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Abstract

Nowadays, speech translation is a research problem in machine translation. The problem arises as to how to combine
speech recognition and machine translation in a suitable way. Some authors have shown that the speech translation can be
improved by using word lattices as input of the translation system. The acoustic recognition scores from the word lattice are
used for improving the translation quality. However, word lattices do not consider word co-occurrences between different
hypothesis and those probabilities are not real probabilities but merely Viterbi approximations. In this work, we propose
an improved word lattice representation for using posterior probabilities instead of acoustic scores. We present preliminary
results of this approach compared against other common approaches on two different corpora. Although the results are not
strongly conclusive, they show that this approach is worth exploring more deeply.

1 Introduction
Within the framework of speech-input translation, we are
faced with the problem of integrating the speech recogni-
tion and the translation processes. The problem arises as to
how to combine these two processes in a suitable way.

Different approaches to speech input translation have
been investigated (E.Vidal, 1997; Ney, 1999; F. Casacu-
berta et al., 2004; Garca-Varea et al., 2004). The most sim-
ple approach performs the two processes in a serial manner:
first, an input utterance is decoded into a sentence using a
conventional automatic speech recognizer (ASR), and af-
ter, this sentence is translated using atext-to-text translator.
The main drawback of this approach is that the output of an
ASR can contain misrecognized words and, consequently,
the quality of the translated sentences decrease. In order to
circumvent this problem, different solutions have been pro-
posed (Quan, 2005; E. Matusov and Ney, 2005; Bertoldi
and Federico, 2005). In (Quan, 2005) N-best lists have been
used for improving the quality of the translated sentences.
In (E. Matusov and Ney, 2005) the translation process is
performed using as input a word lattice and acoustic recog-
nition scores. In (Bertoldi and Federico, 2005) the trans-
lation process is performed using confusion networks and
posterior probabilities. All these approaches try to exploit
the use of a set of the most probable hypotheses instead of
only the best one.

The use of stochastic finite-state transducers provides a
fully integrated recognition-translationarchitecture in which
the source and target sentences are obtained simultaneously
(E.Vidal, 1997; F. Casacuberta et al., 2004). However, the
experimental results are not consistently better than serial
approach (F. Casacuberta et al., 2004).

In this work, we propose the use of an improved word
lattice representation for speech-to-speech translationfol-
lowing a semi-coupled architecture. Instead of using acous-
tic recognition scores (E. Matusov and Ney, 2005) we use

the word posterior probabilities computed over the word
lattice for improving the quality of the translated sentences.

2 Speech Input Translation: Review
In this section, a review of the formulation defined in (F. Casacu-
berta et al., 2004) is presented.

The problem of speech-input statistical translation can
be formulated as:
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We approximate the sum over all possible source lan-
guage sentences by the maximum. The purpose is to asso-
ciate a source sentence to the input utterance whose trans-
lation is the target sentence searched for. From Eq. 3,
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is modeled by acoustic models (typicallyHidden Markov
Models (HMM)).

3 Speech-to-Speech Translation Based on
Posterior Probabilities

In this section we explain how the probabilities involved
in speech input translation (Eq. 4) are estimated and the
decoding algorithm.

3.1 Posterior Probabilities on Word Lattices
A word latticeG is a directed, acyclic, weighted graph. The
nodes correspond to discrete points in time. The edges are
triplets [w, s, e], wherew is the hypothesized word from
nodes to nodee. The weights are the acoustic recognition
scores associated to the word lattice edges. Any path from
the initial to the final node forms a hypothesisfJ

1 .
Given the acoustic observationsx

T
1 , the posterior prob-

ability for a specific word (edge)[w, s, e] can be computed
by summing up the posterior probabilities of all hypotheses
of the word lattice containing the edge[w, s, e]:
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The probability of the sequence of acoustic observa-
tionsP (xT

1 ) can be computed by summing up the posterior
probabilities of all word lattice hypotheses:
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These posterior probabilities can be efficiently computed
based on the well-knownforward-backward algorithm (Wes-
sel et al., 2001).

The posterior probability defined in Eq. 5 does not per-
form well because of a wordw can occur with slightly dif-
ferent starting and ending times. This effect is represented
in the word lattice by different word lattice edges and the
posterior probability mass of the word is scattered among
the different word segmentations (see Figure 1).

To deal with this problem, we have considered a method
proposed in (Wessel et al., 2001). Given a specific word
(edge)[w, s, e] and a specific point in timet ∈ [s, e], we
compute the posterior probability of the wordw at timet by
summing up the posterior probabilities of the word lattice
edges[w, s′, e′] with identical wordw and for whicht is
within the interval time[s′, e′]:

Pt([w, s, e] | x
T
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Based on Eq. 7, the posterior probability for a specific
word [w, s, e] is computed as the maximum of the frame
time posterior probabilities:

P ([w, s, e] | x
T
1 ) = max

s≤t≤e
Pt([w, s, e] | x

T
1 ) (8)

The probability computed by Eq. 8 is in the interval
[0, 1] since, by definition, the sum of the word posterior
probabilities for a specific point in time must sum to one
(this property can be appreciated in the Figure 1). Figure 1
shows an example of the word lattice with the word poste-
rior probabilities computed following the Eq. 5. Figure 2
shows the same word lattice after Eq. 8 is computed.
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Figure 1: Word lattice with the word posterior probabilities.
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Figure 2: Word lattice after the frame posterior probabili-
ties are computed.

We will use these posterior probabilities to compute the
conditional probability of the acoustic signal given a source
hypothesis:

Pr(xT
1 |f

J
1 ) =

J∏

j=1

P ([wj , sj, ej ]|x
T
1 ) (9)

wheresj andej are the starting and the ending time, re-
spectively, of the source wordwj .

3.2 Stochastic Finite-State Transducers
The joint probability distributionPr(eI

1, f
J
1 ) in Eq. 4 can

be adequately modelled by means of a statistical finite-state
transducer (SFST). SFSTs have been thoroughly studied
(Vidal et al., 2005a; Vidal et al., 2005b) and several ap-
proaches to infer SFSTs from corpora have been proposed
in recent years (Kumar et al., 2005; Casacuberta and Vidal,
2004; Allauzen et al., 2004).



We have used the Grammatical Inference and Align-
ments for Transducer Inference (GIATI) technique for in-
ferring the SFST (Picó, 2005). This technique uses a finite
sample of bilingual pairs (parallel corpus) for inferring the
SFST in three steps:

1. Building training strings. Each training pair is trans-
formed into a single string from an extended alphabet
to obtain a new sample of strings. The transformation
of a parallel corpus into a corpus of single sentences
is performed with the help of statistical alignments:
each word (or substring) is joined with its translation
in the output sentence, creating anextended symbol.

2. Inferring a (stochastic) regular grammar. Typically,
a smoothedn-gram is inferred from the sample of
strings obtained in the previous step.

3. Transforming the inferred regular grammar into a trans-
ducer. The symbols associated to the grammar rules
are transformed into source/target symbols by apply-
ing an adequate transformation.

An interesting feature of SFSTs is that the maximiza-
tion of Eq. 4 can be performed in a fully integrated recog-
nition-translation manner. This is possible since each tran-
sition of the SFST is labelled with a source word and its cor-
responding target translation. Thus, each transition is ex-
panded by the acoustical representation of the source words.
Following the standard speech recognition searching algo-
rithm over the SFST, the optimal source and target sen-
tences are obtained simultaneously.

We use the SFST in a semi-coupled manner as is ex-
plained in the next section. Comparative results between
semi-coupled and integrated architectures are presented in
Section 4.

3.3 Decoding Algorithm
The decoding algorithm is composed of three major steps:

• Speech Recognition step: In this step we perform the
recognition of the speech utterance using a conven-
tional speech recognizer. This is done by searching
for a sequence of source wordsfJ

1 such that:
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1 )
by an input language model.

The output of this step is also a word latticeG which
represents the most probable hypotheses.

• Compute the word posterior probabilities: Each edge
[w, s, e] in the latticeG is scored with the word pos-
terior probability following Eq. 8.

• Translation step: In this step, we use Eq. 4 to obtain
the most probable target sentence. The maximiza-
tion for each input sentencefJ

1 , is only computed on

a subset of possiblefJ
1 , i.e. those belonging to the

word latticeG and the SFST. The search algorithm
process corresponds to the following equation:
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is computed using the word posterior probabilities of
the word latticeG following Eq. 9.

The search process is performed on a plane of a 3-D
Viterbi search over the word lattice and the SFST. A third
dimension considered as the length of the path is necessary,
since two hypotheses that arrive at the same point in the
search process, with different lengths, must be treated as
two possible solutions; thus we need to define the best sin-
gle 3-D path as the sequence of states which maximizes the
Eq. 10.

4 Experimental Results
4.1 Corpora
This section is devoted to evaluate and analyze the approach
described in this paper and compare it against the standard
approaches. To do that, a series of experiments were run on
two different tasks of increasing complexity.

The Eutrans-I task (F. Casacuberta et al., 2004), the
simpler of them, is composed of pairs of Spanish-English
sentences that represent the translation of queries, requests
and complains made by telephone to the front desk of a ho-
tel. The sentences were semi-automatically generated from
a series of travel booklets and, as a consequence, the va-
riety of expressions is limited, which is reflected in a low
perplexity. With regard to the acoustic models, 26 context-
independent phones were trained with the HTK Toolkit (Young
et al., 1997). The speech corpus amounted to approxi-
mately 3.8 hours of 8 kHz telephone signal. A back-off
4-gram GIATI model was used as translator and a back-off
trigram as input language model.

On the other hand, the Eutrans-II FUB task (Italian-
English) is significantly more complex and closer to a real
situation than the Eutrans-I task. Although both corpora
represent the same scenario, in this case the speech cor-
pus consisted of acquisitions of real phone calls to the front
desk of a hotel. Thus, this corpus is highly spontaneous
and contains many non-speech artifacts. The corpus was
obtained by manually transcribing the acquired Italian ut-
terances and translating them into corresponding English
sentences. The speech training corpus consists of 7.9h of
microphone speech. 1500 context-dependent models were
trained and the LDA technique was used to improve the fea-
ture representation of the speech signal. We used a back-off
trigram as input language model. For the GIATI model we
estimated a back-off bigram.

Statistics of these corpora are summarized on Table 1.



Eutrans-I FUB
Spanish English Italian English

T
ra

in Sentences 10000 3038
# words132198 134922 61232 72446

Vocabulary 686 513 2459 1701

Te
st Sentences 336 278

# words 2828 2940 5381 6198
Perplexity 8.6 6.3 31 25

ASR WER 13.3 – 29.4 –

Table 1:Corpus statistics for Eutrans-I and FUB.

4.2 Evaluation Measures
The experiments have been assessed through several differ-
ent evaluation measures. To measure the translation perfor-
mance, we have used Translation Word Error Rate (TWER)
and Position-Independent Word Error Rate (PER), which
inherit from speech WER, as they have been the traditional
translation measures. Nevertheless, new measures have ari-
sen recently: BLEU (Papineni et al., 2001) and NIST (Dod-
dington, 2002). Both measure the n-gram co-occurrences
and are said to be well correlated with human evaluation.
We also present the results with these measures because
currently they are the most used in machine translation. In
all the experiments, punctuation marks have been removed,
while capital letters have been kept.

4.3 Parameter Tunning
One important question regarding performance is to adjust
the model parameters. In our case, given that probabili-
ties in Eq. 10 are not true distributions, it is necessary to
find an interpolation lambda parameter for the word lattice
probability that minimizes the translation error. This adjust-
ment is typically carried out by means of a development set.
However, we have optimized this lambda parameter over
the test-set for both corpus since they do not have develop-
ment test. In the experiments, we show the results for the
lambda for which the higher BLEU is achieved.

It has been shown that translation accuracy depends di-
rectly on the density of the word lattices (E. Matusov and
Ney, 2005). The density of a word lattice depends on a pa-
rameterk which restricts the maximum history length of
the states. For the FUB task it was not necessary to use
this parameter and the word lattices were generated with
the highest density possible. However, the Eutrans-I task
required to set thek parameter to10 due to computational
requirements.

4.4 Experiments
Depending on howPr(xT

1 |f
J
1 ) was estimated, two differ-

ent sets of speech-to-speech translation experiments were
run for both corpus. For the first one (labelled asac), we
used the acoustic recognition scores of the word lattice as it
is proposed in (E. Matusov and Ney, 2005). For the second
one (labelled aspost), we used the posterior probabilities
computed as it has been proposed in Section 3.1.

Three different architectures have been evaluated:

• The serial approach (serial). Using the Viterbi al-
gorithm, the best sentences were obtained from the
word lattice using the acoustic recognition scores and
posterior probabilities. When the acoustic recogni-
tion scores were used, the output was the same as the
output in the speech recognizer. Subsequently, the
best sentence was translated.

• The semi-coupled approach (lattice). The word lat-
tice was translated as it is explained in Section 3.3
using the acoustic recognition scores and posterior
probabilities.

• The integrated approach (integrated). A word lattice
was obtained from the speech input translation us-
ing the SFST in a fully integrated manner. As in the
serial approach, a Viterbi algorithm was applied to
compute the best sentences from the word lattice us-
ing the acoustic recognition scores and the posterior
probabilities.

Furthermore, the correct transcriptions were also trans-
lated to compute the baseline translation error of the SFST
used in all the experiments.

4.5 Eutrans-I Spanish-English
The translation results for the Eutrans-I corpus are given
in Table 2. This is an easy task as can be observed by the
high baseline BLEU score. Furthermore, the integrated ap-
proach (approachA) outperforms the rest of architectures
in most of the measures. This fact is due to the good ra-
tio between amount of training data and complexity of the
task, which allows good parameter estimates.

However, word lattice decoding with posterior proba-
bilities (approachB) obtains the best NIST score. A possi-
ble explanation of this inconsistency is that the average out-
put length in approachB is 1.45% shorter than sentences
in approachA. Although it does not seems a huge differ-
ence, the brevity penalty (BP) factor in the BLEU measure
changes dramatically the results. In fact, the best BLEU
score without BP found in the approachA is 85.9 while for
approachB is 86.6. It has been observed in (Koehn, 2004;
Doddington, 2002) that the BLEU measure heavily penal-
izes short sentences. As a matter of fact, in (Doddington,
2002) it is stated that NIST is more stable than BLEU re-
garding the length of the sentences. Thus, we attribute this
bad results in BLEU to the fact that our translation system
does not perform any kind of output brevity penalization
and, therefore, the BLEU scores are affected.

It is also important to note that the results presented
in this table were obtained with downsized word lattices.
Despite the fact that all the experiments with lattices were
affected by this restriction, it must be noted that posterior
probabilities were specially affected since the probabilities
of the observed hypothesis were worse estimated.

4.6 FUB Italian-English
Table 3 shows the translation results for the FUB Italian-
English corpus. In this case, word lattice with posterior
probabilities (approachA) outperformed the rest of approaches
except for the BLUE measure, for which word lattice with



architec. score TWER PER NIST BLEU

baseline correct 4.8 4.8 9.53 94.0

serial
ac 14.1 13.7 8.29 81.3

post 14.3 14.1 8.38 81.0

lattice
ac 13.3 13.1 8.32 81.7

post 13.4 13.2 8.43 81.9

integrated
ac 12.6 12.3 8.37 82.6

post 13.7 13.4 8.29 81.1

Table 2: Eutrans-I Translation results (TWER in %) for
different architectures. ac in column scoreindicates that
acoustic scores were used. post indicates that posterior
probabilities were used.

acoustic scores (approachB) obtained the best result. If we
compare in detail both approaches, we will notice that the
output sentences in approachA are4.1% shorter respect to
approachB. As in the previous task, if we compare BLEU
scores without BP, approachA scores higher (52.1 vs51.3)

On the other hand, the posterior probabilities consis-
tently outperform the acoustic scores for all the architec-
tures except for the BLEU measure in this task. It may
be due in part to the fact that we used the whole lattice in
all the experiments. Therefore, posterior probabilities were
better estimated and, as a consequence, the results against
acoustic scores were improved. Besides, this task is more
complex so the distribution probabilities are further from
the real distributions. Hence, posterior probabilities take
more advantage of the word lattice information.

architecture score TWER PER NIST BLEU

baseline correct 27.7 22.0 8.44 59.3

serial
ac 43.8 34.9 6.62 45.0

post 40.3 31.7 7.04 46.3

lattice
ac 39.2 31.1 7.11 49.4

post 38.3 30.3 7.27 48.3

integrated
ac 44.7 35.4 6.55 44.5

post 43.3 34.1 6.74 43.7

Table 3:FUB Translation results (TWER in %) for different
architectures. ac in column scoreindicates that acoustic
scores were used. postindicates that posterior probabilities
were used.

5 Conclusions
In this paper, we have shown a new approach to integrate
speech and translation by using an improved word lattice
representation. We propose the use of word posterior prob-
abilities computed over the word lattice for improving spe-
ech input translation. We have test our system on two tasks
and the results show that this approach can improve the
translation process.

However, the results are not fully consistent due to an
inconsistency in the BLEU scores. This may be provoked
by the brevity penalty used in BLEU. Therefore, it is imper-
ative to add a brevity penalization to our transducer in order
to overcome this situation and to assure that the results are
definitely conclusive.

Furthermore, a beam search decoder is needed that can
handle large lattices which could benefit from better esti-
mated posterior probabilities.
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