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Abstract

This paper introduces a novel constraint-driven learning framework
for identifying named-entity {NE) transliterations. Traditional ap-
proaches to the problem of discovering transliterations depend heav-
ily on correctly segmenting the target and the transliteration candi-
date and on and aligning these segments. _

In this work we propose to formulate the process of aligning
segments as a constrained optimization problem. We consider the
aligned segments as a latent feature representation and show how to
infer an optimal latent representation and how fo use it in order to
fearn an improved discriminative transliteration classifier. Qur al-
gorithin is an EM-like iterative algorithm that alternates between an
optimization step for the latent representation and a learning step
for the classifier’s parameters.

“We apply this method both in supervised and unsupervised set-
tings, and show that our model can significantly outperform previous
methods trained using considerably more resources.!

1 Introduction

Named entity (NE) transliteration is the process of transcribing a NE from
a source language to some target language while preserving its pronunci-
ation in the original language. Automatic NE fransliteration is an imper-
tant component int many cross-language applications, such as Cross-Lingual
Information Retrieval (CLIR) and Machine Translation (MT) (Hermjakob et
-al. 2008, Klementiev & Roth 2006a, Meng et al. 2001, Knight & Graehl
1998).

It might initially seem that transliteration is an easy task, requiring only
finding a phonetic mapping between character sets. However, simply match-
ing every source language character to its target language counterpart is not
likely to work well as in practice this mapping depends on the context the
characters appear in and on transliteration conventions which may change
across domains. As a result, current approaches employ machine learning
methods.

% This paper extends and unifies our previous work (Goldwasser & Roth 2008b) and
(Chang et al. 2009).
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Recently, several methods focus on NE transliteration discovery, a frame-
work for discovering occurrences of NE in a bilingual corpora. In these
settings a classifier is trained to determine if a given pair of words consti-
tute a transliteration pair. The success of these methods depends heavily
on correctly segmenting the input words and matching the segments across
the two words. Recent discriminative transliteration methods avoid this
difficult step and encode the possible alignments as features, and let a dis-
criminative training algorithm assign weights appropriately. Although the
relevancy of pairwise features is context sensitive and there are contextual
constraints among them, the underlying assumption behind these meth-
ods is that a discriminative approach will be sufficient, to account for those
by weighing features appropriately using sufficient training data. This has
been shown to be difficult for language pairs which are very different, such
as English and Hebrew {Goldwasser & Roth 2008a).

In this work we combine an explicit alignment process in a discrimi-
native training framework, and directly consider the dependency between
correctly aligning the candidate words characters and correct translitera-
tion classification decisions. Our model learns how to correctly align the
two words and uses that alignment to learn a better classification model by
using the aligned substrings as the feature representation of the word pair.
We formulate the alignment process as a constrained optimization process -
that, given the model parameters (i.e., the local mapping weights), finds the
best global alignment between the two words. The flexibility of the model
allows us to incorporate prior knowledge about the two languages directly
as constraints. After features are extracted, we use a discriminative learning
algorithm to update the model, and use the new weight vector to determine
the objective funetion for the optimization based feature extraction.

We apply this method in both supervised and unsupervised settings and
consider several different alignment models. We bootstrap the unsupervised
model with local information only, corresponding only to a partial mapping
between the two character sets, and learn from unlabeled data the complete
mapping and the relevant context needed to disambiguate the different pos-
sible alignment (or feature activation) decisions.

We tested our approach on three very different languages — Russian, a
Slavic language, Hebrew, a Semitic language, and Chinese, a Sino-Tibetan
language. We show that using our approach we can train a robust translit-
eration model and outperform existing discriminative method using less
resources. Interestingly, when working in an unsupervised setting, we show
that using a simple resource — a Romanization table, is enough to bootstrap
the model, and outperform supervised methods.

The rest of the paper is organized as follows. Section 2 briefly examines
related work. Section 3 explains our model and Section 3.3 provides a
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—lifiguistic intuition for it. Section 4 describes our experiments and evaluates

our results, and Section 5 concludes.
gf

Fig. 1: Left: The space of all possible features that can be generated given a
word pair, and the pruned features representation generated by the
inference process. Right: Biportite graph representation of character
unigram alignment corresponding to the generated features
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2 Related work

Transliteration methods typically. fall into two categories: generative ap-
- proaches (Li et al. 2004, Jung et al. 2000, Knight & Graehl 1998) that
produce the target transliteration given a source language NE, and discrim-

" inative approaches (Goldwasser & Roth 2008b, Bergsma & Kondrak 2007,
Sproat et al. 2006, Klementiev & Roth 2006a), that identify the correct
transliteration of a word in the source language given several candidates
in the target language. Discriminative approaches, when used for discov-
ering NE in a bilingual corpora avoid the Out-Of-Vocabulary problem by
choosing the transliteration candidates from the corpora. These methods
typically make very little assumptions about the source and target languages
and require considerably less data to converge. Training the transliteration
model is typically done under supervised settings (Bergsma & Kondrak
2007, Goldwasser & Roth 2008), or weakly supervised settings with addi-
tional temporal information (Sproat et al. 2006, Klementiev & Roth 2006a).
Incorporating knowledge encoded as constraints into learning problems

has attracted a lot of attention in the NLP community recently, both in su-
pervised settings {Roth & Yi 2004, Riedel & Clark 2006) and unsupervised
settings (Haghighi & Klein 2006, Chang et al. 2007) where constraints are
used to bootstrap the model, Chang et al. (2007) describe an unsupervised

" training of a Constrained Conditional Model (ccM), a general framework
for combining statistical models with declarative constraints. We extend
their work to include: constraints over possible assignments to latent vari-
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ables which, in turn, define the underlying representation for the learning
problem. .

In the transliteration community there are several works (Bergsma &
Kondrak 2007, Goldwasser & Roth 2008b, Chang et al. 2009) that show
how the feature representation of a word pair can be restricted to facilitate
learning a string similarity model. We follow the approach discussed in
{Goldwasser & Roth 2008b), which considers the feature representation as
a structured prediction problem and finds the set of optimal assignments (or
feature activations), under a set of legitimacy constraints. This approach
stresses the importance of interaction between learning and inference, as the
model iteratively uses inference to improve the sample representation for the
learning problem and uses the learned model to improve the accuracy of the
inference process. We adapt this approach to unsupervised settings using
‘self-training, where iterating over the data provides a better classification
function to label the data for the next training iteration.

3 Constraint-driven transliteration model

In this section we present our Constraint-Driven Transliteration framework.
We run an EM-like iterative procedure that alternates between an inference
step and a learning step. Inference serves to align the word pair and extract
features accordingly; this feature representation is used by the learning al-
gorithm which, in turn, learns the new model parameters thus providing
the inference procedure with a better objective function. This process is
described in Algorithm 1.

The model presented in this section can be applied in both supervised
settings where annctated exarnples in the forma of correct transliteration
pairs are available and in unsupervised settings, where this supervision is
self generated by the algorithin. In the latter case the initial objective
function for the inference process is seeded with a Romanization table — a
partial mapping between the source and target character sets. In the rest of
this section we describe our framework in detail and explain the differences
between the supervised and unsupervised instantiations of the framework.

Transliteration model. Our model works in a Discovery setting, where

" given a scurce language NE, the model finds its target language counterpart
in a document. We use a linear transliteration model, mapping a source
language NE and a target language candidate word into a real number - the
candidate pair transliteration score. Given a source word NE, v,, and a list
of target words v,°...v,*, each candidate target word is paired with the
source word NE. These pairs are ranked according to their transliteration
score and the model cutputs the pair with the highest score.
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Features in our model are character n-gram pairs (s, 8;), where 8, is a source
word character n-gram and s; is a target word character n-gram. In our
experiments we used unigram and bigram pairs. The feature representation
of a word pair v,, v, is denoted by F(v,,v,).

Each feature (s;, s¢) is assigned a weight W (s,, 5;) € R, used for deciding
the score assigned to that representation. The weight vector is learned using
a linear learning algorithm.

In the rest of this section we describe how to obtain F(-) and how to
initialize and train W{-).

Initialization. The weight vector W is initialized differently when work-
ing in supervised or unsupervised settings. When training data is available,
it is used directly to initialize the model’s parameters:

#(Ssast) % #(Ss'rst)
#(33) #(St) ’

where #(s;, 8;) is the number of occurrences of that feature in the positive

sample set. We use a simple feature extraction technique at this initial

stage — features are extracted by considering all possible alignments between

the source and target word characters and character bigrams. #(s;),L =

8,1t is the number of occurrences of an individual substring, s;, in any of
* the features extracted from positive samples in the training set.

I the unsupervised case the model is bootstrapped using a romanization
tahle 7. This table contains a partial mapping between the source and
target character sets, typically mapping each character to its predominant
counterpart. We use this table directly by assigning a uniform zero weight
to character level mappings appearing in the table, and a (—1) penalty
‘otherwise:

W(3s: St) =

W(ss, 81) = { (11 gsiﬂ Zg:

Inference-based feature extraction. Given a word pair {v,,v,), a fea-
ture extraction process is used to determine the feature representation of the
pair. Unlike traditional feature extraction approaches, our feature represen-
tation function does not produce a fixed feature representation. The feature
extraction process is formalized as a constrained optimization problem that
captures the interdependencies between the features used to represent the
sample, and encodes these dependencies as constraints restricting the space
of possible feature activation combinations. That is, obtaining ¥(v,, v,) re-
quires solving an optimization problem, the technical details are described
in Section 3.1. The constraints we use are described in Section 3.2. '
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Prediction. For training to take place each feature representation should
be associated with a label. In the supervised case labels are available, in
the unsupervised case the model’s predictions are converted into labels. The
model ranks the different candidates for every source NE according to the
similarity score associated with their chosen representation. Each source NE
paired with its top ranked transliteration is labeled as a positive example,
we leave the other top k ranking pairs unlabeled, and the rest of the samples
are considered as negative samples. '

Training. The labeled data can now be used directly to train the model
and replace the initial weights with weights which are discriminatively learned.
"This process is repeated several times until the model converges. Over the
different training iterations we expect the model to generate a better repre-
sentation {and a better classification in the unsupervised case), thus allowing
the model to improve over multiple training iterations.

Input: Constraints C, Transliteration data: D = {{(V,,V)}

Initialization: Assign weights to table W : (5,,5:) = R

while not converged:
Inference: Generate a feature representation D*
D" — U@, v0epF(vs,v). Use € and W to generate F(v;,v;) _
Prediction: Associate a label with every instance representation F{v,,v;)
Training: Train the new transliteration model
W« train(D*)

Algorithm 1: Constraint-driven transliteration framework

In the rest of this section we explain this process in detail. We define the
feature extraction inference process in Section 3.1, the constraints used in
Section 3.2, the linguistic intuition for our model is described in Section 3.3
and the inference algorithm in Section 3.4.

- 3.1 Finding feature representation as constrained optimization

Deciding if a target word is a transliteration of a source word is a binary
classification problem. However, this classification problem is defined over
an unknown (or hidden) structure. Successfully recovering this structure
has high impact on successful classification. We use the formulation of
Constrained Conditional Models (coMs) (Roth & Yi 2004, Roth & Yi 2007,
Chiang et al. 2008) to uncover this structure - feature activation decisions
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are defined as a set of latent variables and the dependencies between fea-

—fure activations are captured using constraints over assignments to these
variables.

Initial feature representation. Given a word pair, the set of all possible
features consists of all possible character bigram and unigram mappings
from the source word to the target word. Character omission is modeled
by mapping the.character to the blank character (denoted as ‘). This
representation is depicted in Figure 1. This process is formally defined as
an operator mapping a transliteration candidate pair to a set of binary
variables, denoted as All-Features (AF).

AF = {(s5,8)|ss € v, U{},8: € v, U{}}

Representation decision. The initial sample representation {AF) is ob-
tained by coupling substrings from the two terms without considering the
dependencies between the possible combinations. To facilitate learning, this
representation should be pruned to consider only feature activations corre-
sponding to legal alignments of the two words n-grams. This is done by
selecting a subset F* C AF of the possible features, containing a charac-
ter unigram and bigram alignment of the two words. Figure 1 prowdes an
example of the features generated given a word pair.

The feature extraction process is formulated as a linear optimization
problem over a set of binary variables, encoding feature activations in AF.
The objective function maximized is a linear function over the variables in
AF, each with its weight as a coefficient, as in the left part of Equation 1
below. We seek to maximize this linear sum subject to a set of constraints.
These represent the dependencies between selections and prior knowledge
about possible legitimate character mappings and correspond to the right
side of Equation 1. The score of the representation F(v,, v} can be written
as follows:

score(F(vs,ve)) = W - Flu,,v) — Z awecpCi( F{vs,v,) (1)

In our settings only hard constraints are used and therefore the penalty (p)
for violating any of the constraints is set to co. The specific constraints
used are discussed in Section 3.2. The result of the optimization process is
a set F of active features, defined in Equatlon 2. The result of this process
is described in Figure 1.

F*(vg,v;) = arg maXpc ar(v, o) SCoTe{ F) (2)
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Transliteration decision. The ranking process done by our model can
now be naturally defined. Given a source word v,, and a set of candidates
target words v;%,:..,v,", find the candidate whose optimal representation
maximizes Equation 1. This process is defined in Equation 3.

v;* = argmax score( F{ve, ve')) 3)

Ut‘

3.2 Incorporating mapping constraints

We consider two types of constraints: general constraints that apply to all
languages and language specific constraints. General constraints encode
global restrictions, capturing the dependencies hetween different mapping
decisions. Language specific constraints typically impose a local restric-
tion such as forcing some of the possible character mapping decisions. The
linguistic intuition behind these constraints is discussed in Section 3.3.

General constraints. To facilitate readability we denote the feature acti-
vations as a Boolean variables, where a;; denotes a unigram mapping feature
activation — where ¢ denotes the i-th source word character, j the j-th tar- -
get word character. Similarly, ey, denotes a bigram feature activation,
mapping the the i-th and I-th source word characters to the j-th and m-th
target word characters respectively.

o Covergge — Every character unigram (or bigram) must be mapped only
to a single character unigram (or bigram), or to the blank character.
For the unigram case this can be formally written as:

EJ‘G,‘J’ Sland Zi&ﬁ S 1.

e No crossing — Every character mapping, except mapping to blank
character, should preserve the order of appearance in the source and
target words, or formally for the unigram case,

Vi,jlay =1)= (W <i{,Vk> jap =0)
and
Vi, {ay = 1) = (Vi > 1, Yk < j,ap = 0).

o Unigram and bigram alignment consistency — every bigram and uni-
gram feature decision with overlapping indices should be consistent
with each other:

Vijlmst. ({=i+1Am=7+1) {aym < (a5 Aam)).
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Language-specific constraints.

o Restricted mapping: These constraints restrict the possible local map-
pings between source and target language characters. We maintain a
list of possible mappings ¢, — ©.,, where &,, C C, and ¢; — O,
where B, C C,. Any feature (¢, c;) such that ¢; ¢ 6., or¢; € O, is
penalized in our model.
e Length restriction: An additional constraint restricts the size differ-
ence between the two words. We formulate this as follows: Vv, €
Vs, Vue € Vy, if ylwy| > lug| and ylvg| > |v|, score(Flvs, v¢)) = —00.
Although v can take different values for different languages, we simply
set -« to 2 in this paper.
In addition to biasing the model to choose the right candidate, the con-
straints also provide a computational advantage: a given a word pair is
eliminated from consideration when the length restriction is not satisfied or
there is no way to satisfy the restricted mapping constraints.

3.3 Pncoding language-specific knowledge as constraints

Language specific constraints indicate phonetic mapping tendency between
source and target languages. For example, certain n-gram phonemic map-
pings, such as r — { from English to Chinese, are language specific and can
- be captured by language specific sound change patterns.

These patterns have been used by other systems as features or pseudo-
features (Yoon et al. 2007). However, in our system these language specific
rile-of-thumbs are systematically used as constraints to exclude impossible
alignments and therefore generate better features for learning. We used 20
language specific constraints for English-Chinese pairings, 24 constraints for
English-Hebrew and 17 for English-Russian.

3.4 Efficient inference

package to soive The optimization problem defined in Equation 2 is for-
mulated as an Integer Linear Program (1LP). However, given the structure
of the problem it is possible to develop an efficient dynamic programming
algorithm for it, based on the algorithm for finding the minimal edit dis-
tance of two strings. The complexity of finding the optimal set of features
is only quadratic in the size of the input pair, a clear improvement over
- the ILP exponential time algorithm. The algorithm minimizes the weighted
edit distance between the strings, and produces a character alignment that
satisfies the general constraints (Section 3.2). Our modifications are only
concerned with incorporating the language-specific constraints into the al-
gorithm and ensuring the consistency between unigram and bigram level
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features. The first can be done simply by assigning a negative infinity score
to any alignment decision not satisfying these constraints. We modify the
algorithm to consider at each stage the decision that minimizes the edit cost
of both umgram and bigram edit operations, thus ensuring that the resuit-
ing alignment is the optimal one and that unigram level mapping decisions
do not conflict with bigram level mapping decisions.

4 Experiments and analysis

We evaluated our method empirically in both supervised and unsupervised
settings, observing both the overall performance in the classification task
and the resources required for achieving this performance. We compared
our method to previously published results and show that our model out-.
performs other models significantly using only a fraction of the resources
needed to train previous models. To obtain a better understanding of the
model we also describe an ablation study, evaluating the individual contri-
bution of each of the model’s elements.

We start by describing the experimental settings and datasets used. We
then proceed to describe and analyze the results.

4.1 Ezperimental settings

In our experiments the system is evaluated on its ability to correctly iden-
tify the correct transliteration for each source word. The test data consists
of pairs of words obtained by pairing every source word NE with all tar-
get words. We evaluated the system’s performance using two measures
adopted in many transliteration works. The first one is Mean Reciprocal
Rank (MRR), used in {Tao et al. 2008, Sproat et al. 2008), which is the
average of the multiplicative inverse of the rank of the correct answer. For-
mally, Let n be the number of source NEs. Let GoldRank(i) be the rank the
algorithm assigns to the correct transliteration. Then, MRR is defined as:

1 1
MR = n Zi =1 'goldRank(i)

Another measure is accuracy (ACC) used in (Klementiev & Roth 2006a,
- Goldwasser & Roth 2008a), which is the percentage of the candidates the
algorithm ranks at the top, that are indeed the correct transliteration.

4.2 Dalasels

We experimented with three different target languages Russian, Chinese,
and Hebrew. We used English as the source language in all these experi-
ments.
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Fig. 2: Comparison between our model (vep) and weakly supervised
learning methods (Klementiev & Roth 2006b). One of the models proposed
in (Klementiev & Roth 2006b) takes advantage of the temporal
information. Our best model, the unsupervised learning with all
constraints, outperforms both models in { Klementiev & Roth 2006b), even
though we do not use any temporal information

The Russian data set?, originally introduced in {Klementiev & Roth 2006b),
is comprised of temporally aligned news articles. The dataset contains 727
single word English NEs with a corresponding set of 50,648 potential Russian
candidate words which include not only name entities, but also other words
appearing in the news articles.

The Chinese dataset is taken directly from an English Chinese transliter-
ation dictionary, derived from LDC Gigaword corpus®. The entire dictionary
consists of 74,396 pairs of English-Chinese NEs, where Chinese NEs are writ-
ten in Pinyin, a romanized spelling system of Chinese. In (Tao et al. 2006)
a dataset which contains about 600 English NEs and 700 Chinese candidates
is used. Since the dataset is not publicly available, we created a dataset in
a similar way. We randomly selected approximately 600 NE pairs and then
added 100 candidates which do not correspond to any of the English NE
previously selected. _

The Hebrew dataset, originally introduced in {Goldwasser & Roth 2008a),
consists of 550 English-Hebrew transliteration pairs extracted from
Wikipedia. In our experiments we used 250 of these NE as training data
when working in supervised settings, and the other 300 were used as testmg
data for both the superv1sed and unsupervised settings.

2 The corpus is available at http: //L2R.cs.uiue. edu/~cogcomp.
. ¥ nttp: //www.1dc. upenn. edu
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Fig. 3: Comparison between supervised and unsupervised models, tested on
English-Hebrew NE pairs, We show the learning curve for the unsupervised
version of our model (UCD), tested on the English-Hebrew dutaset. We
compare it to the supervised model presented in (Goldwasser & Roth 2008a)
(GR'08a). Resulls show a significant improvement when using our model

4.3  Unsupervised settings

We start by reporting the results obtained by the unsupervised instantiation
of our model. We evaluate our model over three different language pairs-
Russian, Chinese and Hebrew. Qur implementation uses the Support Vec-
tor Machine (SvM) learning algorithm with linear kernel as our underlying
learning algorithm. We used the package LIBLINEAR (Hsieh et al. 2008} in
our experiments. _

Our full model uses both unigram and bigram features. However, the
supervision signal, obtained from the Romanization table, is limited to un-
igram features alone. To provide the unsupervised model with a better
starting point, the system was trained in two stages — first, using only
unigram features, initialized using the Romanization table, and once the
maodel converged we added the bigram features, initialized with a weight of
0. Experiments showed that this training protocol resulted in a considerable
- improvement.

We begin by comparing our model to previously published models tested
over the same data, in two different languages, Russian and Hebrew. The
results of these experiments are reported using the evaluation measures used
in the original papers and are summarized in Table 1.

To evaluate our performance over the English-Russian dataset, we com-
pare our results to the model presented in {Klementiev & Roth 2006b),
a weakly supervised algorithm that uses both phonetic information and
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Language Unsupervised model | Previous work
Russian (Acc}) 73% 63% (41%) (KR’06)
Hebrew (MRR) 0.921 0.894 (Supervised model)

Table 1: Clomparison to previously published results. KR'06 is described in
(Klementiev & Roth 2006b)

temporal information. The model is bootstrapped using a set of 20 la-
beled examples. In their setting the candidates are ranked by combining
two scores, one obtained using the iransliteration model and a second by
comparing the relative occurrence frequency of terms over time in both lan-
guages. Due to computational tractability reasons we slightly changed Al-
gorithm 1 to use only a small subset of the possible negative examples, and
use only unigram features. The results show a significant improvement for
the English-Russtan dataset when compared to a previous semi-supervised
system, which uses a stronger initial supervision signal. Figure 2 describes
the learning curve of our method over the Russian dataset. We compared
our algorithm to two models described in {Klementiev & Roth 2006b) -
one uses only phonetic similarity and the second also considers temporal
co-occurrence similarity when ranking the transliteration candidates. Both
models converge after 50 iterations. When comparing our model to (Kle-
mentiev & Roth 2006b), we found that even though our model ignores the
" temporal information it achieves better results and converges after fewer
iterations. Their results report a significant improvement when using tem-
poral information ~ improving an ACC score of 41% without temporal infor-
_mation to 63% when using it. Since the temporal information is orthogonal
to the transliteration model, our model should similarly benefit from incor-
porating the temporal information.

To evaluate our performance over the English-Hebrew dataset, we com-
pare our performance to the model presented in (Goldwasser & Roth 2008a)
a supervised discriminative model trained using 250 labeled examples. This
model uses the same feature extraction method as (Klementiev & Roth
2006b}), which does not restrict the feature representation of the word pairs.
The results show that a significant improvement is obtained when using
our model. Figure 3 describes the learning curve of our model over the
English-Hebrew dataset, :

Unfortunately, we could not find a published Chinese dataset. However,
our system achieved similar results to other systems, over a different dataset
with similar number of training examples. For exarnple, Sproat et al. (2006}
present a supervised system that achieves a MRR score of 0.89, when eval-
uated over a dataset consisting of 400 English NE and 627 Chinese words.
Qur results for a different dataset of similar size are reported in Table 2.
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Settings Chinese Russian Hebrew -
Roman. table unig. 0.019 {0.5) ] 0.034 {(1.0) | 0.046 (1.7)
Roman. table +learn. unig. | 0.020 (0.3) | 0.048 (1.3) | 0.028 (0.7)
+Gen Const. unig. | 0.746 (67.1) | 0.809 (74.3) | 0.533 (45.0)
+Qen Const. +learn. unig. | 0.867 (82.2) | 0.906 (86.7) | 0.834 (76.0)
+All Const. unig. 0.801 (73.4) | 0.849 (79.3) | 0.743 {66.0)
+All Const. +learn. unig. 0.889 (84.7) | 0.931 {90.6) { 0.899 (85.0)
+All Const. +learn. big. (i.)} 0.871 (83.4) | 0.903 (83.0) | 0.884 (83.7)
+All Const. +learn. big. (c.)| 0.902(86.1) | 0.943(90.4) | 0.921(87.3)

Table 2: Results of an ablation study of the unsupervised method for three
target languages. Resulls for ACC are in parentheses; MRR — outside

4.4 Ablation study

Our system combines several resources and exploits several different intu-
itions about the transliteration domain. The resources used in our frame-
work consist of a Romanization table and language specific transliteration
constraints; in addition our system encodes the dependency between feature
activations as general! constraints, and it can make use of character uni-
grams features only, or both character unigrams and bigrams features. To
understand the impact of each component we experimented with different
combinations of these components, resulting in different testing configura-
tions. The results are presented in Table 2, and explained below. When the
learning algorithm is used, the results after 20 rounds of constraint-driven
learning are reported. Note that using linguistic constraints has a signift-
cant impact in the English-Hebrew experiments. Our results show that a
small amount of constraints can go a long way, and better constraints lead
to better learning performance.

Romanization Table: We initialized the weight vector using a Roman-
ization table and did not use any constraints. To generate features we
used a modified version of our AF operator {see Section 3), which gen-
erates features by coupling characters in close positions in the source
and target words. This configuration is equivalent to the model used
in (Klementiev & Roth 2006b).

+General Constraints: This configuration uses the Romanization table
for initializing the weight vector and uses general transliteration con-
straints {see Section 3.2) for feature extraction.

+All Constraints: This configuration uses language specific constraints
in addition to the general transliteration constraints to generate the
feature representation. (see Section 3.3).
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+Learning: Indicates that after initializing the weight vector, we update
the weight using Algorithm 1. In all of the experiments, we report the
results after 20 training iterations.

Feature representation: We evaluated our model using unigram
and bigram feature models. The Romanization table provides an ini-
tial model only for the unigram features, bigram features weights are
initially assigned a uniform 0 weight, and learned gradually. We con-
sidered three options — using just unigram features, using bigram fea-
tures in the initial model (denoted i. in Table 2) or after the unigram
feature model converged {denoted ¢. in Table 2).

Results analysis. The results are summarized in Table 2. Due to the
size of the Russian dataset, we used a subset consisting of 300 English NEs
and their matching Russian transliterations for the analysis presented here.
After observing the results, we discovered the following regularities in our
‘results for all three languages. ,

Using the Romanization table directly without constraints results in very
poor performance, even after learning. This serves as an indication of the
difficulty of the transliteration problem and the difficulty earlier works faced
when using only Romanization tables. However, when used in conjunction
with constraints, results improve dramatically. For éxample, in the English-
Chinese data set, we improve MRR from 0.02 to 0.746 and for the English-
Russian data set we improve 0.03 to 0.8. Interestingly, the results for the
English-Hebrew data set are lower than for other languages — we achieve
0.53 MRR in this setting. We attribute the difference to the quality of
the mapping in the Romanization table for this langnage pair. Indeed, the
weights learned after 20 training iterations improve the results to 0.83. This
improvement is consistent across all languages, after learning we are able
to achieve a MRR score of 0.87 for the English-Chinese data set and 0.91
for the English-Russian data set. These results show that Romanization
‘table contains enough information to bootstrap the model when used in
conjunction with constraings.

Bootstrapping the weight vector using language specific constraints can
further improve the results. They provide several advantages: a better
starting point, an improved learning rate and a better final model. This is
clear in all three languages, for example results for the Russian and Chinese
bootstrapped models improve by 5%, and by over 20% for Hebrew. After
training the difference is smaller: only 3% for the first two and 6% for
Hebrew.

Using bigram features increases the expressivity of the model, as it en-
ables the model to identify the context required to disambiguate character
mapping decisions and captures phonetic patterns expressed using several
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characters. However using a more expressive model increases the difficulty
of the learning problem. When working in an unsupervised setting, a Ro-
" manization table may not provide a starting point that is strong enough
to bootstrap the extended model. Our experiments indeed show that per-
formance degrades when the extended model is bootstrapped using the Ro-
manization table. However by allowing the model to stabilize using only the
unigram features we were able to provide the unsupervised method with a
better starting point, resulting in an improved overall performance.

Language | Supervised model [ GR'08
Hebrew (MRR) 0.894 0.51

Table 3: Applying our model in supervised settings, over the
English-Hebrew data. Resulls are compared to Goldwasser & Roth’s
{2008a) system. Both systems were trained on 250 positive samples

Fig. 4. Comparing our method (denoted as scp in the graph) to
(Goldwasser & Roth 2008a) over the English-Hebrew data, using different
training sets. Results show that using as little as 10 labeled examples our

method can outperform o system trained using 250 labeled examples

4.5  Supervised settings

We also evaluated our system in a supervised setting over the English-
Hebrew data. We compare our model to a different discriminative system
presented in (Goldwasser & Roth 2008a) evaluated over the same dataset.
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Both systems were trained using 250 transliteration pairs, and trained using
SNoW (Roth 1998) implementation of the perceptron algorithm.

Qur model converged after two iterations over the training data, and
was then applied to the testing data, consisting of 300 samples. The re-
sults summarized in Table 3 show a significant improvement. Moreover, as
can be observed in Figure 4, our model can better use the training data
provided — using as little as 10 training examples the resulting model can
outperform the baseline model trained using 250 labeled examples. When
provided with more data, results improve considerably, while the perfor-
mance improvement of the baseline model decreases as more training data
is added. In Figure 5 we compare the supervised and unsupervised versions
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Fig. 5: Supervised and unsupervised model comparison; tested on
English-Hebrew NE pairs. Learning curves for Hebrew under two different
settings: unsupervised {UCD) and supervised {denoted SCD). Goldwasser &

Roth (2008a) model is also shown (GR08a). Our unsupervised model
outperforms the supervised model, trained on 250 labeled examples

of our framework over the English-Hebrew dataset. Interestingly, the unsu-
pervised system outperforms the supervised version of the system. This can
be explained by the fact that the unsupervised system uses the testing data
as training data, allowing it to better adapt to the specific classification
instances as it iterates over that data.

5 Conclusion

We introduce a constraint-driven approach for named entity transliteration
discovery. This approach identifies the dependency between good repre-
sentation and suceessful classification and iterates between the two stages.
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We describe how to apply the model in both supervised and unsupervised
settings, using only a romanization table. In doing that we show that ro-
manization tables are a very useful resource for transliteration discovery if
the proper constraints are enforced. Even without using any labeled data,
our model can cutperform existing superv1sed models and weakly super-
vised models.
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