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1 The Challenge

In this paper we discuss several approaches to the
problem of content determination for the genera-
tion of referring expressions (GRE) using the Graph-
based framework of Krahmer et al. (2003). This
work was carried out in the context of the First NLG
Shared Task and Evaluation Challenge on Attribute
Selection for Referring Expression Generation.

In the shared task proper of the Challenge the out-
put of submitted systems is evaluated against a cor-
pus of human-produced descriptions for the same in-
put. The data used for training, development and
testing is a subset of the Aberdeen TUNA Corpus, a
human-generated data set designed for the attribute
selection task. The data set is divided into a Furni-
ture domain and a People domain, focussing on de-
scriptions of singular entities. Attributes in both do-
mains are type, orientation and x- and y-dimensions.
Additional attributes in the Furniture domain are
colour and size, and additional attributes in the Peo-
ple domain are age, orientation, hair colour, and the
presence or absence of hair, beards, glasses and dif-
ferent clothing items. Each input is a pair consist-
ing of the XML representation of the attributes of all
objects contained in a scene and a pointer indicating
the intended referent. The output descriptions of the
target are lists of attributes, also encoded in XML.

Evaluation of the submitted systems is based
on the Dice coefficient of similarity between sys-
tem output and the human-produced data from the
TUNA Corpus. There will also be a small-scale
task-based evaluation with human participants.1

1For details on the TUNA corpus and the GRE Chal-

2 The Graph-based Algorithm

The graph-based GRE algorithm represents the do-
main of conversation as a labelled directed graph, in
which the domain objects are modelled as the ver-
tices, properties are modelled as looping edges, and
relations between objects are modelled as edges be-
tween the corresponding vertices. To generate a dis-
tinguishing description, the graph-based algorithm
searches for a subgraph of the domain graph that
uniquely refers to the target object.

Informally, a subgraph refers to the target object if
and only if it can be ‘placed over’ the domain graph
in such a way that the subgraph vertex representing
the target object can be ‘placed over’ the vertex of
the target in the domain graph, and each of the la-
beled edges in the subgraph can be ‘placed over’
a corresponding edge in the domain graph with the
same label. Furthermore, a subgraph is distinguish-
ing if and only if it refers to exactly one vertex in the
domain graph. The informal notion of one graph be-
ing ‘placed over’ another corresponds with the well-
known mathematical graph construction called sub-
graph isomorphism.

Generally there is more than one distinguishing
graph referring to an object. To give preference to
some solutions over others, the algorithm uses cost
functions that assign costs to the edges of a graph.
The total cost of a graph is determined by summing
over the costs associated with its edges, and the algo-
rithm always returns the cheapest graph it can find.
There are numerous ways in which costs can be as-

lenge see http://www.csd.abdn.ac.uk/research/tuna/corpus/ and
http://www.csd.abdn.ac.uk/research/evaluation/index.php
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signed to edges; below we discuss the cost functions
we investigated for the GRE Challenge.

3 The Cost Functions

Using the GRE Challenge training set, we experi-
mented with various cost functions: some that were
suggested in Krahmer et al. (2003), and some that
we specifically created for the Challenge. Since peo-
ple tend to mention the type of an object regardless
whether it is a distinguishing property, we modified
the graph-based algorithm so that type is selected by
default at zero cost for all cost functions.

Simple Costs: In our simplest cost function, all
attributes except type cost 1. Using Simple Costs the
graph-based algorithm resembles the Full Brevity al-
gorithm of Dale (1992) in that a shortest distinguish-
ing description is always favoured.

Absolute versus Relative: Here, absolute proper-
ties are cheaper (cost 1) than relative ones (cost 2),
mimicking the human preference for absolute prop-
erties over relative ones (Dale and Reiter, 1995). In
the Furniture domain the relative properties are size
and dimension; in the People domain only dimen-
sion is relative. All other properties are absolute.

Stochastic Costs: In this function, the more fre-
quently a property occurs in the corpus of human
descriptions, the cheaper it is. Property costs in this
function have been defined as Cost(e) = -log2(P(e))
(Krahmer et al., 2003), where P(e) is the probabil-
ity that property e (corresponding to an edge in the
scene graph) occurs in a description, given that the
target object actually has this property. The proba-
bility P(e) is estimated by determining the frequency
of each property in the description corpus, relative to
the number of target objects with this property.

Expensive Dimensions: Based on the informal
observation that dimensions seem to be used less fre-
quently than other attributes, we made the x- and y-
dimension attributes cost 2, and all other attributes
cost 1. In the People domain, this cost function is
the same as the Absolute versus Relative function,
since in that domain the x- and y-dimensions are the
only relative attributes.

Free Properties: For each domain we designed
a domain-specific cost function simulating the hu-
man tendency to add redundant properties to object
descriptions. In the Furniture domain, most descrip-

Furniture People
Cost function Mean PRP Mean PRP

Simple Costs 0.53 5.0 0.59 16.5
Abs. vs Rel. 0.59 13.0 0.61 21.8
Exp. Dimensions 0.67 16.7 0.61 21.8
Stochastic Costs 0.69 25.1 0.65 22.8
Free Properties 1 0.75 31.4 0.67 24.8
Free Properties 2 0.77 39.8 0.63 18.9

Table 1: Results for the training sets

tions mention colour even when this is not needed
to identify the target object. Therefore, the Free
Properties function for this domain allows the colour
property to be added to a description at zero cost.
In the People domain, beards and glasses tend to be
mentioned even when strictly spoken they are redun-
dant. So, in the Free Properties function for this do-
main, the properties hasBeard=1 and hasGlasses=1
can be added to a description at zero cost.

We made two versions of Free Properties: in Free
Properties 1 all non-free properties have the same
costs as in the Stochastic cost function, and in Free
Properties 2 all non-free properties have the same
costs as in Expensive Dimensions.

4 Results

Table 1 shows the results of the different cost func-
tions on the Furniture and People training sets. We
provide both mean Dice score and Perfect Recall
Percentage (PRP), which is the proportion of Dice
scores of 1 (Gatt et al., 2007). For both domains,
the two Free Properties functions score best, and the
Simple Cost function scores worst.

Table 2 shows the scores on the development sets.
Again, the two Free Properties functions score best
in both domains. Interestingly, the Stochastic cost
functions, which were based on the statistics from
the training corpus, turn out to do very well on
the development sets too. Thus, there appears to
be no overfitting on the training corpus. Remark-
able is also that in the People domain, the Simple
Costs function has exactly the same scores as the
more sophisticated Absolute versus Relative and Ex-
pensive Dimensions functions (which are identical),
even though it does not always generate the same
descriptions.
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Furniture People
Cost function Mean PRP Mean PRP

Simple Costs 0.55 3.8 0.63 22.1
Abs. vs Rel. 0.64 16.3 0.63 22.1
Exp. Dimensions 0.67 21.3 0.63 22.1
Stochastic Costs 0.66 20.0 0.66 22.1
Free Properties 1 0.71 30.0 0.67 25.0
Free Properties 2 0.72 31.3 0.65 25.0

Table 2: Results for the development sets

In our submission to the GRE Challenge we will
use the following cost functions: Stochastic Costs
(GRAPH-SC) and Free Properties 1 (GRAPH-
FP), as these performed best on the training and de-
velopment sets for both domains.

5 Discussion

Best-scoring on the training and development sets
are the Free Properties functions, which mimic peo-
ple’s tendency to add redundant properties to de-
scriptions. This tendency formed the basis for the
Incremental Algorithm of Dale and Reiter (1995)
and was also observed by Viethen and Dale (2006) in
human-produced descriptions of coloured drawers.
One possible explanation why people add redundant
information is that they do it to enhance clarity of
the description, at the cost of brevity (Khan et al.,
2006). Apparently, our Free Properties cost func-
tions approximate the balance between clarity and
brevity found in human descriptions.

To get an impression of how well the graph-based
algorithm performs compared to other GRE algo-
rithms, we compare our results to those of Gatt
et al. (2007). They evaluated some classic GRE
algorithms using a data set from the TUNA cor-
pus (Furniture domain) that included all attributes
used in the GRE Challenge. The best scoring al-
gorithm on this data set was the Incremental Algo-
rithm with the following attribute ordering: colour,
y-dimension, orientation, size, x-dimension. The
mean Dice score for this algorithm was 0.64, which
is only slightly worse than most of our scores for
the Furniture domain. However, the PRP was only
10%, which is much lower than our PRP scores.
Possibly, this difference has to do with the differ-
ent description strategies people use. For example,

we found that 68.8% of the descriptions in the Peo-
ple domain do not include dimension properties at
all, whereas 23.9% consist only of dimensions (be-
sides type). Because dimensions are relatively ex-
pensive in all our cost functions, our algorithm may
be more tuned to the first strategy than the latter. The
algorithms used by Gatt et al. (2007) appear to be
more neutral in this respect. Given that the choice
of description strategy mostly seems to be a matter
of personal preference, it will be hard for our algo-
rithm to always select the ‘correct’ strategy (i.e., the
one picked by the human subject). This problem
might be solved by using speaker-dependent cost
functions, which could be derived from the TUNA

corpus. However, this will not work when trying to
simulate descriptions produced by ‘new’ speakers.

Another way to achieve better scores would be
to use cost functions that capture dependencies be-
tween attributes. From informal observations of the
corpus it seems that certain properties are often men-
tioned in combination, e.g., hairColour and hasHair
in the People domain. More detailed statistical anal-
ysis of the corpus data is required to identify the
most promising combinations for each domain.
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