
The Prague Bulletin of Mathematical Linguistics
NUMBER 91 JANUARY 2009 67–78

Grammar based statistical MT on Hadoop
An end-to-end toolkit for large scale PSCFG based MT

Ashish Venugopal, Andreas Zollmann

Abstract
is paper describes the open-source Syntax Augmented Machine Translation (SAMT) ¹on Hadoop

toolkit—an end-to-end grammar based machine statistical machine translation framework running
on the Hadoop implementation of the MapReduce programming model. We present the underlying
methodology of the SAMT approach with detailed instructions that describe how to use the toolkit to
build grammar based systems for large scale translation tasks.

1. Introduction

1.1. PSCFG approaches to Machine Translation

Syntax AugmentedMachine Translation (SAMT) (Zollmann and Venugopal, 2006) defines
a specific parameterization of the probabilistic synchronous context-free grammar (PSCFG)
approach to machine translation. PSCFG approaches take advantage of nonterminal symbols,
as in monolingual parsing, to generalize beyond purely lexical translation. Consider the exam-
ple rule below:

@VP → ne @VB1 pas # do not @VB1 : w

representing the discontiguous translation of the French words “ne” and “pas” to “do not”, in
the context of the labeled nonterminal symbol “@VB” (representing the syntactic constituent
type of Verb). ese rules seem considerably more complex than weighted word-to-word rules
(Brown et al., 1993), or phrase-to-phrase rules (Koehn, Och, and Marcu, 2003, Och and Ney,
2004) but can be viewed as natural extensions to these well established approaches. An intro-
duction to PSCFG approaches to machine translation can be found in (Chiang and Knight,
2006).

¹Released under the GNU Lesser General Public License, version 2

© 2009 PBML. All rights reserved.
Please cite this article as: Ashish Venugopal, Andreas Zollmann, Grammar based statistical MT on Hadoop:
An end-to-end toolkit for large scale PSCFG based MT. The Prague Bulletin of Mathematical Linguistics No.
91, 2009, 67–78.

PBML 91 JANUARY 2009

(Chiang, 2005) describes a procedure to learn PSCFG rules fromword-aligned parallel cor-
pora, using the phrase-pairs from (Koehn, Och, and Marcu, 2003) as a lexical basis for the
grammar. SAMT (Zollmann andVenugopal, 2006) extends the procedure from (Chiang, 2005)
to assign labels to nonterminal symbols based on target language phrase structure parse trees.

In this paper, we describe an end-to-end statistical machine translation frame-
work—SAMTonHadoop—to learn and estimate parameters for PSCFGgrammars fromword-
aligned parallel corpora (training), and perform translation (decoding) with these grammars
under a log-linear translation model (Och and Ney, 2004). While our framework specifically
implements (Chiang, 2005) and (Zollmann and Venugopal, 2006), the training and decod-
ing algorithms in our toolkit can be easily replaced to experiment with alternative PSCFG pa-
rameterizations like (Galley et al., 2006, Wu, 1997). e algorithms in this toolkit are imple-
mented upon Hadoop (Cutting and Baldeschwieler, 2007), an open-source implementation of
theMapReduce (Dean and Ghemawat, 2004) framework, which supports distribution compu-
tation on large scale data using clusters of commodity hardware. We report empirical results
that demonstrate the use of the SAMT toolkit on large scale translation tasks.

1.2. e SAMT toolkit

Our toolkit, when used in concert with other open-source components and publicly avail-
able corpora, contains all of the necessary components to build and evaluate grammar based
statistical machine translations systems. e primary components of the toolkit are listed be-
low:

• A top level push-button script that provides experimental work-flow management and
submits jobs to the underlying Hadoop framework.

• Components to build and estimate parameters for the grammars described in (Chiang,
2005) and (Zollmann and Venugopal, 2006).

• Tools to filter large translation grammars and n-gram language models to build small
sentence specific models that can be easily loaded into memory during decoding.

• A bottom-up dynamic chart parsing decoder based on (Chappelier and Rajman, 1998)
which supports grammarswithmore than 2 nonterminals symbols per rule. edecoder
outputs n-best lists with optional annotations that facilitate discriminative training.

• An implementation of Minimum Error Rate (MER) training (Och, 2003), extended to
perform feature selection.

e SAMT toolkit requires the following inputs that are easily generated by existing open-
source tools.

• Word aligned parallel corpora. For small resource tasks, word-alignments can be gener-
ated using the GIZA++ toolkit (Och and Ney, 2003), while large-resource tasks can be
aligned using (Dyer et al., 2008), a parallelizedGIZA++ implementation onMapReduce.

• (Zollmann and Venugopal, 2006) requires target language parse trees for each sentence
in the training data. SAMT on Hadoop interfaces to the parser from (Charniak, 2000)
to parse the target side of the parallel corpora on Hadoop.

• N-Gram languagemodels built via the SRILM toolkit (Stolcke, 2002) are used as features

68

A. Venugopal, A. Zollmann Grammar based statistical MT on Hadoop (67–78)

during decoding.

1.3. SAMT on Hadoop

e SAMT toolkit is built upon Hadoop (Cutting and Baldeschwieler, 2007), an open-
source implementation of the MapReduce model to distribute the estimation of PSCFG gram-
mars and to perform decoding. Training and decoding are broken up into a series of MapRe-
duce tasks, called phases, which are performed sequentially, transforming input data into a
PSCFG grammar, and using the grammar to translate development and test sentences. Phase
outputs are stored on the Hadoop Distributed File System (HDFS), a highly fault tolerant file
system that is accessible by all cluster machines. Most SAMT phases are run sequentially, us-
ing output from previous phases as input². Detailed instructions for downloading and building
the SAMT toolkit are available at the toolkit’s website³, along with examples that that can be
used to re-generate published results from (Zollmann, Venugopal, and Vogel, 2008). In the re-
mainder of this paper, we describe the SAMTmethodology and important user parameters in
our toolkit that impact translation quality and runtime. For a more formal description of the
individual MapReduce phases in the SAMT pipeline, see (Zollmann, Venugopal, and Vogel,
2008).

2. Syntax Augmented Machine Translation

2.1. Phrase and SAMT Rule Extraction

In this section, we describe Syntax Augmented Machine Translation (SAMT) (Zollmann
and Venugopal, 2006), a specific instantiation of the PSCFG formalism that is implemented
in the SAMT on Hadoop toolkit. SAMT extends the purely hierarchical grammar proposed
in (Chiang, 2005) to use nonterminal labels learned from target language parse trees. e
inputs to the SAMT rule extraction procedure are tuples, ⟨f, e, Phrases(a, f, e), π⟩, where f

is a source sentence, e is a target sentence, a is a word-to-word alignment associating words
in f with words in e, Phrases(a, e, f), are the set of phrase pairs (source and target phrases)
consistent with the alignment a (Koehn, Och, and Marcu, 2003, Och and Ney, 2004), and π

is a phrase structure parse tree of e. SAMT rule extraction associates each phrase pair from
Phrases(a, e, f) with a le-hand-side label, and then applies the rule extraction procedure
from (Chiang, 2005) to generate rules with labeled nonterminal symbols.

Consider the example alignment graph (a word alignment and target language parse tree
as defined in (Galley et al., 2006)) for the example French-to-English sentence in Figure 1. e
phrase extractionmethod from (Koehn, Och, andMarcu, 2003), extracts all phrase pairs where
no word inside the phrase pair is aligned to a word outside the phrase pair. Figure 2 gives the
initial rules extracted for our example sentence pair.

²While these scripts assume theHadoop-on-Demandmachine requisitioningmodel, the toolkit can be easilymod-
ified to submit jobs to a single global machine pool

³www.cs.cmu.edu/∼zollmann/samt

69

PBML 91 JANUARY 2009

S

qqqqqqq
MMMMMMM

NP VP

qqqqqqq
MMMMMMM

PRN AUX RB VB

he does not

qqqqqqq
MMMMMMM go

qqqqqqq

il ne va pas

Figure 1. Alignment graph (word
alignment and target parse tree)
for a French-English sentence

pair.

PRP:NP → il # he
VB → va # go

RB+VB → ne va pas # not go
VP → ne va pas # does not go
S → il ne va pas # he does not go

Figure 2. Labeled initial rules.

S → PRP:NP1 ne va pas # PRP:NP1 does not go
S → il ne VB1 pas # he does not VB1

S → il VP1 # he VP1

S → il RB+VB1 # he does RB+VB1

S → PRP:NP1 VP2 # PRP:NP1VP2

S → PRP:NP1 RB+VB2 # PRP:NP1 does RB+VB2

VP → ne VB1 pas # does not VB1

RB+VB → ne VB1 pas # not VB1

VP → RB+VB1 # does RB+VB1

Figure 3. Generalized rules.

Phrase Extraction is the first phase of the SAMT toolkit, annotating each sentence-pair of
the training corpus with a set of phrase pairs extracted from that sentence pair. We use a single
toolkit binary: MapExtractPhrases, run as Hadoop Map step (there is no Reduce step in this
phase). is binary takes a single numberical argumentwhich determines themaximum length
of the initial phrase extracted fromword-aligned data. is limit has an impact on the size and
nature of the final grammar. Typically, phrase limits are significantly smaller than the length
of the parallel sentence, preventing very long distance reordering effects from being captured
in the grammar.

e next phase, Rule Extraction includes rule indetification (Map step, binaryMapExtrac-
tRules) on a per-sentence basis, and merging and counting of identical rules (Reduce step,
binary MergeRules). SAMT assigns a le-hand-side (lhs) label to every phrase pair extracted
from the current sentence-pair, based on the corresponding target language parse treeπ, form-
ing initial rules. ese labels are assigned based on the constituent spanning the target side
word sequence in π. When the target side of the phrase-pair is spanned by a single constituent
in π, the constituent label is assigned as the lhs for the phrase pair. If the target side of the
phrase is not spanned by a single constituent in π, we use the labels of subsuming, subsumed,
and neighboring constituents in π to assign an extended label of the form C1 + C2, C1/C2,
or C2\C1 (similar in motivation to the labels in (Steedman, 1999)), indicating that the phrase
pair’s target side spans two adjacent syntactic categories (e.g., she went: NP+VB), a partial syn-

70

A. Venugopal, A. Zollmann Grammar based statistical MT on Hadoop (67–78)

tactic category C1 missing a C2 at the right (e.g., the great: NP/NN), or a partial C1 missing
a C2 at the le (e.g., great wall: DT\NP), respectively. e label assignment is attempted in
the order just described, i.e., assembling labels based on ‘+’ concatenation of two subsumed
constituents is preferred, as smaller constituents tend to be more accurately labeled. If no label
is assignable by either of these three methods, and the parameter ‘-allow_double_plus 1’ is set,
we try triple-concatenation to create a label of the form C1 + C2 + C3. If this approach do
not yield a label or if ‘-allow_double_plus 0’, a default label ‘_FAIL’ is assigned. An ambiguity
arises when unary rules N1 → ... → Nm in the target parse tree are encountered, such as
the NP→PRN subtree in Figure 1. Depending on the parameter ‘-unary_category_handling’,
we use the bottom-most label (parameter value ‘bottom’), the top-most (‘top’), or a combined
label Nm : . . . : N1 (‘all’, this is the default).

An alternative method of assigning labels to phrase pairs can be activated by specifying the
parameter ‘-use_only_pos’. In this variant, labeling is performed merely based on the part-of-
speech (POS) tags of the first word POS1 and last word POS2 of the target phrase, resulting in
the label ‘POS1-POS2’. In general, the SAMT approach can take advantage of any labeling tech-
niques that assigns labels to arbitrary initial phrase pairs. Alternative techniques could include
using source language constituent labels, or automatically induced labels. Based on these initial
rules, we perform the rule generalization procedure from (Chiang, 2005). Figure 3 shows the
resulting generalized rules. For each labeled rule in the grammar, we can also generate a corre-
sponding generically labeled rule as in (Chiang, 2005). We introduce an additional feature in
the log-linear translation model that allows the decoder to prefer labeled or unlabeled deriva-
tions. To suppress the creation of generic rules, pass the parameter ‘-generate_generic_variant
0’.

e number of rules generated by this procedure is exponential in the number of initial
phrases pairs, producing a grammar that is impractical for efficient translation. e following
parameters are used to restrict the number of rules extracted per sentence:

• -max_abstraction_count (default: 2): maximum number of abstractions (nonterminal
pairs) per rule.

• -max_source_symbol_count (default: 6): maximum number of symbols (terminals and
nonterminals) on the source side of the rule.

is restricted rule set can be pruned further with the following parameters forMergeRules:
• -allow_consec_nts (default: 1): if set to 0, discards rules that have consecutive nontermi-
nals on the source side.

• -allow_src_abstract (default: 1): if 0, discards rules that do not have any source terminal
symbols for example: S → NP 1VP2 # NP 2VP1. Setting this parameter to 0, drastically
reduces decoding time.

• -nonlexminfreq, -lexminfreq (defaults: 0): minimum occurrence frequency thresholds
for non-lexical and lexical rules respectively. Increasing these thresholds reduces the
size of the grammar, but oen at the cost of translation quality (Zollmann et al., 2008).

• -min_freq_given_src_arg (default: 0): minimum relative frequency of a rule given its
labeled source.

e labeling and extraction procedures defined above identify rules from the input word-

71

PBML 91 JANUARY 2009

aligned parallel corpora and associated parse trees. e occurrence counts from this extraction
process are used in estimating relative frequency features for each rule. e estimation of these
features is described in the next section.

2.2. PSCFG Features

Given a source sentence f and a PSCFG grammar, the translation task can be expressed
analogously to monolingual parsing with a CFG. We find the most likely derivation D of the
input source sentence and read off the English translation, identified by composing α from
each rule used in the derivation. is search for the most likely derivation can be defined as:

ê = tgt

(
argmax

D∈Derive(G):src(D)=f

p(D)

)
(1)

where tgt(D) refers to the sequence of target terminal symbols generated by the derivation
D, src(D) refers to the source terminal symbols of D and Derive(G) is the set of sentence
spanning derivations of grammar G. e distribution p over derivations is defined by a log-
linear model. e probability of a derivation D is defined in terms of the rules r that are used
in D:

p(D) =
pLM(tgt(D))θLM

∏
r∈D

∏m

i=1 λi(r)
θi

Z(θLM, θ1, . . . , θm)
(2)

where λi(r) refers to features defined on each rule, pLM is an n-gram language model (LM)
probability distribution over target word sequences, and Z is a normalization constant that
does not need to be computed during search under the argmax search criterion in Equation 1.
e feature weights θLM, θ1, . . . , θm are trained in concert with the languagemodel weight via
MER training. e features λi(r) are statistics estimated from rule occurrence counts.

e output of the Rule Extraction phase is a grammar with a small subset of features in λ

that has been learned automatically from the input data. e features used in the our toolkit
include those in (Chiang, 2005, Zollmann and Venugopal, 2006), and are computed in the
Rule Extraction and Filtering phase (described below). e resulting grammar is large, and
for most translations tasks, cannot be loaded directly into memory for decoding. To avoid
this problem, the SAMT toolkit filters the grammar against a specific test corpus, generating a
sentence specific grammar for each sentence in the corpus. is filtering is performed for each
corpora that we need for translation, typically development, test, and unseen test corpora are
used to train and evaluate machine translation systems.

2.3. Rule and LM Filtering

e Rule Filtering phase (binariesMapSubsampleRules, filterrules_bin) take as input: the
grammar from the Rule Extraction phase, a corpus to filter the grammar against, and addi-
tional model files (such as translation lexica) to generate additional rule features in λ. In the

72

A. Venugopal, A. Zollmann Grammar based statistical MT on Hadoop (67–78)

Map step, the grammar is filtered on a per-sentence basis bymatching the source words of each
rule to the source words in the sentence we want to translate. In the Reduce step, additional
features (documented in filterrules.pl, which is used to generate the MapReduce binary filter-
rules_bin). e Reduce step of Rule Filtering provides several options to further restrict the
grammar and to augment the additional features. ese options can be specified via the top-
level parameter: filter_params. e Rule Filtering Reduce step also adds the following system
rules to each sentence specific grammar.

• Beginning-of-sentence rule: S→ ⟨s⟩ # ⟨s⟩
• Glue rules (Chiang, 2005) for each NT N in the grammar, for example: S→
S1N2 # S1N2

• End-of-sentence rule: S→ S1⟨\s⟩ # S1⟨\s⟩
• ‘Unknown’-rules (e.g. NNP→ _UNKNOWN # _UNKNOWN) generating a limited set
of labels for the word ‘_UNKNOWN’, which the decoder substitutes for unknown source
words

eGlue rules (Chiang, 2005) play an important role in grammar based approaches toMT.
ese rules serve to simply concatenate translations of consecutive spans during decoding,
similar tomonotone decoding in a phrase based system (Koehn, Och, andMarcu, 2003). ese
Glue operations allow the system to produce translations that violate the syntactic contraints
encoded in the labels of the grammar—at a cost determined via theMER trained weight θglue.

Building sentence specific grammars allows us to estimate the parameters and features of
the grammar on large parallel corpora, while still being able to load all relevant rules to trans-
late particular sentences in a test corpus. We follow this same approach to filter large n-gram
language models in a LM Filtering phase. While the Rule Filtering phase filters rules based
on the source side of the rule, the n-gram LM must be filtered according to the possible set of
target words that can generated by applying the sentence specific grammar. For each sentence
specific grammar, a possible target vocabulary is generated, which is used by the Rule Filtering
binary (LMFilter) to produce sentence specific language models.

3. PSCFG Decoding

e runtime complexity of our decoder with an integrated n-gram LM feature is:

O
(

|f|3
[
|N ||TT |2(n−1)

]K)
(3)

where K is the maximum number of NT symbols per rule, |f| is the source sentence length,N
is the set of nonterminal labels in the grammar, TT is the set of target language terminals the in
grammar, andn is the order of the n-gram LM. Our decoder implements the Cube Pruning al-
gorithm from (Chiang, 2007), and outputs n-best lists for use inMER.e FastTranslateChart
performs translation as a Map task. e grammar restriction parameters described in Sec-
tion 2.1 have a large significant impact on decoding runtime (particulary allow_src_abstract,
allow_consec_nts, max_abstraction_count), but this search still requires additional pruning to

73

PBML 91 JANUARY 2009

produce translations in reasonable time-frames—especially when translating longer sentences.
e most important decoder parameters are described below:

• wts: corresponds to the weights θ in the translation model in Equation 2. In practice,
these weights are iteratively trained via MER.

• HistoryLength: (default 2)e number of words considered as LM history length during
decoding. When set to less than n − 1, when using an n-gram LM, decoding time is
reduced at the expense of search errors, which can reduce translation quality.

• SRIHistoryLength: is value indicates the full history length of the n-gram language
model. When using a reduced HistoryLength, this value is used to recover from search
errors in a LM-driven n-best extraction step similar to (Huang and Chiang, 2007).

• PruningMap: (default: 0-100-5-@_S-200-5): Format: lhs-b-β. Pruning parameters for
Cube Pruning (Chiang, 2007). For each nonterminal label lhs in the grammar for a
source span during decoding, this parameter restricts the number of chart items to b

items, and items that are have cost of at most β greater than the best item. lhs = 0 sets
pruning parameters for all lhs symbols that have not been explicly specified.

• ComboPruningBeamSize : (default 10000) Sets the maximum number of items gener-
ated in each cell via Cube Pruning. Reducing this value reduces decoding time when
PruningMap limits have not caused pruning.

• MaxHypsPerCell: (default 1000000000) Limits the total number of items (partial transla-
tion hypotheses) created for each span during decoding—across items that have different
lhs labels (not counting X and S items, which always pass thru this pruning filter). is
value is typically set when using grammars with a large number of lhs labels to reduce
translation runtime, but does introduce additional search error.

• MaxCostDifferencePerCell: (default inf) Max. allowed cost that an item can deviate from
the best item in its chart cell (inf: any cost allowed). Items with lhs X or S always pass
thru this filter. is and the previous parameter are the only paramters that apply pruning
across items with different nonterminal labels.

• MaxCombinationCount: (default 10) Limits the application of automatically learned
PSCFG rules to source spans less than or equal to MaxCombinationCount. Spans of
greater length are composed monotonically with Glue rules. Decoding time is linear in
sentence length once this limit is in effect.

3.1. Minimum Error Rate Training

eparameters θ are trained viaMER training tomaximize translation quality according to
a user specified automatic translation metric, like BLEU (Papineni et al., 2002) or NIST (Dod-
dington, 2002). MER training is implemented in the SAMT toolkit as a MapReduce phase
using n-best lists from the decoding phase. Our MER implementation performs feature selec-
tion, preferring solutions where θi = 0, and can be easily extended to perform random restarts
as well.

74

A. Venugopal, A. Zollmann Grammar based statistical MT on Hadoop (67–78)

Track Words (English) LM 1-N grams (N) Dev. Test1 Test2
IWSLT 632K 431,292 (5) IWSLT06 IWSLT07 N/A
67M 67M 102,924,025 (4) MT05 MT06 MT08
230M 230M 273,233,010 (5) MT05 MT06 MT08

Table 1. Training data configurations used to evaluated SAMT on Hadoop. The
number of words in the target text and the number of 1-N grams represented in
the complete model are the defining statistics that characterize the scale of each

task. For each LM we also indicate the order of the n-gram model.

System Dev. BLEU Test1 BLEU Test2 BLEU Grammar Train. (h:m) Test1 (m)
IWSLT Hier 27.0 37.0 N/A 0:12 4
IWSLT Syntax 30.9 37.2 N/A 0:26 12
67M Hier 35.19 32.98 25.88 1:10 17
67M Syntax 35.69 33.12 26.48 2:26 65
230M Hier 36.39 33.74 26.28 4:13 23
230M Syntax 37.11 34.04 26.74 7:21 53

Table 2. Translation quality as measured by IBM-BLEU% (i.e., brevity penalty based
on closest reference length) on each resource track for appropriate evaluation data
sets. Systems 67M and 230M are evaluated in lower-case, while IWSLT is evaluated
in mixed case. Training and decoding times given are based on a cluster of 100 (2

per machine) 1.9GHz Intel Xeon processors.

4. Empirical Results

We demonstrate the SAMT on Hadoop toolkit on three Chinese-to-English translation
tasks, representing a wide range of resource conditions. Each task is described in Table 1. e
IWSLT task is a limited resource, limited domain task, while 67M and 230M (named for their
respective corpora sizes), are corpora used for the annual NIST MT evaluation. For each task
we list the number of words in the target side of the corpus and the number of 1-n grams in
the n-gram LM (estimated from parallel and monolingual data).

For each resource condition, we build SAMT systems using a purely hierarchical gram-
mar (Hier) (Chiang, 2005) and a syntax augmented grammar (Syntax) from (Zollmann and
Venugopal, 2006). All experiments use a 2-gram HistoryLength length the first pass of decod-
ing, and the full LM history during the second pass n-best list search. ese grammars are
built with ‘-allow_consec_nts 0 -allow_src_abstract 0’, and the NIST MT task rules are addi-
tionally restricted by ‘-nonlexminfreq 2 -min_freq_given_src_arg α’ where α = 0.005 (Hier)
andα = 0.01 (Syntax). e Syntax based systems also use ‘-MaxHypsPerCell 1000’ to limit the
run time impact of the large number of lhs labels in these grammars.

In Table 2, we report BLEU scores on development and test data as well as run times to train

75

PBML 91 JANUARY 2009

the respective PSCFG grammars and perform translation with them. Training run times are
reported based on Hadoop MapReduce jobs running on a cluster of 50 dedicated machines,
each running 2 Map or Reduce tasks each. ese results demonstrate the ability for the SAMT
toolkit to scale to large resource data conditions. For each of the the three data conditions we
see that training the Syntax grammar takes longer to train as well as translate with. Translation
quality improvements that result fromusingmore parallel andmonolingual data are clearwhen
comparing the 67M and 230M systems. In these experiments, we see small but consistent
improvements from the introduction of SAMT labels, in line with experiments in (Zollmann
et al., 2008). Overall, translation quality results reported here are competitive with reported
results in the literature and constitute a valid baseline for further research.

5. Conclusions and Resources

In this paperwe have described the SAMTonHadoop toolkit, an end-to-end framework for
large scale grammar based statistical machine translation. We discussed the methodology of
the SAMT approach, and described important toolkit parameters that affect translation quality
and run time. Built upon the open-source Hadoop distributed computation framework, our
toolkit is able to scale to build grammars for large scale translation tasks in reasonable time
frames. e toolkit can be easily extended to experiment with alternative grammar extraction
and decoding techniques.

Bibliography

Brown, Peter F., Vincent J. Della Pietra, Stephen A. Della Pietra, and Robert L. Mercer. 1993. e math-
ematics of statistical machine translation: parameter estimation. Computational Linguistics.

Chappelier, J.C. and M. Rajman. 1998. A generalized CYK algorithm for parsing stochastic CFG. In
Proceedings of Tabulation in Parsing and Deduction (TAPD), pages 133–137, Paris.

Charniak, Eugene. 2000. A maximum entropy-inspired parser. In Proceedings of the Human Language
Technology Conference of the North American Chapter of the Association for Computational Linguistics
Conference (HLT/NAACL).

Chiang, David. 2005. A hierarchical phrase-based model for statistical machine translation. In Proceed-
ings of the Annual Meeting of the Association for Compuational Linguistics (ACL).

Chiang, David. 2007. Hierarchical phrase based translation. Computational Linguistics.
Chiang, David and Kevin Knight. 2006. An introduction to synchronous grammars. In Tutorials at the

Annual Meeting of the Association for Compuational Linguistics (ACL).
Cutting, Doug and Eric Baldeschwieler. 2007. Meet Hadoop. In O’Reilly Open Soware Convention,

Portland, OR.
Dean, Jeffrey and Sanjay Ghemawat. 2004. Mapreduce: Simplified data process on large cluster. In

Proceedings of Symposium on Operating System Design and Implementation.
Doddington, George. 2002. Automatic evaluation of machine translation quality using n-gram co-

occurrence statistics. In In Proceedings ARPAWorkshop on Human Language Technology.

76

A. Venugopal, A. Zollmann Grammar based statistical MT on Hadoop (67–78)

Dyer, Christopher, Aaron Cordova, Alex Mont, and Jimmy Lin. 2008. Fast, easy, and cheap: Construc-
tion of statistical machine translation models with mapreduce. In Proceedings of the Workshop on
Statistical Machine Translation, ACL.

Galley, Michael, Mark Hopkins, Kevin Knight, and Daniel Marcu. 2006. Scalable inferences and training
of context-rich syntax translation models. In Proceedings of the Human Language Technology Con-
ference of the North American Chapter of the Association for Computational Linguistics Conference
(HLT/NAACL).

Huang, Liang and David Chiang. 2007. Forest rescoring: Faster decoding with integrated language
models. In Proceedings of the Annual Meeting of the Association for Compuational Linguistics (ACL).

Koehn, Philipp, Franz J. Och, and Daniel Marcu. 2003. Statistical phrase-based translation. In Proceed-
ings of the Human Language Technology Conference of the North American Chapter of the Association
for Computational Linguistics Conference (HLT/NAACL).

Och, Franz J. 2003. Minimum error rate training in statistical machine translation. In Proceedings of the
Annual Meeting of the Association for Compuational Linguistics (ACL).

Och, Franz J. and Hermann Ney. 2003. A systematic comparison of various alignment models. Compu-
tational Linguistics.

Och, Franz J. and Hermann Ney. 2004. e alignment template approach to statistical machine transla-
tion. Computational Linguistics.

Papineni, Kishore, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. BLEU: a method for automatic
evaluation of machine translation. In Proceedings of the Annual Meeting of the Association for Com-
puational Linguistics (ACL).

Steedman, Mark. 1999. Alternative quantifier scope in CCG. In Proceedings of the Annual Meeting of the
Association for Compuational Linguistics (ACL).

Stolcke, Andreas. 2002. SRILM —an extensible language modeling toolkit. In Proceedings of the Inter-
national Conferrence on Spoken Language Processing (ICSLP).

Wu, Dekai. 1997. Stochastic inversion transduction grammars and bilingual parsing of parallel corpora.
Computational Linguistics.

Zollmann, Andreas and Ashish Venugopal. 2006. Syntax augmented machine translation via chart pars-
ing. In Proceedings of theWorkshop on Statistical Machine Translation, HLT/NAACL, New York, June.

Zollmann, Andreas, Ashish Venugopal, Franz J. Och, and Jay Ponte. 2008. A systematic comparison of
phrase-based, hierarchical and syntax-augmented statistical MT. In Proceedings of the Conference on
Computational Linguistics (COLING).

Zollmann, Andreas, Ashish Venugopal, and Stephan Vogel. 2008. e CMU Syntax-Augmented Ma-
chine Translation System: SAMT on Hadoop with N-best Alignments. In Proc. of the International
Workshop on Spoken Language Translation, pages 18–25, Hawaii, USA.

77

