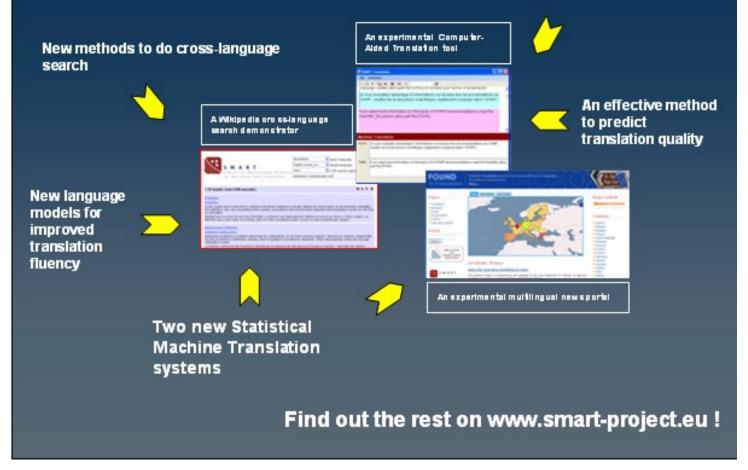


SMART Final Review Meeting Introduction and Overview

Nicola Cancedda November 2009

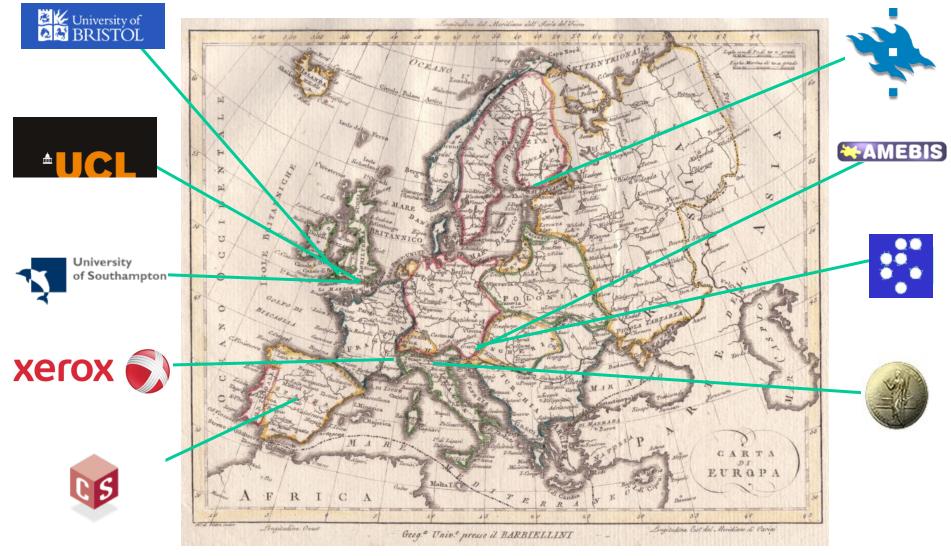
SMART Final Review Meeting, Luxembourg, November 27, 2009

- Information Society Technologies Programme
- Sixth Framework Programme, "Specific Target Research Project" (STReP)
- Start date: October 1, 2006
- Duration: 3 years
- Budget: 3,526,379 €, of which 2,337,885 € of EC contribution
- ~40 Researchers involved overall


SIXTH FRAMEWORK PROGRAMME

Result Summary

SMART results...


A new translation system that learns in real time with each human correction

SMART Final Review Meeting, Luxembourg, November 27, 2009


The SMART Consortium

SMART Final Review Meeting, Luxembourg, November 27, 2009

The SMART Consortium

SMART Final Review Meeting, Luxembourg, November 27, 2009

Motivation

- Expanding global demand for tools for automatic translation and cross-language retrieval, clustering and categorization
- Statistical approaches largely successful, but still suffering from shortcomings, preventing their diffusion, e.g.:
 - Relatively low fluency/grammaticality of output
 - Model training still a somewhat arcane craft
 - Difficult to use in new domains
 - Trained once for all, no learning from constant user feedback
- Much incremental research, little risky disruptive research
- Some recent (in 2005) advances in Machine Learning very relevant for these tasks

SMART is an attempt to bring Machine Learning closer to Machine Translation and Cross-Language Textual Information Access

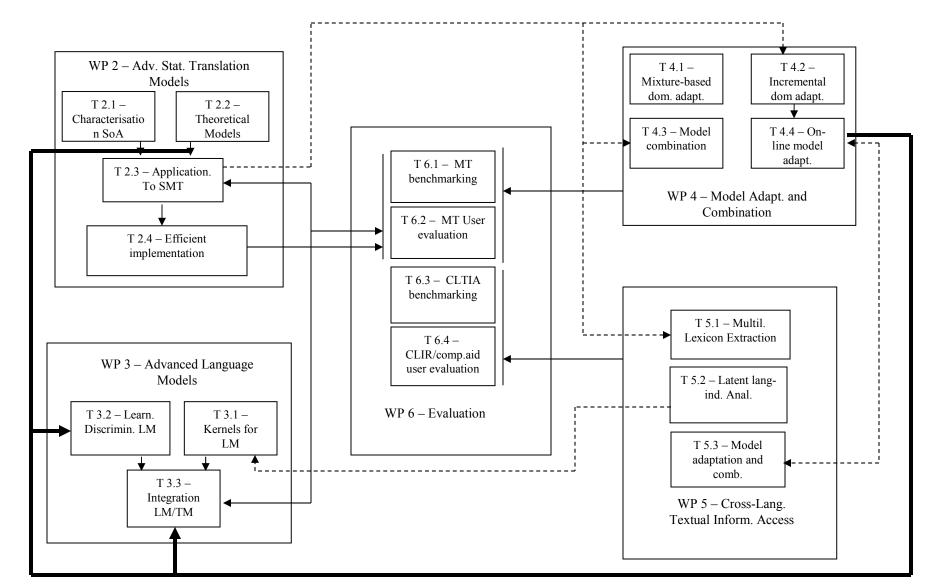
SMART Final Review Meeting, Luxembourg, November 27, 2009

Scientific and Technological Objectives

- Problem: Mainstream two-layer approach to SMT results in tangled and opaque training:
 - Proposal: Identify alternative formalizations for SMT amenable to exact solutions or approximations with performance guarantees
- Problem: SMT trained batch and keeps repeating the same mistakes
 - Proposal: Design algorithms for on-line translation model training

Scientific and Technological Objectives

- Problem: SMT/CLTIA requires large amount of on-topic training data
 - Proposal: Design models to combine large off-topic with small on-topic datasets
- Problem: Typical language models used in SMT are not trained directly to improve translations and are unable to capture morphological information
 - Proposal: Discriminatively-trained language models benefiting from linguistic knowledge



Scientific and Technological Objectives

- Problem: Latent Semantic methods for CLTIA do not scale up to benefit from large datasets, or from three or more aligned languages
 - Proposal: Investigate scalable approximations and multi-view variants; investigate synergies with phrase-based SMT
- Problem: Most CLTIA is limited to word-by-word translation and does not take context into account
 - Proposal: investigate multi-word units for indexing and translation refinement based on context
- Problem: surface-form methods and latent-semantic methods are used alternatively
 - Proposal: investigate what form of combination could do better than each one in isolation

Workpackages

SMART Final Review Meeting, Luxembourg, November 27, 2009

Needs & Skills

	Xerox	Amebis	Celer	JSI	NRC	UoB	UH	UniMi	USOU	UCL
Statistical Machine Translation										
Statistical Learning: Margin-based Methods										
Statistical Learning: Kernels for structured data										
Statistical Learning: On-line algorithms										
Computer-Aided Translation tools										
Call centre operations										
Cross-Language Information Retrieval										
Cross-Language Categorization and Clustering										
Multilingual Lexicon Extraction										
Creation and distribution of parallel corpora										

SMART Final Review Meeting, Luxembourg, November 27, 2009

Expected Results

ER 2.1	At least one incremental improvement leading to a global increment of X% in NIST score over the baseline under some training set size conditions. Baseline: NRC PORTAGE system as of March 2006 $X < 5$: unsatisfactory; $5 \le X < 10$: satisfactory; $X \ge 10$: very satisfactory.
ER 2.2	At least one totally innovative method coming within X% NIST score from baseline under some training set size conditions. Baseline: NRC PORTAGE system as of March 2006 X > 20: unsatisfactory; 5 < X ≤ 20: satisfactory; X ≤ 5: very satisfactory
ER 3	At least one Language Modeling method leading to a statistically significant improvement in the fluency of translations at an X% confidence level over baseline in a sentence-wise paired-t test. Baseline: 3gram model with Kneser- Ney smoothing (as implemented in the SRI LM toolkit). X < 95: unsatisfactory; 95 ≤ X < 99: satisfactory; X ≥ 99: very satisfactory

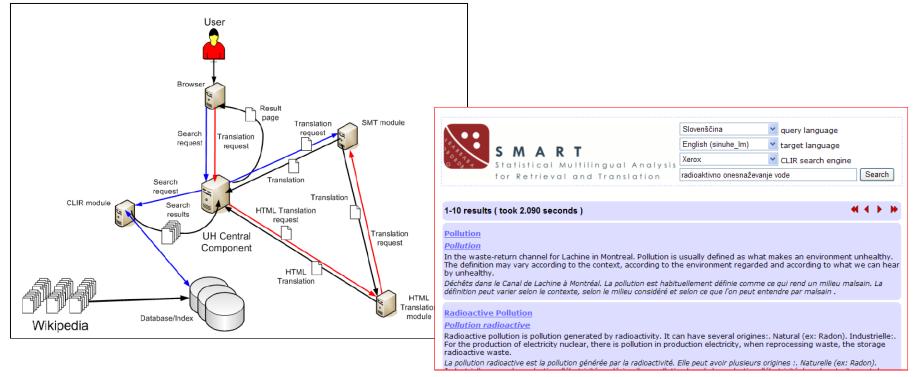
Expected Results

ER 4.1	 Method for adaptation when all (off-topic and on-topic) training data is available improving of at least X% NIST score over baseline under some training set size conditions. Baseline: PORTAGE system as of March 2006, trained on the union of off-topic and ontopic data. X < 5: unsatisfactory; 5 ≤ X < 10: satisfactory; X ≥ 10: very satisfactory.
ER 4.2	Method for model adaptation when a seed model trained on off-topic data and an on-topic training dataset are available improving of at least X% in NIST score over baseline under some training set size conditions. Baseline: best score of PORTAGE system as of March 2006, trained on either the off-topic dataset used to train the seed model or the on-topic training dataset. X < 5: unsatisfactory; 5 ≤ X < 10: satisfactory; X ≥ 10: very satisfactory.
ER 4.3	Method for combination of models previously trained on off-topic and on-topic training datasets respectively (actual training data unavailable) improving of at least X% in NIST score over baseline under some training set size conditions. Baseline: best score of PORTAGE system as of March 2006, trained on either the off-topic dataset used to train the seed model or the on-topic training dataset. X < 3: unsatisfactory; 3 ≤ X < 8: satisfactory; X ≥ 8: very satisfactory
ER 4.4	Method for online adaptation of models improving of at least X% in NIST score over baseline under some training set size conditions. Baseline: PORTAGE system as of March 2006, trained on seed data only. X < 5: unsatisfactory; 5 ≤ X < 10: satisfactory; X ≥ 10: very satisfactory

Expected Results

ER 5.1	Method for CLIR significantly improving over baseline at an X% confidence level on Average Precision. Baseline: Xerox CLIR technology as of March 2006. X < 95: unsatisfactory; 95 ≤ X < 99: satisfactory; X ≥ 99: very satisfactory
ER 5.2	Method for CLC significantly improving over baseline at an X% confidence level on FScore under some training set size conditions. Baseline: Xerox CLC technology as of March2006.X < 95: unsatisfactory; 95 ≤ X < 99: satisfactory; X ≥ 99: very satisfactory
ER 6.1	CAT: improvement in productivity of X% against baseline under some conditions of translation memory population. Baseline: same translation interface but no suggestions from the MT system. X < 3: unsatisfactory; 3 ≤ X < 15: satisfactory; X ≥ 15: very satisfactory
ER 6.2	CLIR + comprehension aids, troubleshooters. Reduction of X% in average call time. X < 3: unsatisfactory; $3 \le X < 10$: satisfactory; $X \ge 10$: very satisfactory

User Evaluations


File	Workbench	
() Pack	age Leatlet (also part the EPAR) or contact your doctor or pharmacist.	
	us souhaitez davantage d' informations sur la base des recommandations du IP , veuillez lire la discussion scientifique (également comprise dans l' EPAR)	
	want more information on the basis of CHMP recommendations, read the	
Scien		
	ine Translation:	
	· · · · ·	

- Scenario 1: Computer-Aided Translation
 - Can SMT effectively complement Translation Memory in increasing the productivity of professional translators? Does on-line adaptation help?

SMART Final Review Meeting, Luxembourg, November 27, 2009

User Evaluations

- Scenario 2: Cross-Lingual Search on the Wikipedia
 - Are casual users seeking to satisfy an information need using a document collection in a language they do not master more effective if they use CLIR technology to search and MT to translate results?

SMART Final Review Meeting, Luxembourg, November 27, 2009

User Evaluations

- Scenario 3: CLIR and Comprehension Aids for Customer Service Representatives
 - Are technical support agents in call centres more effective when accessing technical knowledge bases in English if they can use their own, non-English language for querying and can have technical terms translated in relevant pages?
- Replacement Scenario: Quality and Confidence Estimation
 - Can the quality of automatic translation be accurately and confidently estimated without access to reference translations, and using only information normally available in CAT operations? Is this information useful to professional translators?

SMART Final Review Meeting, Luxembourg, November 27, 2009

Outline of the presentations (1/2)

10:00	WP 2, Advanced Statistical Translation Models, Sinuhe and MMBT (Craig Saunders)
10:25	WP 4, Model Adaptation and Combination, PORTAGE adaptive SMT (Nicolò Cesa-Bianchi)
10:40	WP 4, Model adaptation (Cyril Goutte)
10:55	Break
11:05	WP 3, Advanced Language Models, Xerox-UH re-ranking using Discriminative Language Models (Juho Rousu)
11:20	Confidence estimation (Nello Cristianini)
11:35	CAT demo + User Evaluation (Blaz Fortuna and Roberto Silva)

SMART Final Review Meeting, Luxembourg, November 27, 2009

Outline of the presentations (2/2)

12:00	WP 5, Cross-Language Textual Information Access, Extensions of (K)CCA (John Shawe-Taylor)
12:15	WP 5, Lexicon adaptation and attempts at integration with CCA (Jean-Michel Renders)
12:30	Wikipedia demo + User Evaluation of the Wikipedia scenario (Kimmo Valtonen and Miro Romih)
12:55	Lunch break
13:55	Positioning SMART in the State of the Art (Cyril Goutte)
14:10	WP 7, Dissemination and Exploitation (Nello Cristianini)
14:25	Wrap-up and conclusions (Nicola Cancedda)

SMART Final Review Meeting, Luxembourg, November 27, 2009