26–0.4 (was 0.6–0.7)
 - Influenced by the change of human evaluation protocol?
- Similar values between automatic metrics
- Special case of system increasing correlations
 - All metrics with adequacy 0.5 0.7 but between 0.2 – 0.35 with fluency
 - Only system with better R with adequacy than fluency

Results (2/2)

- Proposal for computing correlation
- Resources
- General domain
- Specific domain
- High/low translation quality

High vs. low quality translations

- Explore correlation over "good" or "bad" translations
 - Translation quality measured by adequacy/fluency scores
 - Hypothesis: high quality translations should be easier to evaluate → better correlation?
- Empirical threshold for low, respectively high scores
 - Adequacy and fluency > 0.85 and respectively < 0.15
- Analysis performed on output of 2 systems, S2 & S5
 - Extracted 130 low quality segments and 180 high quality segments

Results (1/2)

- S5 outperforms S2 for all metrics on low quality segments
- S2 much better on high quality segments for all metrics applied
- Correlation between adequacy and fluency increases for high quality segments
- Independently of translation quality
 - S2 scores correlate better with fluency
 - S5 with adequacy
 - NIST shows lowest coefficients
 - Correlation still very low despite high inter-judge agreement

Results (2/2)

	High			Low	
	S2	S5		S2	S5
GTM vs. Ade	0.24	0.11		0.24	0.32
GTM vs. Flu	0.41	0.27		0.02	0.13
WER vs. Ade	-0.36	-0.17		-0.1	-0.16
WER vs. Flu	-0.43	-0.25		-0.14	-0.32
BLEU vs. Ade	0.28	0.14		0.18	0.25
BLEU vs. Flu	0.40	0.29		0.06	0.17

 Correlation values for high/low quality segments for S2 and S5

- Proposal for computing correlation
- Resources
- General domain
- Specific domain
- High/low translation quality

- Low correlation of human *vs.* automatic metrics
 - Despite high inter-judge agreement
- Stronger correlations remain so regardless of the amount of text used
 - High correlation between automatic metrics of the same family
 - Some acceptable cross-correlations: WER/BLEU, NIST/Prec
- Low quality translations might be more difficult to evaluate
 - They lead to a larger variation of scores
- Coefficients vary depending on system
 - Maybe related to translation algorithms used by systems
 - Could be misleading to present cross-system correlations

Future work

- This work raised even more questions
 - How do we interpret correlations?
 - To what extent should automatic and human metrics correlate?
- We need to further investigate correlation
 - Check our procedure and results
 - Ideally try other setups for human evaluation \rightarrow costly
- Try metrics that are not n-gram/distance based
 - e.g. METEOR

Thanks for you attention!

Any questions?

P. Estrella, A. Popescu-Belis, M. King - ISSCO/TIM/ETI - University of Geneva

23/23